
MERCURY: Efficient Subgraph Matching on GPUs

with Hybrid Scheduling

Zhiheng Lin, Changjie Xu, Ke Meng, Guangming Tan

State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

University of Chinese Academy of Sciences

lingzhiheng@ncic.ac.cn, xuchangjie21@mails.ucas.ac.cn, {mengke, tgm}@ict.ac.cn

AbstractÐSubgraph matching finds all distinct subgraphs in
the given data graph G that are isomorphic to the pattern graph
P . It is widely used in social networks, chemoinformatics, rec-
ommendation systems, anomaly detection, and network security.
Unfortunately, subgraph matching is an NP problem with a huge
search space that can quickly exhaust computational resources
and requires materializing a large number of intermediate
results. Even with GPU acceleration, the processing time for
subgraph matching tasks on large graphs often fails to meet the
needs of real-world applications. Previous systems use coarse-
grained thread-mapping strategies and static configuration for
symmetry breaking rules and intersection kernels, which lose
the opportunity to exploit the fine-grained parallelism of GPUs.
In this paper, we first discuss different optimization variants from
three aspects:(i) symmetry breaking, (ii) thread-mapping and (iii)
intersection kernel, then we propose a novel hybrid scheduling
strategy to combine these optimization variants. Based on this
scheduling, we developed MERCURY to enable load-balanced and
efficient subgraph matching on GPUs. Experiments show that
MERCURY outperforms TRUST, SMOG, and H-INDEX up to
3.92×, 19.7×, and 21.6×, respectively, in triangle counting. For
general pattern matching tasks, it is up to 52.4× faster than
G2Miner, and can scale up to 1024 GPU cards.

Index TermsÐGraph, Subgraph matching, GPU

I. INTRODUCTION

Graphs, as a flexible data structure, that can efficiently

represent the relationships between entities, have been widely

adopted to model real-world data. Subgraph matching tasks

aim to find all subgraphs in a given data graph G that are

isomorphic to a pattern graph P , where the size of G is

significantly larger than P . Such subgraph matching tasks can

uncover hidden data characteristics or find specific matches

and are therefore widely used in various data analysis tasks,

such as community detection [1], [2], molecular dynamics [3],

drug discovery [4], and anomaly detection [5], [6].

The subgraph matching problem has been studied for

decades, but no polynomial-time solution has been found

yet. Practically, the subgraph matching problem is a search

problem that starts from every vertex in the graph, iteratively

adding adjacent edges, and checking whether the newly

formed candidate subgraph is isomorphic to the target pattern

P . This method not only requires traversing a huge search

space but also materializing a large number of intermediate

results. GPUs, with their numerous cores capable of

simultaneous enumeration and TB-level bandwidth provided

by High Bandwidth Memory (HBM) [7], are potential

devices to accelerate the subgraph matching problem from a

performance perspective.

Recently, many GPU-based subgraph matching systems

have been developed to accelerate this type of application.

The core of these systems centers on three aspects: (i) How

to avoid automorphism, which causes redundant computation.

GraphPi [8] reduces automorphisms by adding symmetry-

breaking rules, TRUST [9] uses a vertex ordering strategy

called orientation pruning to preemptively shrink the neighbor

lists thus avoiding touching automorphism triangles. (ii) How

to expedite the set intersection kernel that is invoked millions

of times during the search process to determine whether two

points in a graph share any common neighbors. For instance,

TriCore [10] employs hash-based intersection, MergePath [11]

uses merge-based intersection, Gunrock [12] utilizes binary

search-based intersection, and GraphFold [13] adopts a reverse

intersection approach. (iii) How to efficiently map the search

task to the GPU threads, enabling the Graph Pattern Matching

(GPM) algorithms to reach the hardware limits of GPUs

as far as possible. For example, G2Miner [14] generates

GPU-friendly code via code generation, GraphFold [13]

avoids redundant edge checking in intersections. Due to

the power-law edge distribution in the real-world graph, the

computational resources required to compute the intersection

of neighbors for two vertices can vary significantlyÐsome

intersections may involve traversing thousands of vertex

pairs, while others may require only a few. Such highly

skewed edge distribution makes one can not simply choose

one optimization to rule all input graphs and patterns.

However, previous systems, including the champions of

HPEC Graph Challenges, have only focused on a single opti-

mization or coarse-grained hybrid optimizations in these three

aspects mentioned above (i.e., orientation pruning, intersection

kernel, and thread mapping). They have not considered the

performance behavior of different optimizations on different

input graphs and patterns. For example, the classical thread-

mapping strategy in these systems is dividing the computa-

tional resources of GPU into three categories: thread, warp,

and block. They then classify based on the vertex degree,

i.e., using a block to handle a high-degree vertex, a thread

to handle a low-degree vertex, and the remaining vertices are

handled by warps individually. Since the computation of the

intersection kernel often happens between vertex sets, e.g.,

N(v) and N(u), Such strategy maps tasks only based on



|N(v)|, but still ignores the skewed distribution of |N(u)|.

MERCURY. To further improve the efficiency of GPU-based

subgraph matching, we developed MERCURY
1. MERCURY

adopts a hybrid scheduling approach, which changes the static

setting of optimizations in orientation pruning, intersection

kernel, and thread mapping to hybrid versions, This approach

makes MERCURY more robust to different input graphs and

patterns thus we can achieve higher GPU utilization and

performance in large GPU clusters. To be more specific, the

contributions of this paper are:

(1) We conduct a detailed analysis of subgraph matching al-

gorithm optimizations from three aspects: orientation pruning,

intersection kernel, and thread mapping, and describe their

performance behavior and explain why previous systems apply

them. (Section II).

