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Fig. 1: The adjacency-matrix images of the citation graph aps2020 “ 𝐺p𝑉,𝐸q in five different vertex orderings. The graph is a representation of the
American Physical Society (APS) publication up to the year 2020, with |𝑉 | “ 667,365 articles and |𝐸| “ 8,849,630 citation links [2]. Each image pixel
p𝑖, 𝑗q represents a citation subgraph 𝐺p𝑉𝑖, 𝑉𝑗 , 𝐸𝑖𝑗q with |𝑉𝑖|“|𝑉𝑗 |“3,336, 𝐸𝑖𝑗 “ p𝑉𝑖 ˆ 𝑉𝑗q X 𝐸. A darker pixel indicates a denser subgraph. The
five ordering methods are: (a) the lexicographical order of the digital object identifiers (DOIs) for the APS articles, (b) the reverse Cuthill-McKee (RCM)
method [10], (c) the SlashBurn method [21], (d) the approximate minimum degree (AMD) method [3], and (e) the new method viFPS. The properties and
performance assessment of these orderings with regard to graph compression are elaborated in the rest of the paper.

Abstract—In this work, we establish theoretical and practical
connections between vertex indexing for sparse graph/network
compression and matrix ordering for sparse matrix-vector mul-
tiplication and variable elimination. We present a fundamental
analysis of adjacency access locality in vertex ordering from
the perspective of graph composition of, or decomposition
into, elementary compact graphs. We introduce an algebraic
indexing approach that maintains the advantageous features of
existing methods, mitigates their shortcomings, and adapts to
the degree distribution. The new method demonstrates superior
and versatile performance in graph compression across diverse
types of graphs. It also renders proportional improvement in the
efficiency of matrix-vector multiplications for subspace iterations
in response to random walk queries on a large network.

Index Terms—Graph compression, network compression, ad-
jacency gap encoding, adjacency access locality, algebraic vertex
ordering, sparse matrix computation.

I. INTRODUCTION

In a modern data, knowledge, or information system, the
datum entities (or feature vectors) are typically linked by a
direct or induced pairwise adjacency relationship and repre-
sented as the vertices of a big graph/network 𝐺p𝑉,𝐸q with
vertex set 𝑉 and edge set 𝐸. The edge set 𝐸 Ă 𝑉 ˆ 𝑉
represents the pairwise adjacency relation. The edges may
be undirected or directed. The large graph is usually sparse
and structured compared to Erdős-Rényi random graphs of the
same sparsity. For data-information management and process-
ing, the vertices/nodes are indexed from 1 to 𝑛 “ |𝑉 | by a 1-
to-1 mapping from the datum labels or identification numbers.
How the vertices are sequentially indexed or ordered signif-
icantly impacts the space-time performance of the system in
two related key aspects—the graph compression beyond the

simple exclusion of absent links and the efficiency in response
to frequent adjacency queries for retrieval and referral while
the graph is accessed via a compressed representation. In this
paper, we present our study and findings on vertex ordering
for graph compression.

A graph compression maintaining real-time adjacency ac-
cesses (ideally in memory) is essentially an integral compres-
sion of individual adjacency lists on the graph with small
compression/decompression windows. Every vertex 𝑣 has an
adjacency/neighbor list 𝒩 p𝑣q consisting of its incident edges
or, in interchangeable terms, its adjacent nodes or immedi-
ate neighbors. With a vertex ordering, the adjacency list is
represented by a subsequence of t1, 2, . . . , 𝑛u. The degree of
node 𝑣, 𝑑p𝑣q, is the number of its neighbors, 𝑑p𝑣q “ |𝒩 p𝑣q|.
If graph 𝐺 is directed, 𝒩 p𝑣q has two sublists: 𝒩inp𝑣q of the
incoming links and 𝒩outp𝑣q of the outgoing links. Invariant to
vertex ordering, the total number of adjacency lists is 𝑛; the
total number of the list items is 𝑚 “ |𝐸|. Nonetheless, the
integer subsequences representing the adjacency lists change
from one vertex ordering to another, their compression is
thereby affected first and foremost by vertex ordering.

