Performance Analysis of Falcon Post-Quantum
Cryptography in Embedded Hardware-Software Integration

John Biselx! and Andrea Guerrieri* Senior Member, IEEE
tSchool of Engineering, HES-SO Valais-Wallis, Sion, Switzerland

Abstract—Post-Quantum Cryptography (PQC) algorithms are
gaining significant interest as they transition from theoretical pro-
totypes to practical implementations, particularly in embedded
applications such as the Internet of Things (IoT). Falcon, a PQC
signature standard candidate selected by NIST, is the focus of this
study. This paper aims to (1) benchmark Falcon’s performance on
an embedded target and (2) explore hardware-software codesign
approaches to enhance the performance of cryptographic func-
tions. Our hardware-software codesign approach demonstrates a
speedup of up to 42 for the most critical functions with a 1.8x
overall performance improvement with respect to the baseline.

I. INTRODUCTION

As the field of quantum computing advances, the need
for cryptographic systems that can withstand quantum attacks
has become increasingly urgent. Post-Quantum Cryptography
(PQC) offers solutions that are resilient against both classi-
cal and quantum computational threats. This is particularly
critical for embedded systems, which are pervasive in various
applications, from Internet of Things (IoT) devices to critical
infrastructure. Embedded systems are characterized by their
limited computational resources, including processing power,
memory, and energy consumption. Implementing PQC on
such targets requires optimizing these algorithms to fit within
these constraints without compromising security. Effective
hardware-software codesign can play a fundamental role in
achieving this balance, ensuring that PQC implementations are
both secure and efficient. Falcon is designed for efficiency and
security, leveraging lattice-based cryptography.

II. RELATED WORK AND CONTRIBUTION

Falcon stands out due to its recursive nature and uti-
lization of floating-point (FP) numbers, features uncommon
among other PQC algorithms. However, FP arithmetic poses
a persistent challenge for FPGAs, thereby introducing an
additional layer of complexity to its implementation. Previous
efforts tried to implement stand-alone hardware accelerators
of cryptographic functions [1]. Others tried implementing
Falcon using a hardware-software codesign approach targeting
FPGA [2], and ASIC [3]. This paper seeks to achieve two pri-
mary objectives: firstly, to conduct a performance benchmark
of Falcon on an embedded target, and secondly, to investigate
hardware-software codesign strategies aimed at improving the
performance of cryptographic functions. The remainder of
this paper is organized as follows: Section III introduces the
performance analysis of the cryptography functions. Section
IV presents the hardware-software codesign strategy, the pre-
liminary results are shown in SectionV to conclude the paper
with future work.

III. PERFORMANCE ANALYSIS OF FALCON PQC

The three operations performed by Falcon are key genera-
tion, signature, and verification. To measure the execution time
of the Falcon algorithm for the operations mentioned above,
the built-in performance measurement tool is provided in the
code submitted to NIST. The selected target for our perfor-
mance analysis is an AMD SoC integrating a dual-core Arm
Cortex-A9 CPU, along with the FPGA. The Arm Cortex-A9
can be configured to include both NEON (Advanced SIMD)
and VFPv3 (Vector Floating Point version 3) coprocessors.
To evaluate maximum-achievable performance, the compiler
has been configured to utilize the above-mentioned operations
provided by the CPU’s floating-point unit (FPUs). Execution
results are displayed in Table 1.

TABLE I
PERFORMANCE EVALUATION OF FALCON OPERATIONS RUNNING ON THE
EMBEDDED TARGET. THE CPU IS A DUAL-CORE ARM CORTEX-A9.

Degree [bits] Key Generation [ms] Signature [us] Verification [us]

256 325 8796 1275
512 617 18315 2696
1024 1541 38169 5647

Performance analysis showed notable results: as expected,
the complex FFT, named Falcon Inner FFT, and the function
process_block resulted in the most expensive execution per-
centage for the three operations, respectively 40% and 15%.

IV. HARDWARE-SOFTWARE CODESIGN

The second goal of this work is to explore hardware-
software codesign strategies to improve the performance of the
cryptographic functions for the embedded hardware. Particu-
larly, in this work we explored the viability of using high-level
synthesis (HLS) which would allow quicker deployment of
such algorithms onto hardware design. HLS takes code written
in C/C++ and generates hardware description language (HDL)
for a given target. The study underscores the potential of
hardware acceleration in enhancing computational efficiency
while also pointing to the necessity of balancing resource
allocation to ensure scalability and efficiency.

A. Process block

The exploration of hardware acceleration for the pro-
cess_block function through HLS reveals significant perfor-
mance improvements. The results showed a 35x performance
increase, achieved without any code modifications or special
synthesis directives (i.e. #pragmas) apart from loop pipelining,



f[j + ht + hn] s_re s_im

[ ]

* " B *
FPC_MUL

e

FPC_SUB

Fig. 1. Complex FFT Operation performed in Falcon. The FPC directives are
macros that calculate mathematical operations with complex operands. The
first two arguments are the output, the next pair is the first complex number,
and the final two is the second complex operand.

j{m el /?