(2) We add new optimization variants to existing optimizations

and propose a hybrid scheduling strategy, achieving higher

GPU Utilization and avoiding load imbalance. (Section III).

(3) Experimental results show that MERCURY can significantly

outperform the performance of SOTA and HPEC Graph Chal-

lenge champions (Section IV).

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the characteristics of

subgraph matching applications and the crucial intersection

kernel. Then we analyze the coarse-grained load-balance al-

gorithm and show why it fails to achieve optimal performance.

A. Set-centric Graph Pattern Matching

A graph G = (V,E) donates a set of vertices V and

edges E ⊆ V × V , and real-world graph is often very sparse,

which means |E| ≪ |V | × |V |. In addition, v ∼ u means v

is connected to u and v ≁ u is the opposite. We use N(v)
to represent all the neighbors of v. w.l.o.g., we only consider

unlabeled and undirected patterns and graphs, and all data

can fit the aggregated device memory.

A subgraph matching algorithm is to find or count the

number of all distinct embeddings, where an embedding EPk

is an instance of the subgraph pattern that is isomorphic with

the given pattern Pk on k (k > 2) vertices, e.g., clique-

counting and motif-counting. A typical subgraph matching

algorithm follows a ‘generate-check’ procedure, it first gen-

erates a candidate set S and then checks all candidates in

S whether it can form a valid embedding. Recent studies

use a set-centric model to represent the subgraph matching

algorithm. As shown in Fig. 1 (a), given a k-vertices pattern

Pk with a matching order Z and a data graph G, EPi
is

an embedding of Pk. A function F i(EPi
) is introduced to

generate the candidate set S(vi), and we can use only set

intersection and set difference to implement F i(EPi
) [15].

We also follow this paradigm in this paper.

Checking the common-neighbor of a given vertex pair are

essential kernel in subgraph matching algorithms. Since the

1Code available in https://github.com/GPM-lib/Mercury

pattern graph is undirected, there are many automorphisms

in search space, which means the same embedding can be

generated in different ways. To break the automorphism,

we can put a restriction id(vi) < id(vj), where id(vi)
is the unique identifier of vertex vi in the pattern graph.

This symmetric breaking optimization, which is also called

orientation optimization [16], [9], is able to prune the search

space but is orthogonal to MERCURY.

B. Intersection Kernel

The operation of set intersection is a key kernel in subgraph

matching, primarily occurring in the computation of the set

operations described in Fig. 1 (a). The input to the intersection

operation consists of two sorted arrays of positive integers,

A and B, and the algorithm outputs the common elements of

these two arrays. In a multicore architecture, this is typically

achieved through the following two approaches:

Binary Search. Since arrays A and B are sorted, we can enu-

merate each value in the shorter of the two arrays and perform

a binary search in the longer array. w.l.o.g., let’s assume the

length of array A is less than that of B, the time complexity

for each thread during the search is O(log(len(B))). Due to

the extensive random memory accesses required by binary

search, the actual memory bandwidth is significantly lower

than the theoretical peak. Therefore, in practice, part of array

B is often cached in shared memory to improve performance.

Specifically, the upper layers of the binary search tree

constructed from array B are cached. Systems such as

G2Miner [14], GraphFold [13], AutoMine [15], GraphPi [8],

and Gunrock [12] employ this method.

Hash Table. Hash-based set intersection implementation re-

quires constructing a hash table for one of the arrays, either

A or B, at runtime. Specifically, open addressing is typically

used to handle hash collisions due to its straightforward

implementation, which is favorable for multicore architectures.

When a collision occurs, linear probing is employed to store

conflicting values. In GPU implementations, managing linked

list structures incurs high performance overhead, so multiple

slots are usually reserved for each hash value to handle colli-

sions, leading to significant memory consumption. Similarly,

to further reduce memory access overhead during queries, part

of the hash table can be stored in the shared memory of GPU.

Systems such as TRUST [9], GraphFold [13], pbitMCE [17],

TriCore [10], and SMOG [16] employ this method.

C. Coarse-Grained Load-Balance Strategies

In a GPU, the relatively weak computational power of a

single core means that an imbalanced workload can lead to

significant wastage of computational resources, thereby greatly

hurting the end-to-end performance. Therefore, determining

how to distribute the workload among each thread and how

to organize threads into a reasonable granularity to access

and process data plays a crucial role in achieving the peak

performance of the hardware.

Edge-parallel and Vertex-parallel. In vertex-parallel paral-

lelism, task allocation involves assigning the processing of



Pattern: a triangle

Input graph

For 
<latexit sha1_base64="NWWF7FnpsO1M/vWr3jpbtOSxCZg=">AAAB8nicbZDLSgMxFIYz1kutt6q4chNsBVdlxoW6LLhxWcFeYDqUTHqmDc0kQ5IplKGP4caFIm59CV/BheDKR9H0stDWHwIf/38OOeeECWfauO6ns5JbXVvfyG8WtrZ3dveK+wcNLVNFoU4ll6oVEg2cCagbZji0EgUkDjk0w8H1JG8OQWkmxZ0ZJRDEpCdYxCgx1vLLw46L20zgRrlTLLkVdyq8DN4cStXcx/fb0RfUOsX3dlfSNAZhKCda+56bmCAjyjDKYVxopxoSQgekB75FQWLQQTYdeYxPrdPFkVT2CYOn7u+OjMRaj+LQVsbE9PViNjH/y/zURFdBxkSSGhB09lGUcmwknuyPu0wBNXxkgVDF7KyY9oki1NgrFewRvMWVl6FxXvEuKt6tV6q6aKY8OkYn6Ax56BJV0Q2qoTqiSKJ79IieHOM8OM/Oy6x0xZn3HKI/cl5/AP7+lCE=</latexit>