We also use 𝒩 p𝑣q to denote the 1-hop neighborhood graph
centered at vertex 𝑣, it is a topological feature of vertex 𝑣
on graph 𝐺. When topologically more similar or overlapped
nodes are indexed closer to each other, the vertex ordering
provides greater room for subsequent compression of the adja-
cency lists. Such ordering also potentially improves the spatial
localities in overall adjacency accesses and, thereby, the
efficiency in query response. Alternatively, a vertex ordering
that increases the spatial localities in adjacency lists benefits



graph compression. Briefly, grouping similar adjacency lists
or minimizing their index distances is the key ingredient in
an effective vertex ordering scheme.

There are several notable vertex ordering schemes for the
compression of data-information graphs subject to the con-
dition of maintaining real-time adjacency accesses [6], [11].
Some of them are specific to certain types of networks/graphs,
followed by customized list compression techniques, or both.
For instance, for web-graph compression, Silvestri suggested
ordering the webpages by the lexicographic ordering of their
uniform resource locator (URL) addresses [26]. The heuristic is
that the similarity in adjacency patterns is well correlated with
the URL proximity. Boldi and Vigna (BV) introduced a novel
compression technique [7]. Their main idea is to encode the
variation/gap in the neighborhood pattern of an adjacency list
𝒩 p𝑖q from a local prototype pattern among the adjacency lists
𝒩 p𝑗q within a small index block, say, 8 consecutive indices
per block. The BV approach achieved a remarkable web-graph
compression, 3 bits per web link, which was further reduced
to 2 bits per link by others [6].

For social-network compression, Chierichetti, Kumar, Lat-
tanzi et al. (CKL) advocated the use of the Shingle scores
and ordering scheme, which were introduced by Gibson,
Kumar, and Tomkins [8], [14]. The Shingle scores measure
and encode the overlap/similarity among the 1-hop neighbor-
hood graphs 𝒩 p𝑣q, 𝑣 P 𝑉 , and are subsequently used to
order the vertices with a hashing function. We can expect
the Shingle scores to be extended straightforwardly to ℎ-hop
neighborhood graphs 𝒩ℎp𝑣q with ℎ ą 1. Social networks
tend to follow the power law in their degree distributions
due to the preferential attachment as modeled or stylized
by Barabasi and Albert (BA) [5]. A small number of nodes
on a BA or BA-like network have very high degrees, their
overreaching presence in many neighborhood graphs reduces
the differentiation power by the Shingle scores. To overcome
this problem, the CKL approach removes the nodes with
high degrees, above 𝑑𝜏 , before ordering the other nodes by
their neighborhood similarity in the remaining graph. The
parameter 𝑑𝜏 is set above the average degree, and it can be
determined from the degree distribution.

For BA-like networks/graphs, not necessarily social net-
works, an ordering scheme named SlashBurn was developed
by Lim, Kang, and Faloutsos [21]. It first removes the top-
ℓ high-degree nodes from the current graph. The removal
criterion may be understood as the alternative to the CKL
criterion. SlashBurn then decomposes the remaining graph
into its connected components (CCs). The node-removal and
CC-decomposition steps are applied to each of the connected
components recursively. We may view SlashBurn extracting
and expressing adjacency localities as layered connected com-
ponents, not limited to neighborhood graphs with a fixed
hop length as with the CKL approach. SlashBurn was shown
superior to Shingle, by certain graph compression measures,
in a benchmarking study with BA-like networks.

Interestingly, the Cuthill-McKee (CM) ordering or its re-
versal (RCM), and the Fiedler-spectral ordering, well known
for their roles in sparse matrix computation [10], [13], are

(a) aps2020 (b) 𝐺ws (c) 𝑇binomial

Fig. 2: Pictorial description of the entries of Table I for three graphs—
aps2020, 𝐺ws, and 𝑇binomial. The bars in solid colors represent the
mLogGapAp𝐺, 𝜋q scores: the lower, the better. They are between the lower
and upper bounds in black lines by (7) and (8). The segments in lighter colors
represent the Δp𝐺, 𝜋q values as structure indicators: a short light-colored
segment over a short dark-colored bar indicates that more neighbors are placed
within a short range on average. The grey bars represent the reference values
in (9) and (10). It is a practical success when an ordering reaches close to
the solid grey value on a non-elementary graph.

frequently used as base cases for performance comparisons
among vertex ordering schemes for graph compression. Our
first finding is that SlashBurn is outperformed, by and large, on
BA-like graphs by AMD and NED, which are among the most
effective ordering schemes for space-time efficient variable
elimination [3], [4], [18], [22], although not obviously relevant
to graph compression as RCM.