) + ht]

Lill] ffj + hn]

highlighting the progress and advancements of EDA technol-
ogy. Resource utilization for the accelerated implementation
included 6% of the available Flip-Flops (FFs), 3% of the Block
RAMs (BRAMs), and a considerable 32% of the Look-Up Ta-
bles (LUTs). Nevertheless, the substantial LUT usage presents
a clear trade-off between area and performance, emphasizing
the need for strategic resource management, especially when
multiple functions require acceleration.

B. Falcon Inner FFT

Conversely to the function presented in Section IV-A, where
HLS did not raise any performance issues, for the function
FFT HLS generated suboptimal results [4]. Loop-carried de-
pendencies prevent the efficient pipelining of the inner-most
loop, increasing the initiation interval (number of clock cycles
before starting a new iteration) up to the value of the iteration
latency (the duration in clock cycle of one iteration), in this
case 168. To reduce the initiation interval, manual intervention
with code refactoring is needed. The data dependencies have
been analyzed and solved. Figure 1 shows the dataflow graph
of the complex FFT operations. The HLS results are shown in
Table II. The optimized version presents an initiation interval
of 4, with a speedup of 42x with respect to the original
solution. The total resources do not exceed 10% of the FPGA.

TABLE II
FALCON INNER FFT HIGH-LEVEL SYNTHESIS RESULTS.

Version Initiation Interval (cc) Speedup (x) LUTs FFs DSPs BRAMs
Original 168 - 6048 5093 25 16
Optimized 4 42 6661 5790 17 24

Falcon Performance

1.00 B SW key generation
W HW-SW key generation
0.75 SW signature
W HW-SW signature
B SW verification
0.50 -
M HW-SW verification
0.25
0.00 I
256 512

1024
Fig. 2. Falcon Performance for the three cryptographic operations,
normalized. The results are the execution runtime profiled on the
embedded hardware. The hardware-software codesign approach is
accelerating the operations of a factor 1.8 on average.

3

a

N

V. PRELIMINARY RESULTS

The experiments have been performed on a Zedboard,
provided with AMD Zynq XC7Z020 SoC, which includes an
Arm Cortex-A9 dual-core CPU operating at 667 MHz, and
Artix-7 FPGA fabric. The HLS tool used for the experiment is
Vitis HLS 2023.1, the arm-linux-gnueabi-gcc cross-compiler
for the Arm CPU, and gprof CPU profiler. The final results
are presented in Figure 2. The hardware-software codesign
approach shows a speedup of an average of 2x for the key
generation, 1.4x for the signature, and 2x for the verifica-
tion. On one note, the speedup showcased in our results is
conservative: the experiments have been performed using a
clock frequency of 100MHz, which could be easily increased
up to 250MHz leading to a speedup of 4.5x. Therefore, this
work is expected to outperform the 1.6x speedup reported in
[2], targeting the same hardware platform.

VI. CONCLUSION AND FUTURE WORK

Implementing Falcon PQC on embedded hardware is an
important step toward securing embedded systems against
future quantum threats. Future work includes the integration of
other functions such as the random number generator as well
as the evaluation of the impact on energy efficiency. To the best
of our knowledge, this paper is the first to attempt to optimize
Falcon PQC using HLS. Additionally, the preliminary results
presented in this work are poised to surpass the state-of-the-art
performance achieved in previous work [2].

REFERENCES

[1] A. Guerrieri, G. Da Silva Marques, F. Regazzoni, and A. Upegui, “H-
saber: An FPGA-optimized version for designing fast and efficient post-
quantum cryptography hardware accelerators,” in 2023 24th International
Symposium on Quality Electronic Design (ISQED), 2023, pp. 1-6.

[2] E. Karabulut and A. Aysu, “A hardware-software co-design for the
discrete gaussian sampling of Falcon digital signature,” in 2024 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), 2024, pp. 90-100.

[3] Y. Lee, J. Youn, K. Nam, H. H. Jung, M. Cho, J. Na, J.-Y. Park, S. Jeon,
B. G. Kang, H. Oh, and Y. Paek, “An efficient hardware/software co-
design for Falcon on low-end embedded systems,” IEEE Access, vol. 12,
pp. 57947-57958, 2024.

[4] A. Guerrieri, G. D. S. Marques, F. Regazzoni, and A. Upegui, “Optimizing
post-quantum cryptography codes for high-level synthesis,” in 2022
Euromicro Conference on digital systems Design (DSD22), Gran Canaria,
Spain, 2022, pp. 361-67.