v0 2 V
<latexit sha1_base64="NWWF7FnpsO1M/vWr3jpbtOSxCZg=">AAAB8nicbZDLSgMxFIYz1kutt6q4chNsBVdlxoW6LLhxWcFeYDqUTHqmDc0kQ5IplKGP4caFIm59CV/BheDKR9H0stDWHwIf/38OOeeECWfauO6ns5JbXVvfyG8WtrZ3dveK+wcNLVNFoU4ll6oVEg2cCagbZji0EgUkDjk0w8H1JG8OQWkmxZ0ZJRDEpCdYxCgx1vLLw46L20zgRrlTLLkVdyq8DN4cStXcx/fb0RfUOsX3dlfSNAZhKCda+56bmCAjyjDKYVxopxoSQgekB75FQWLQQTYdeYxPrdPFkVT2CYOn7u+OjMRaj+LQVsbE9PViNjH/y/zURFdBxkSSGhB09lGUcmwknuyPu0wBNXxkgVDF7KyY9oki1NgrFewRvMWVl6FxXvEuKt6tV6q6aKY8OkYn6Ax56BJV0Q2qoTqiSKJ79IieHOM8OM/Oy6x0xZn3HKI/cl5/AP7+lCE=</latexit>

v0 2 V

For 
<latexit sha1_base64="DTiXFgalm5DTYEle7qjAKVmcTSo=">AAAB+XicbVDLSgMxFM3UV62vUXe6CbZC3ZSJC3VZcONCpAX7gHYYMmmmDc1khiQzUIZ+gb/gxoUibv0E/8Cdf+EnmD4W2nrgwuGce7n3Hj/mTGnH+bJyK6tr6xv5zcLW9s7unr1/0FRRIgltkIhHsu1jRTkTtKGZ5rQdS4pDn9OWP7ye+K2USsUica9HMXVD3BcsYARrI3m2XUo9BLtMwLty6jlnJc8uOhVnCrhM0JwUq3b9++P26KHm2Z/dXkSSkApNOFaqg5xYuxmWmhFOx4VuomiMyRD3acdQgUOq3Gx6+RieGqUHg0iaEhpO1d8TGQ6VGoW+6QyxHqhFbyL+53USHVy5GRNxoqkgs0VBwqGO4CQG2GOSEs1HhmAimbkVkgGWmGgTVsGEgBZfXibN8wq6qKA6KlYdMEMeHIMTUAYIXIIquAE10AAEpOARPIMXK7OerFfrbdaas+Yzh+APrPcf/+uU5g==</latexit>

v1 2 N(v0)
<latexit sha1_base64="DTiXFgalm5DTYEle7qjAKVmcTSo=">AAAB+XicbVDLSgMxFM3UV62vUXe6CbZC3ZSJC3VZcONCpAX7gHYYMmmmDc1khiQzUIZ+gb/gxoUibv0E/8Cdf+EnmD4W2nrgwuGce7n3Hj/mTGnH+bJyK6tr6xv5zcLW9s7unr1/0FRRIgltkIhHsu1jRTkTtKGZ5rQdS4pDn9OWP7ye+K2USsUica9HMXVD3BcsYARrI3m2XUo9BLtMwLty6jlnJc8uOhVnCrhM0JwUq3b9++P26KHm2Z/dXkSSkApNOFaqg5xYuxmWmhFOx4VuomiMyRD3acdQgUOq3Gx6+RieGqUHg0iaEhpO1d8TGQ6VGoW+6QyxHqhFbyL+53USHVy5GRNxoqkgs0VBwqGO4CQG2GOSEs1HhmAimbkVkgGWmGgTVsGEgBZfXibN8wq6qKA6KlYdMEMeHIMTUAYIXIIquAE10AAEpOARPIMXK7OerFfrbdaas+Yzh+APrPcf/+uU5g==</latexit>

v1 2 N(v0)

count +=
<latexit sha1_base64="neWkKysRvPJ8OSiP44mpn/OIW0M=">AAACAHicbZC7SgNBFIZnvcZ4W7UQtBlMhKQJuxZqGbCxEEnAXCBZltnJbDJkdnaZmQ2ETRpbH8PGQhFbW9/AzrfwEZxNUmjiDwMf/zmHM+f3IkalsqwvY2l5ZXVtPbOR3dza3tk19/brMowFJjUcslA0PSQJo5zUFFWMNCNBUOAx0vD6V2m9MSBC0pDfqWFEnAB1OfUpRkpbrnkI86PbwsC1irCNUQRTtoujvGvmrJI1EVwEewa5sln9/rg5eqi45me7E+I4IFxhhqRs2VaknAQJRTEj42w7liRCuI+6pKWRo4BIJ5kcMIan2ulAPxT6cQUn7u+JBAVSDgNPdwZI9eR8LTX/q7Vi5V86CeVRrAjH00V+zKAKYZoG7FBBsGJDDQgLqv8KcQ8JhJXOLKtDsOdPXoT6Wck+L9lVO1e2wFQZcAxOQAHY4AKUwTWogBrAYAwewTN4Me6NJ+PVeJu2LhmzmQPwR8b7D03Pl0A=</latexit>