Our study of vertex ordering is comprehensive in two
aspects: (a) we consider diverse types of sparse graphs, and
(b) we analyze the match/mismatch between well-recognized
graph types and popularly used ordering schemes in the
context of adjacency access locality and graph compression.
We establish theoretical and practical connections between
vertex indexing for sparse graph/network compression and
matrix ordering for sparse matrix-vector multiplication and
variable elimination. These connections led us to the first
comparison between SlashBurn and AMD.

With this work, we make two main contributions. First, we
present a fundamental analysis of adjacency access locality
(AAL) in vertex ordering from the perspective of graph/matrix
composition of elementary compact graphs/matrices. The
analysis is instrumental to vertex ordering studies in more
than one aspect. It enables us to identify the lower and upper
bounds on the feasible AAL scores, by the measures in (1)
and (2), and, thereby, explore previously unknown potentials
or limitations. We provide additional reference AAL values not
only for assessing the performance of a vertex ordering but
also for inferring the substructures captured by the ordering.
Such a frame of reference was absent in previous performance
assessments. More importantly, the analysis sheds light on
new ways for obtaining better approximate solutions to the
NP-hard vertex ordering problem.

Next, we present viFPS, a versatile indexing method for
compression of diverse types of graphs. We maintain the
advantageous features in the state-of-the-art indexing schemes
and mitigate their shortcomings. The new method makes re-
cursive Fiedler partition and ordering conditioned by what we
refer to as the Pareto Splits in adaptation to the graph-degree
statistics. We show in Sections III and IV the outstanding



performance of viFPS on diverse types of graphs, competitive
or superior to the state-of-the-art ordering schemes for each
type of graph. As expected, the new method benefits sparse
matrix computation as well. We show, in particular, improved
efficiency for subspace iterations in responding to random-
walk queries on a large and sparse network.

II. ADJACENCY ACCESS LOCALITY ANALYSIS

A. Measures

We adopt two well-established measures of vertex orderings
for graph compression, with a slight modification. Denote by
𝐺p𝑉,𝐸q the graph under consideration. One may assume that
𝐺 is free of self-loops, which do not affect the ordering scores.
Graph 𝐺 is identified by its adjacency matrix 𝐴. Let 𝑛 “

|𝑉 |. Let 𝑚 “ nnzp𝐴q, the number of nonzeros in 𝐴. Then,
𝑚 “ 2 |𝐸| when 𝐺 is undirected and 𝑚 “ |𝐸| when 𝐺 is
directed. Denote by Πp𝑛q the set of all permutations of p1 : 𝑛q.
Chierichetti, Kumar and Lattanzi introduced in 2009 [8] the
following two measures of adjacency access locality (AAL)
captured by a vertex ordering 𝜋 P Πp𝑛q,

mLogAp𝐺, 𝜋q “
1

𝑚

ÿ

p𝑢,𝑣qP𝐸

log2 p1`|𝜋p𝑢q ´ 𝜋p𝑣q|q

“
1

𝑚

ÿ

𝑣P𝑉

ÿ

𝑢P𝒩p𝑣q
𝑢‰𝑣

log2 p 1`|𝜋p𝑢q´𝜋p𝑣q| q ,
(1)

mLogGapAp𝐺, 𝜋q “
1

𝑚

ÿ

𝑣P𝑉

1`
ÿ

𝑢𝑖P𝒩 r𝑣s

𝑖“2:𝑑p𝑣q

log2 p1`𝜋p𝑢𝑖q´𝜋p𝑢𝑖 1qq ,

(2)
where the neighbors 𝑢𝑖 of 𝑣 are ordered by 𝜋, 𝜋p𝑢𝑖q ą

𝜋p𝑢𝑖´1q. We present the second expression in (1) in order
to make the adjacency lists more explicit and to make the
connection to and difference from (2) more salient. We make a
slight modification in (2) by replacing log2p1`|𝜋p𝑢1q´𝜋p𝑣q|q