|N(v0) ∩N(v1)|
<latexit sha1_base64="neWkKysRvPJ8OSiP44mpn/OIW0M=">AAACAHicbZC7SgNBFIZnvcZ4W7UQtBlMhKQJuxZqGbCxEEnAXCBZltnJbDJkdnaZmQ2ETRpbH8PGQhFbW9/AzrfwEZxNUmjiDwMf/zmHM+f3IkalsqwvY2l5ZXVtPbOR3dza3tk19/brMowFJjUcslA0PSQJo5zUFFWMNCNBUOAx0vD6V2m9MSBC0pDfqWFEnAB1OfUpRkpbrnkI86PbwsC1irCNUQRTtoujvGvmrJI1EVwEewa5sln9/rg5eqi45me7E+I4IFxhhqRs2VaknAQJRTEj42w7liRCuI+6pKWRo4BIJ5kcMIan2ulAPxT6cQUn7u+JBAVSDgNPdwZI9eR8LTX/q7Vi5V86CeVRrAjH00V+zKAKYZoG7FBBsGJDDQgLqv8KcQ8JhJXOLKtDsOdPXoT6Wck+L9lVO1e2wFQZcAxOQAHY4AKUwTWogBrAYAwewTN4Me6NJ+PVeJu2LhmzmQPwR8b7D03Pl0A=</latexit>

|N(v0) ∩N(v1)|

Set-centric algorithm: vertex-parallel

1 2

2 6 3 4 5 6 7

Core kernel: intersection 

1

6 7

2

8

5

43

Small-deg-first

Large-deg-first

Block

Warp

Thread

Hash table

Thread
mapping

Symmetry 
breaking

Intersection 
kernel

Small-deg-first

Block

Warp

Thread

Thread mappingSymmetry 
breaking

Intersection 
kernelLoad Search

Thread

Hash table

Binary search

Existing optimization New optimization variant (re)introduced by Mercury

(a) (b) (c)

8

III.A III.B III.C

Fig. 1: (a) Subgraph matching algorithm and intersection. (b) Optimizations in previous work (c) New optimization variants

(re)introduced in this paper.

a single vertex as the smallest task granularity to a thread

group, whereas in edge-centric parallelism, the smallest task

granularity is an adjacent edge of that vertex, which is then

assigned to a thread group. Using vertex-parallel parallelism

can lead to stragglers due to varying degrees of vertices.

On the other hand, edge-parallel parallelism, with its finer

granularity, can achieve better load balancing. However, edge-

parallel parallelism can result in the tasks of a single vertex

being distributed across multiple thread groups, necessitating

repeated loading of that vertex’s neighbors. Systems such

as TRUST [9] perform a vertex-parallel approach, while Tri-

Core [10] employs an edge-parallel approach. Some systems,

like G2Miner [14], manually assign vertex-parallel or edge-

parallel approaches depending on different patterns.

Thread, Warp and Block Mapping. Due to the hardware

architecture of GPUs, GPU threads are typically assigned in

three granular units for parallel execution: thread, warp, and

block. A warp usually consists of 32 threads (in NVIDIA

GPUs), which can trigger coalesced memory access when

accessing adjacent data, thereby achieving higher bandwidth

utilization, and a block usually comprises several warps. When

processing a unit task (a vertex or an edge, depending on

whether it is vertex-parallel or edge-parallel), we can use any

of these three granular units. For high-degree vertices, using

a block to collaboratively process the task can prevent the

vertex’s task from becoming a straggler. Conversely, for low-

degree vertices, using an excessive number of threads does

not result in performance gains. Therefore, bucketing vertices

based on their degree and then selecting an appropriate parallel

granularity (thread, warp or block) to process can achieve

better load balancing.

III. HYBRID SCHEDULING

In this section, we first describe our new optimization

(re)introduced to existing optimizations, the traditional opti-

mization is shown in Fig. 1 (b), and the parts that MERCURY

changes are shown in Fig. 1 (c). We then propose how to

combine these optimization variants in each category into a

hybrid one to achieve robust performance.

Finally, we describe how our method scales the subgraph

matching to multiple GPU cards.

A. Hybrid Orientation Pruning

As described in § II, due to the symmetry in the pattern, we

often constrain the IDs of the matched embeddings to satisfy

certain restraints to reduce automorphisms. For example, in

a triangle △(u, v, w), the symmetric breaking rules require

that id(u) > id(v) > id(w), where id() represents the

vertex identifier. By doing this, we can preemptively remove

neighbors from the adjacency list that do not satisfy this

constraint for each vertex, significantly reducing the com-

putation load. In previous work, the small-deg-first strategy

was commonly employed to facilitate symmetry breaking [8],

[9], [14]. For example, an undirected edge (u, v) will be

removed from u’s neighbors if degree(u) > degree(v). This

method effectively mitigates issues of load balance arising

from significant variations in vertex degrees. However, the

vertex degree after orientation might be smaller than the

number of threads within a thread group(block, warp), which

can result in low parallel efficiency. The large-deg-first strategy

with an opposite orientation addresses this issue. Therefore, we

adopt a hybrid strategy that makes trade-offs between potential

load balancing and parallel efficiency at the level of graph data.