with 1, effectively removing the host vertex 𝑣 from its own
adjacency list. This change makes the measure more closely
related to general-purpose compression schemes, as shown
in Figure 4. The measure mLogA is the average distance,
in bit length, of the neighbors from each host vertex 𝑣;
mLogGapA is the average gap in bit length between the
successive neighbors of each host 𝑣. The goal is to find the
vertex ordering that minimizes one of the measures or both.
However, locating the optimum on an arbitrary graph is NP-
hard [8] and computationally intractable. Practical ordering
schemes resort to various heuristics.

The average gap measure (2) is closely related to subse-
quent compression schemes. We make a novel use of the
average distance measure (1) as well. The following two basic
inequalities hold for any connected graph 𝐺,

1 ď mLogGapAp𝐺, 𝜋q ď mLogAp𝐺, 𝜋q, @𝜋 P Πp𝑛q. (3)

The absolute difference between the two measures is

Δp𝐺, 𝜋qfimLogAp𝐺, 𝜋q ´ mLogGapAp𝐺, 𝜋q. (4)

We will demonstrate shortly how we utilize the differential
information. We also use the basic statistics of the graph

(a) 𝐴conv1 (b) 𝐴PoK (c) 𝐴𝐾p𝑏,𝑛 𝑏q (d) 𝐴wheel

(e) 𝑇binomial (f) 𝐺wheel (g) 𝑑p𝐺lfrq

Fig. 3: Top: The adjacency matrices of 𝐺conv1, 𝐺PoK, 𝐾p𝑏,𝑛 𝑏q and 𝐺wheel

in their respective compact forms. bottom: 𝑇binomial and 𝐺wheel in 2D
spatial displays, and the degree distribution of graph 𝐺LFR in log-log scale.

degrees. Frequently, we use the average degree 𝑑. Conven-
tionally, a graph is regarded as sparse if 𝑑 P 𝑂plog2 𝑛q.

B. Elementary compact sparse graphs

We make a formal AAL analysis of vertex ordering from the
perspective of graph composition or decomposition. This per-
spective is not foreign. Beneath their differences in algorithms
and results, existing vertex ordering methods are common
in that each has a strategy for extracting certain subgraphs
that are more compressible, and it is used in tandem with
an ordering priority that such subgraphs be overlapped as
much as possible. We make an explicit AAL analysis of three
elementary types of sparse graphs that are frequently used to
prototype and approximate subgraphs in a larger graph and are
highly compressible. The corresponding adjacency matrices in
their respective optimal vertex orderings are among the most
compact sparse matrices.

First, the convolution network/graph with a narrowly
banded adjacency matrix is perhaps a more familiar type for
subgraphs of a large sparse graph. When 𝑑 ą 2, the one-
dimensional convolution graph 𝐺conv1 is next to the highest
sum of local cluster coefficients. It is the base reference
for modeling and generating (via edge rewiring) the small-
world networks 𝐺ws by the Watts-Strogatz model [28]. The
adjacency matrix 𝐴 in the RCM ordering 𝜋RCM is banded with
the minimal bandwidth. If 𝐺conv1 is not circulant, then

mLogGapAp𝐺conv1, 𝜋RCMq “ min
𝜋PΠp𝑛q

mLogGapAp𝐺conv1, 𝜋q,

“ 1 ` 𝛾1
log2p3q ´ 1

𝑑

(5)

and
mLogAp𝐺conv1, 𝜋rcmq “ min

𝐺:𝑚{𝑛“𝑑

𝜋PΠp𝑛q

mLogAp𝐺, 𝜋q,

𝑏 ´ 1

𝑏
log2

ˆ

𝑏

2

˙

ď Δp𝐺conv1, 𝜋rcmq ď log2p𝑏q,

(6)

where 𝑏 is the semi-bandwidth, 𝑏 “ r𝑑{2s. Here, 𝛾1 denotes
a value close to 1 and varies little with 𝑑.

Next is the graph 𝐺PoKp𝑛, 𝑑q constructed as a linear
path/chain of cliques 𝐾𝑑, see Figure 3. It is a prototype sparse
graph consisting of equally populated sub-communities with
the maximal intra-community connection and the minimal
inter-community connection [12], [27]. The removal of any



(a) mLogGapA (b) file sizes in HDF5
Fig. 4: A demonstration of the close correlation between mLogGapA of (2)
on vertex ordering and HDF5 for general-purpose compression. Left: the
mLogGapA scores of six different orderings on the citation graph aps2020;
Right: the corresponding file sizes in HDF5 format. The file sizes are
normalized by that for the reference graph 𝐺wheel of the same size and
sparsity in the AMD ordering, based on (9).

inter-clique link decouples the graph. The adjacency matrix
𝐴PoK is of nearly block diagonal form by the path ordering,
which is also of the minimal bandwidth. Although the semi-
bandwidth is 𝑑 instead of 𝑑{2, the number of bits per link is
doubled. The difference from the minimal on 𝐺conv1 is small
in mLogA, no greater than log2p𝑏q{𝑑 bits per link, and even
smaller in mLogGapA, no greater than log2p𝑏q{p1 ` 𝑑2{2q. In
short, 𝐺PoK can be treated almost the same as 𝐺conv1.

Thirdly, the most primitive for modeling compact subgraphs
of a sparse graph/network is the biclique 𝐾p𝑏,𝑛 𝑏q. In the
special case 𝑏 “ 1, 𝐾p1,𝑛 1q is the star graph. Any tree
graph is composed of star subgraphs. For 𝑏 ą 1, the biclique
𝐾p𝑏,𝑛´𝑏q can be viewed as a block version of a star graph
with 𝑏 center nodes, every center node is connected to all
𝑛´𝑏 peripheral nodes. If the sparsity is specified by 𝑑, the
biclique is assumed to have 𝑚 “ 𝑑𝑛 links with 𝑏 “ r𝑑{2s,
it is incomplete if 𝑑 is not an even integer. In the case of
𝑑 “ 𝑂plog 𝑛q, 𝐾p𝑏,𝑛 𝑏q has a large gap in the degrees between
the 𝑏 center nodes and the rest. This degree inequality is a
typical phenomenon in many social or biomolecular networks.
The adjacency matrix of 𝐾p𝑏,𝑛 𝑏q is of low rank, regardless of
the ordering, while its counterparts for 𝐺conv1 and 𝐺PoK are
nearly regular and close to full rank. In its compact form, the
adjacency matrix has a block row and a block column when
the center nodes are indexed together, such as by 𝜋AMD, the
AMD ordering. There are several remarkable properties with
the biclique compression.

Proposition 1. Among all sparse graphs with the average
degree 𝑑 and over Πp𝑛q of any size 𝑛, the minimal mLogGapA
score is achieved by 𝜋AMD on 𝐾p𝑏,𝑛 𝑏q, 𝑏“

P

𝑑{2
T

,

min
𝐺:𝑚{𝑛“𝑑

𝜋PΠp𝑛q

mLogGapAp𝐺, 𝜋q“mLogGapAp𝐾p𝑏,𝑛´𝑏q, 𝜋AMDq“1. (7)

Moreover, there is the minimum-equivalence set that admits
any ordering 𝜋 on 𝐾p𝑏,𝑛 𝑏q if, and only if, 𝜋 places the 𝑏
center nodes together.

By the proposition, any non-circulant shift of 𝜋AMD is
an optimal ordering on 𝐾p𝑏.𝑛 𝑏q. Regarding the necessary
condition, if the high-degree nodes are dispersed far apart by
an ordering 𝜋, the score can be as large as, although bounded

by, mLogAp𝐾p𝑏.𝑛 𝑏q, 𝜋AMDq. We omit the special detail and
present the general relations, beyond (3), between the two
scores by mLogA and mLogGapA.