B. Hybrid Thread Mapping

Set operations typically involve two steps: Load the

neighbor list (or hash table) into shared memory and Search

the key in the list. We take triangle △(u, v, w) as an example,

as shown in Fig. 2. w.l.o.g., assuming a warp size of 3 and

a block size of 6 (2 warps) for illustration. For the hash table

method, we build the hash table using N(u) in the Load step,

then spend O(1) time querying each vertex w,w ∈ N(v)
in the Search step. For the binary search method, we cache

u’s neighbors list in the Load step, then spend O(log n) time

for looking up vertex w in the Search step. In traditional

methods, a coarse-grained load balancing scheme is used,

which involves binning vertices by their degree(N(u)) and

processing them using either one block or one warp based on

their degree (depicted in Fig. 2 1 ). However, in real-world

datasets, the degree of vertices in the search step is unlikely to

exactly match the warp size or block size, leading to wasted

computational resources or stragglers (depcited in Fig. 2 2 ).

Therefore, we adopt a hybrid thread mapping for decoupling

set operations. To be more specific: (i) When loading the

neighbor list in the Load step (depticetd in Fig. 2 3 ). a thread

group(block, warp, thread) parallelism is employed according

to the length of the search list. (ii) During the looking-up

process in the Search step (depicted in Fig. 2 4 ), thread

parallelism is used for fine-grained parallelism in the given

thread group, i.e., each thread is mapped to one edge of

aggregated neighbors lists. This hybrid parallelization strategy

not only effectively reduces the wastage of computational



block 

4

N( )2
Load

Search

2 6

N( )1

N( )3N( )2

warp 

3 4 5 6 7 8

block warp 

N( )2

3 4 5 6 7 8

block 

43 4 5 6 7 8

imbalanced

5

one warp/block for one vertex

8 7 8

N( )3 4 5 6 7 8

3

4

sync

one block for one vertex

one thread for one edge

Mercury

one warp/block for one vertex

1

2

7

Fig. 2: Hybrid thread mapping strategy that devide the kernel

into two phases with different parallelism-granularity.

resources but also makes the workload more balanced, thereby

improving overall efficiency.

C. Hybrid Intersection Kernel

In performing intersection operations, there are typically

two processing methods: hash table and binary search, which

were discussed in detail in § II. Currently, specialized systems

for triangle counting, such as TRUST, TriCore, and H-INDEX,

employ the hash table approach. This is because the search

depth for triangle counting is relatively shallow and does not

involve nested loops, allowing the hash table to free shared

memory promptly upon obtaining a correct match. On the

other hand, general subgraph matching systems like G2Miner

and GraphFold, often use the binary search method due to

nested loops. In these cases, using a hash table would exhaust

shared memory resources, making it inadequate for handling

larger patterns.

Moreover, the performance behaviors of the intersection

kernels between hash table and binary search also differ. As

shown in Fig. 3, none of the two methods is superior in all

scenarios. We can observe that the binary search method is

more suitable for the small neighbor list, while the hash table

method is more suitable for the large neighbor list. The reason

behind this difference is that the hash table method accelerates

lookup efficiency at the cost of building the hash table. When

the number of neighbors is small, the overhead of building

a hash table becomes significant. Instead of building the hash

table, we can directly cache these low-degree vertex neighbors

in GPU shared memory and perform the binary search.

Therefore, we utilize a hybrid intersection kernel by setting

a threshold thd. For vertices with a degree greater than thd,

the hash table method is employed, while for vertices with a

degree less than it, the binary search method is used. In our

experiments, we set thd to 384, as the performance of the hash

table method is often better as depicted in Fig. 3.

D. Scale to multiple GPU cards

Due to the large amount of intermediate results generated by

subgraph matching, which far exceed the input graph dataÐfor

example, the number of triangles in Table I greatly surpasses

the number of edgesÐwe thus adopt a workload distribution

approach [14], [16], [13]. As illustrated in the first loop of the

query shown in Fig. 1 (a), it is necessary to evenly distribute

the vertices in |V | across different GPUs. Traditional methods

use either vertex-parallel or edge-parallel approaches, dividing

��� �����������������	���	���
���
�������������������
���
������������������
��$&�)����$�����%&$��'&�#"�#��&(�&&�$

�

��

��


�

�'
"&

�!
��

�!
%�

��"�$*����$�� ��%����� �

��� ���� ���� �	�� �	�� �
�� �
�� ���� ���� ���� ���� �
�� �
�� ���� ����
��$&�(����$�����%&$��'&�"!�"���$�#�����		

�

�

��

�'
!&
� 
��
� 
%�

��!�$)����$�� ��%�������

Fig. 3: Binary-search based intersection and hash-table based

intersection.

Triangle P1 P2 P3 P5 P8P4 P6 P7

Fig. 4: Evaluated query patterns in this paper.

the vertices in V into multiple chunks, each ensuring an equal

number of vertices (vertex-parallel) or an equal number of

edges (edge-parallel). Inspired by GSWITCH [18], we employ

a hybrid partitioning method that ensures each chunk has

an equal number of vertices and edges (sum of them). This

share-nothing parallel approach offers good scalability and can

achieve near-linear scalability (details in § IV).

IV. EVALUATION

A. Experimental Setup

We ran all experiments on a GPU cluster with 256 nodes,

echo node is a Linux server equipped with a duel-socket AMD

EPYC 7763 64-Core Processor and 4× 40 GB A100 GPUs.

We compiled all the GPU programs using NVIDIA’s nvcc

compiler (version 11.7) and the -O3 flag. We tested MERCURY

on 39 datasets (shown in Table I) and 9 patterns (shown in

Fig. 4), on several graph mining tasks, including triangle

counting, clique counting, and general subgraph matching.

The datasets used are sourced from the official website of the

Graph Challenge, including social networks, synthetic graphs,

and Scientific graphs. All experiments of tested systems

passed verification that produces the same results as a

single-thread CPU-based standard implementation. To be fair,

the measured results in all experiments ignored the IO time,

output time, and preprocessing time (e.g., graph orientation).

B. Triangle Counting

Comparison with Previous Graph Challenge Systems. We

compared MERCURY with recent GraphChallenge Triangle

Counting champions: SMOG [16] (2023 winner), and H-

INDEX [19] (2019 winner). We reproduced the results of

SMOG and H-INDEX on our cluster, and the results are

shown in Table I. MERCURY is 1.03× ∼ 19.7× (3.87× in

average) times faster than SMOG and is 0.79× ∼ 21.6× (5.68

× in average) faster than H-INDEX.



TABLE I: MERCURY vs. SOTA subgraph matching systems on the triangle counting task.

Runtime (ms) of Triangle Counting [Lower is better]

Datasets #V #E #△ MERCURY TRUST Sp. G2Miner Sp. SMOG Sp. H-Index Sp.

SNAP Datasets

amazon0312 400K 2.3M 3.6M 0.98 1.07 1.09 1.09 1.11 2.22 2.26 1.50 1.53
amazon0505 410K 2.4M 4M 0.99 1.12 1.14 1.13 1.15 2.32 2.35 1.36 1.38
amazon0601 403K 2.4M 4M 1.01 1.81 1.80 1.14 1.13 2.33 2.32 1.45 1.45
cit-Patents 3.7M 16.5M 7.5M 6.02 5.69 0.95 7.38 1.23 17.26 2.87 11.12 1.85
flickrEdges 106K 2M 108M 3.50 5.48 1.57 3.65 1.04 5.38 1.54 5.32 1.52
friendster 65M 1.8B 4.1B 1778 3170 1.78 1975 1.11 3945 2.22 Err -
roadNet-CA 1.9M 2.8M 2.7M 1.66 1.10 0.66 0.83 0.50 2.17 1.31 1.62 0.98
roadNet-PA 1.1M 1.5M 1.5M 1.07 0.82 0.77 0.52 0.48 1.32 1.23 0.84 0.79
livej 4.8M 43M 286M 24.19 26.22 1.08 26.32 1.09 54.00 2.23 41.72 1.72
orkut 3.1M 117M 628M 105.74 132.8 1.26 116.7 1.10 233.5 2.21 205.1 1.94
twitter20 21.3M 265M 17.3B 551 1080 1.96 1190 2.16 2268 4.12 7262 13.18
youtube 7.1M 57M 103M 12.58 17.27 1.37 21.63 1.72 46.67 3.71 38.26 3.04

Synthetic Kronecker Datasets

25-81-256-B1k 548K 2.1M 2M 1.11 0.62 0.55 1.33 1.20 1.99 1.79 1.99 1.79
25-81-256-B2k 548K 2.1M 7 0.67 0.72 1.07 0.51 0.75 1.29 1.92 1.66 2.47
3-4-5-9-16-25-B1k 530K 11M 35M 13.64 20.30 1.49 22.26 1.63 28.11 2.06 53.13 3.89
3-4-5-9-16-25-B2k 530K 11M 651 3.54 13.88 3.92 6.03 1.70 10.07 2.84 14.73 4.16
4-5-9-16-25-B1k 133K 1.6M 3.5M 2.12 2.59 1.22 1.73 0.81 2.19 1.03 2.21 1.04
4-5-9-16-25-B2k 133K 1.6M 155 0.94 1.39 1.48 0.65 0.69 1.26 1.35 1.62 1.73
5-9-16-25-81-B1k 2.1M 28.6M 66.7M 35.77 52.04 1.45 65.85 1.84 61.10 1.71 261.57 7.31
5-9-16-25-81-B2k 2.1M 28.6M 155 7.55 26.84 3.56 12.92 1.71 17.41 2.31 113.92 15.09
9-16-25-81-B1k 362K 2.6M 4M 1.90 2.49 1.31 2.33 1.23 2.39 1.26 4.51 2.38
9-16-25-81-B2k 362K 2.6M 35 0.96 1.58 1.63 0.92 0.95 1.81 1.88 2.96 3.07

MAWI Datasets

201512012345 18.5M 38M 2 1.27 0.84 0.66 3.39 2.68 9.77 7.72 9.79 7.74
201512020000 40M 74M 2 1.81 1.09 0.60 6.55 3.61 18.78 10.36 18.93 10.44
201512020030 69M 143M 6 2.83 1.95 0.69 12.26 4.34 36.12 12.79 36.21 12.82
201512020130 128M 270M 10 3.63 2.46 0.68 22.82 6.28 68.14 18.77 58.90 16.22
201512020330 226M 480M 26 5.24 5.82 1.11 41.08 7.85 100.4 19.17 113.11 21.61

Graph500 Datasets

scale18-ef16 262K 4.2M 82M 4.06 7.30 1.80 4.68 1.15 9.08 2.24 10.32 2.54
scale19-ef16 524K 8.4M 186M 7.94 14.96 1.89 11.19 1.41 23.71 2.99 28.48 3.59
scale20-ef16 1M 16.8M 419M 21.96 43.18 1.97 33.76 1.54 67.57 3.08 107.4 4.89
scale21-ef16 2.1M 33.6M 935M 49.53 100.71 2.03 82.09 1.66 156.5 3.16 291.9 5.89
scale22-ef16 4.2M 67.1M 2B 108.2 217.3 2.01 176.5 1.63 407.3 3.77 861.2 7.96
scale23-ef16 8.4M 134M 4.5B 256.2 525.8 2.05 465.1 1.82 1011 3.95 2612 10.20
scale24-ef16 16.8M 268M 9.9B 542.2 1230 2.27 1113 2.05 2540 4.68 8052 14.85
scale25-ef16 33.6M 537M 21.5B 1294 3010 2.33 2761 2.13 6526 5.04 25290 19.55