Proposition 2. The feasible mLogGapA scores on all sparse
graphs of the same average degree 𝑑 and over Πp𝑛q of any
size 𝑛 are closely bounded from above as follows, 𝑏 “ r𝑑{2s,

max
𝐺:𝑚{𝑛“𝑑

𝜋PΠp𝑛q

mLogGapAp𝐺, 𝜋q ď mLogAp𝐾p𝑏,𝑛´𝑏q, 𝜋AMDq

“ 1 ` 𝛾1 log2p1`𝑛´𝑏q.
(8)

Proposition 3. For an ordering 𝜋 on graph 𝐺, the 2-tuple
r mLogGapAp𝐺, 𝜋q,Δp𝐺, 𝜋q s is a descriptor of the substruc-
tures of 𝐴p𝜋, 𝜋q, a larger relative difference indicates a larger
portion of non-zero elements being off from the 𝑑p𝐺q main
diagonals.

In more detail, when mLogGapA is close to the baseline at
1, then 𝐴p𝜋, 𝜋q is nearly banded or block-diagonal. If Δp𝐺, 𝜋q

is close to 0 in addition, then 𝐴p𝜋, 𝜋q is narrowly banded or
block-diagonal within a narrow band. At the other extreme,
the following condition,

mLogAp𝐺, 𝜋q ą mLogAp𝐾p𝑏,𝑛 𝑏q, 𝜋AMDq (9)

suggests an improvement or replacement of the ordering 𝜋.

C. Composition effects

Among numerous ways of graph composition, we make
a simple abstraction of their effects on the adjacency lo-
cality in vertex ordering. Fix the size 𝑛 “ |𝑉 |. Let graph
𝐺wheelp𝑛, 𝑏𝑙, 𝑏𝑔q be the sum of 𝐾p𝑏𝑔,𝑛 𝑏𝑔q and 𝐺conv1p𝑏𝑙q of
semi-bandwidth 𝑏𝑙, 𝑏𝑙𝑏𝑔 ą 0. Then, 𝑑p𝐺wheelq “ 2p𝑏𝑙 `𝑏𝑔q.
Among the 𝑛´𝑏𝑔 low-degree vertices, each has 2𝑏𝑙 neighbors
that are locally connected and has direct links to the 𝑏𝑔
global center nodes. The 𝑏𝑔 center nodes have nearly half
or more of the total links when 𝑏𝑔 ě 𝑏𝑙. Graph 𝐺wheel is
of a wheel shape, see Figure 3. In terms of local and global
connectivities, 𝐺wheel combines the best features from each
component graph. In fact, it is the small-world graph with the
maximal sum of the local cluster coefficients and the minimal
diameter among all graphs of the same size and sparsity.
In the context of graph compression, however, the wheel
composition effect may be both startling and elucidating. The
lowest gap score on 𝐺wheel can be much greater than the sum
of the individual components,

mLogGapAp𝐺wheel, 𝜋AMDq “ 1 ` 𝛾1
log2p𝑛´𝑑q

𝑑
, 𝑏1𝑏2 ą 0. (10)

The least number of bits per link for 𝐺wheel increases with
log2p𝑛q{𝑑 roughly, whereas it is 1 for 𝐾p𝑏𝑔,𝑛 𝑏𝑔q and close
to 1 for 𝐺conv1p𝑏𝑙q, invariant to variation in 𝑛. Due to
the sequential nature of vertex ordering, the composition
inevitably introduces gaps in every adjacency list between the
𝑏𝑙 locally-connected grass-roots neighbors and the 𝑏𝑔 global
center nodes. The gap length varies from 1 up to 𝑛´𝑑{2.

The composition effect expressed by (10) also has brighter
implications. First, if 𝐺wheel is not super sparse, such as when
𝑑 ě log2p𝑛q, then it is highly compressible. Secondly, a large
and sparser network in the real world is typically composed of



TABLE I: Empirical assessment of adjacency access localities and subgraph structures captured by 6 different vertex ordering schemes on 18 sparse graphs
of diverse types. SlashBurn is the baseline. Each graph 𝐺 has |𝑉 | vertices and average degree 𝑑. The number of nonzero elements in the adjacency matrix
𝐴 is nnzp𝐴q “ 𝑑|𝑉 |. For the synthetically generated graphs, except the binomial tree 𝐺binomial, |𝑉 | “ 250𝐾 with K “ 1,000 and 𝑑 “ 14. Each table
entry is a 2-tuple descriptor r mLogGapAp𝐺, 𝜋q | Δp𝐺, 𝜋q s. The first element is the number of bits per link on average by ordering 𝜋 on graph 𝐺, the sum
of the two elements is the mLogA score, namely, the average neighbor distance in bit length, and the ratio of the first element to the second indicates the
average portion of links within the 𝑑{2 range in each adjacency list, as stated in Proposition 2. On each graph, the best mLogGapA score is highlighted in
bold case, the runner-up is underlined. Figure 2 depicts the table entries for three of the graphs.