GenBank Datasets

P1a 139M 149M 3.4K 66.22 68.56 1.04 37.77 0.57 104.12 1.57 75.93 1.15
U1a 68M 69M 325 24.23 30.31 1.25 14.84 0.61 44.76 1.85 35.52 1.47
V1r 214M 233M 49 81.16 101.71 1.25 58.00 0.71 131.44 1.62 107.37 1.32
V2a 55M 58.6M 1.4K 25.93 27.10 1.05 14.32 0.55 40.98 1.58 32.00 1.23

Err denotes that the system encountered an error. Sp. denotes the speedup of MERCURY over the corresponding system

Comparison with Other SOTA Systems. We Compared

MERCURY with the state-of-the-art subgraph matching sys-

tems: TRUST [9] and G2Miner [14]. The results are also shown

in Table I. MERCURY is 0.55× ∼ 3.92× (1.46× in average)

faster than TRUST and 0.48× ∼ 7.85× (1.72× in average)

faster than G2Miner.

Scalability of Triangle Counting. We then tested the scala-

bility of our system by varying the number of GPUs from 1

to 1024 cards, on five large graphs, including youtube, orkut,

friendster, livejournal, and twitter from SNAP datasets. The

results are shown in Fig. 5. MERCURY scales well with the

number of GPUs, and the speedup is almost linear with the

number of GPUs. The speedup of MERCURY is 163× ∼ 630×

(average 380×) on 1024 GPUs compared to one GPU.

C. Pattern Matching

Comaprisons with G2Miner. G2Miner [14] is a state-of-

the-art subgraph matching system that uses a code generation

technique to generate CUDA code for subgraph matching. We

compared MERCURY with G2Miner on 8 complex patterns

(shown in Fig. 4). The speedup of MERCURY over G2Miner

is shown in Table 6. MERCURY is 1.11× ∼ 54.2× (9× in

average) faster than G2Miner. This is because MERCURY uses

a more balanced intersection kernel that significantly reduces

the straggler and starvation.



1 2 4 8 16 32 64 128 256 512 1024
# GPUs

1
2
4
8

16
32
64

128
256
512

1024
Sp

ee
du

ps
630

163

Ideal
Friendster

Youtube
LiveJournal

Orkut
Twitter

Fig. 5: The Strong Scalability of MERCURY in the triangle

counting task.

1 2 4 8 16 32 64

P1

P2

P3

P4

P5

P6

P7

P8

Speedup

Fig. 6: The speedup of MERCURY over G2Miner on subgraph

matching tasks.

Scalability of Generic Subgraph matching. We then tested

the scalability of our system by varying the number of GPUs

from 1 to 1024 cards, on youtube graph, with 8 patterns.

The results are shown in Fig. 7. MERCURY can achieve a

speedup of 99 × ∼ 212× (average 136×) on 1024 GPUs

compared to one GPU. The scalability of complex patterns is

not as good as simple patterns, because the complex patterns

have deeper search trees thus generating skewed workload

distribution across GPUs, while our method mainly focuses

on intra-GPU load balance.

D. Ablation Study

We tested the effectiveness of each optimization in MER-

CURY by conducting an ablation study for triangle counting.

Baseline means the original implementation without any

optimization. +OR means we add adaptive orientation to make

the degree of vertices larger than 32 (the size of warp), it can

bring 32% speedup on average. +LB means we add the hybrid

task mapping to avoid stragglers, it can bring an additional

62% speedup on average. +BIN means we add a binning strat-

egy to use optimal intersection kernel for different vertices, it

can further bring an additional 24% speedup on average.

Fig. 7: The strong scalability of MERCURY in subgraph

matching tasks (Youbute dataset) .

twitter20 scale-25-ef16 friendster
0.0

0.5

1.0

1.5

2.0

Sp
ee

du
ps

Baseline +OR +LB +BIN

Fig. 8: The incremental speedups of MERCURY’s optimiza-

tions.

V. CONCLUSION

In this paper, we highlight that the issue of static

optimizations can not rule all situations in graph pattern

matching tasks. how input data in graph pattern matching tasks

affects different optimization strategies. We first categorized

the optimizations in graph pattern matching systems into three

categories: (i) orientation pruning, (ii) intersection kernel, and

(iii) thread mapping, and provided new optimization variants

for each category. Based on these, we developed MERCURY,

achieving high GPU utilization and load-balance. Currently,

MERCURY’s performance surpasses the state-of-the-art and

previous GraphChallenge champions up to 21.5 × times on

average across multiple datasets and applications.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable com-

ments for their helpful suggestions. This work is supported

by the National Key Research and Development Program of

China (2023YFB3001900).



REFERENCES

[1] N. Spirin and J. Han, ªSurvey on web spam detection: principles and
algorithms,º ACM SIGKDD Explorations Newsletter, vol. 13, no. 2, pp.
50±64, 2012.

[2] A. Lancichinetti and S. Fortunato, ªCommunity detection algorithms:
A comparative analysis,º Phys. Rev. E, vol. 80, p. 056117, Nov
2009. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.80
.056117

[3] Z. Guo, K. Guo, B. Nan, Y. Tian, R. G. Iyer, Y. Ma, O. Wiest,
X. Zhang, W. Wang, C. Zhang, and N. V. Chawla, ªGraph-based
molecular representation learning,º in Proceedings of the Thirty-Second

International Joint Conference on Artificial Intelligence, ser. IJCAI ’23,
2023. [Online]. Available: https://doi.org/10.24963/ijcai.2023/744

[4] S. Ranu and A. K. Singh, ªIndexing and mining topological patterns for
drug discovery,º in Proceedings of the 15th International Conference

on Extending Database Technology, ser. EDBT ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 562±565.
[Online]. Available: https://doi.org/10.1145/2247596.2247666

[5] L. Akoglu, H. Tong, and D. Koutra, ªGraph based anomaly detection and
description: a survey,º Data mining and knowledge discovery, vol. 29,
pp. 626±688, 2015.

[6] C. C. Noble and D. J. Cook, ªGraph-based anomaly detection,º in
Proceedings of the ninth ACM SIGKDD international conference on

Knowledge discovery and data mining, 2003, pp. 631±636.
[7] JEDEC, ªHigh bandwidth memory (hbm) dram,º 2021. [Online].

Available: https://www.jedec.org/standards-documents/docs/jesd235a
[8] T. Shi, M. Zhai, Y. Xu, and J. Zhai, ªGraphpi: High performance graph

pattern matching through effective redundancy elimination,º in SC20:

International Conference for High Performance Computing, Networking,

Storage and Analysis. IEEE, 2020, pp. 1±14.
[9] S. Pandey, Z. Wang, S. Zhong, C. Tian, B. Zheng, X. Li, L. Li, A. Hoisie,

C. Ding, D. Li, and H. Liu, ªTrust: Triangle counting reloaded on gpus,º
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 11,
pp. 2646±2660, 2021.

[10] Y. Hu, H. Liu, and H. H. Huang, ªTricore: Parallel triangle counting
on gpus,º in SC18: International Conference for High Performance

Computing, Networking, Storage and Analysis, 2018, pp. 171±182.

[11] D. Merrill and M. Garland, ªMerge-based parallel sparse matrix-vector
multiplication,º in SC ’16: Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis,
2016, pp. 678±689.

[12] L. Wang and J. D. Owens, ªFast gunrock subgraph matching (gsm) on
GPUs,º 2020.

[13] Z. Lin, K. Meng, C. Shui, K. Zhang, J. Xiao, and G. Tan, ªExploiting
fine-grained redundancy in set-centric graph pattern mining,º in
Proceedings of the 29th ACM SIGPLAN Annual Symposium on

Principles and Practice of Parallel Programming, ser. PPoPP ’24.
New York, NY, USA: Association for Computing Machinery, 2024, p.
175±187. [Online]. Available: https://doi.org/10.1145/3627535.3638507

[14] X. Chen and Arvind, ªEfficient and scalable graph pattern mining
on GPUs,º in 16th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 22). Carlsbad, CA: USENIX
Association, Jul. 2022, pp. 857±877. [Online]. Available: https:
//www.usenix.org/conference/osdi22/presentation/chen

[15] D. Mawhirter and B. Wu, ªAutomine: Harmonizing high-level
abstraction and high performance for graph mining,º in Proceedings of

the 27th ACM Symposium on Operating Systems Principles, ser. SOSP
’19. New York, NY, USA: Association for Computing Machinery,
2019, p. 509±523. [Online]. Available: https://doi.org/10.1145/334130
1.3359633

[16] Z. Wang, Z. Meng, X. Li, X. Lin, L. Zheng, C. Tian, and S. Zhong,
ªSmog: Accelerating subgraph matching on gpus,º in 2023 IEEE High

Performance Extreme Computing Conference (HPEC), 2023, pp. 1±7.
[17] N. S. Dasari, R. Desh, and Z. M, ªpbitMCE: A bit-based approach

for maximal clique enumeration on multicore processors,º in 2014 20th

IEEE International Conference on Parallel and Distributed Systems

(ICPADS), 2014, pp. 478±485.
[18] K. Meng, J. Li, G. Tan, and N. Sun, ªA pattern based algorithmic

autotuner for graph processing on gpus,º in Proceedings of the 24th

Symposium on Principles and Practice of Parallel Programming,
ser. PPoPP ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 201±213. [Online]. Available: https://doi.org/10.1
145/3293883.3295716

[19] S. Pandey, X. S. Li, A. Buluc, J. Xu, and H. Liu, ªH-index: Hash-
indexing for parallel triangle counting on gpus,º in 2019 IEEE High

Performance Extreme Computing Conference (HPEC), 2019, pp. 1±7.

https://link.aps.org/doi/10.1103/PhysRevE.80.056117
https://link.aps.org/doi/10.1103/PhysRevE.80.056117
https://doi.org/10.24963/ijcai.2023/744
https://doi.org/10.1145/2247596.2247666
https://www.jedec.org/standards-documents/docs/jesd235a
https://doi.org/10.1145/3627535.3638507
https://www.usenix.org/conference/osdi22/presentation/chen
https://www.usenix.org/conference/osdi22/presentation/chen
https://doi.org/10.1145/3341301.3359633
https://doi.org/10.1145/3341301.3359633
https://doi.org/10.1145/3293883.3295716
https://doi.org/10.1145/3293883.3295716

	Introduction
	Background and Motivation
	Set-centric Graph Pattern Matching
	Intersection Kernel
	Coarse-Grained Load-Balance Strategies

	Hybrid Scheduling
	Hybrid Orientation Pruning
	Hybrid Thread Mapping
	Hybrid Intersection Kernel
	Scale to multiple GPU cards

	Evaluation
	Experimental Setup
	Triangle Counting
	Pattern Matching
	Ablation Study

	Conclusion
	References