𝑛“|𝑉 | nnzp𝐴q 𝑑 RCM Fcut1 SlashBurn NED AMD viFPS

sy
nt

he
tic

𝐺conv1 250K 3.5M 14 1.0 | 1.1 3.3 | 1.8 11.4 | 4.0 1.7 | 1.6 1.0 | 1.1 1.0 | 1.1
𝐺PoK 250K 3.5M 14 1.1 | 1.3 5.1 | 4.7 10.5 | 3.7 1.7 | 2.3 1.1 | 1.3 1.1 | 1.3
𝐾p7,𝑛´7q 250K 3.5M 14 1.0 | 15.6 1.0 | 15.6 1.0 | 15.6 1.0 | 15.6 1.0 | 15.6 1.0 | 15.6
𝐺wheel 250K 3.5M 14 3.1 | 13.3 3.1 | 13.3 3.1 | 13.3 2.5 | 12.4 2.2 | 12.1 2.2 | 12.1
𝐺ws 250K 3.5M 14 5.3 | 5.3 9.6 | 2.8 11.4 | 4.3 5.3 | 3.5 5.0 | 3.9 2.5 | 2.3
𝐺lfr 250K 3.5M 14 5.4 | 8.8 6.3 | 8.2 6.8 | 8.3 7.0 | 8.2 6.3 | 8.6 5.1 | 4.7
𝑇binomial 262K 0.52M 2 4.6 | 9.7 7.6 | 6.6 8.1 | 7.8 2.8 | 1.7 1.9 | 0.9 1.7 | 0.6
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Polbooks [23] 105 882 8 1.8 | 1.4 1.9 | 1.7 2.3 | 2.3 2.0 | 1.9 2.0 | 2.1 1.9 | 1.2
Football [15] 115 613 5 2.3 | 1.7 2.2 | 1.5 2.6 | 2.5 2.5 | 2.0 2.4 | 2.2 1.9 | 1.1
URV email [17] 1.1K 10.9K 10 4.0 | 3.1 4.0 | 2.5 4.3 | 3.2 3.8 | 3.0 3.8 | 2.9 3.3 | 1.9
Polblogs [1] 1.2K 19K 16 1.0 | 5.9 3.2 | 4.0 3.4 | 5.3 3.5 | 5.1 2.9 | 5.6 1.0 | 5.9
Powergrid [28] 4.9K 13.2K 3 3.5 | 3.3 4.0 | 3.0 4.1 | 2.8 2.9 | 2.0 2.3 | 1.0 2.1 | 0.5
Pothen-Barth [24] 6.7K 46.2K 7 2.9 | 1.3 4.8 | 1.1 6.8 | 1.9 3.1 | 1.1 2.5 | 1.1 2.1 | 0.7
Enron email [20] 36K 361K 11 4.8 | 5.7 5.5 | 5.3 5.7 | 5.3 4.7 | 5.4 4.5 | 5.4 3.9 | 5.5
APS-2020 [2] 0.67M 8.85M 13 8.0 | 8.5 11.2 | 5.2 11.0 | 5.9 6.9 | 8.6 8.3 | 8.6 5.6 | 10.2
Flickr [16] 0.82M 9.84M 12 6.0 | 11.8 6.5 | 7.2 6.8 | 7.1 6.2 | 10.8 6.1 | 11.7 5.3 | 12.2
YouTube [29] 1.1M 6M 5 7.5 | 9.1 7.8 | 8.4 8.6 | 7.8 8.0 | 6.6 7.3 | 6.9 7.3 | 6.9
LiveJournal [29] 4M 69.4M 17 9.8 | 7.3 12.2 | 5.6 12.7 | 5.5 9.1 | 5.9 10.8 | 5.8 9.1 | 5.9

smaller subnetworks/subgraphs across multiple layers/levels,
the grass-roots nodes do not necessarily have direct links to the
elite nodes at the top. Consider the wheel graphs as subgraphs
of a larger network. For instance, let 𝐺 be a chain of wheel-
shaped subgraphs of size 𝑛𝑠. Then, the number of extra bits
per link is roughly log2p𝑛𝑠q{𝑑 instead of log2p𝑛q{𝑑. Here, the
assumed homogeneity in the subgraph size and shape is for
brevity in describing the composition/decomposition effects.

Our abstraction of graph composition and decomposition
with regard to vertex ordering for graph compression helps
algorithmic thinking or rethinking. A Delaunay triangulation
graph can be viewed as a composition of wheel sub-graphs
and star subgraphs, although not necessarily in a single chain.
In general, a large, sparse graph can be decomposed into
elementary subgraphs and wheel-like graphs, which may have
missing spokes or missing arcs, the interconnection between
the subgraphs is sparser.

We utilize the information and insight from the above anal-
ysis for evaluating and developing a vertex ordering scheme,
as well as for inferring the local and global connectivity struc-
tures of a graph/network. We use particularly the important
reference values in (7), (8), (9) and (10).

III. PERFORMANCE ASSESSMENT OF EXISTING METHODS

We report our empirical assessment of five existing ver-
tex ordering schemes on their effectiveness and speci-
ficity/versatility. We use 18 sparse graphs for the assessment.
An ordering scheme is effective for an intended class of
graphs if it maintains decent performance over variations
within the class. A scheme is more versatile if it is effective
across multiple types or classes of graphs. In Table I, we
list the schemes, the graph types and sizes, data sources,
and tabulate the mLogGapA scores and the differential scores.
We provide illustrations in Figure 2. We describe below the
rationale behind the chosen schemes and graphs and present
our findings.

The five vertex ordering schemes are RCM, Fcut1, Slash-
Burn, AMD, and NED, as discussed in Section I. We de-
note by Fcut1 the vertex ordering in the Fiedler eigen-
vector of the normalized graph Laplacian. It is commonly
used for graph cut (binary partition) in parallel sparse ma-
trix computation [25]. We introduce the comparisons with
AMD and NED, besides RCM and Fcut1. The underlying
idea of AMD is to approximately minimize the degrees in
successive elimination graphs [3], [4]. In the context of
vertex ordering for graph compression, the idea can be in-
terpreted and understood as ordering the vertices from the
least shared connections/dependencies to the most common
connections/dependencies. NED (nested dissection) applies
AMD to the graph minors contracted by recursive bisections,
each node of a graph minor is a subgraph of the original
graph 𝐺. The graph dissection and contraction are proven
effective on graphs of geometrically two/three-dimensional
connectivity [18]. The Shingle scheme [8] is not included as it
behaves similarly and is reportedly inferior to SlashBurn [21].
Unlike the other four schemes, SlashBurn requires a hyper-
parameter, which specifies the number of high-degree nodes
to be removed from every connected component, recursively.
We locate the best parameter value we could for SlashBurn in
every experiment.

The graphs used for the assessment include 7 synthetic
graphs for controlled studies and 11 real-world networks for
applicability assessment, see Table I. The first four synthetic
graphs are described in Section II. The additional three
represent, respectively, well-recognized graph/network types
for real-world networks and/or technological networks. Graph
𝐺WS is a Watts-Strogatz graph with relatively high local
cluster coefficients and a small diameter of 𝑂plogp𝑛qq. Graph
𝐺LFR is generated by the LFR simulator [19], with BA-like
subcommunities of different sizes interconnected by sparser,
random links. Graph 𝑇binomial is a binomial tree typically
used in algorithms/architectures for network routing, priority



queuing, and option pricing, among other applications [9].
The real-world networks are among the most frequently used
for benchmarking, except graph aps2020. Covering the APS
publications over the time span longer than a century, the
citation graph aps2020, as depicted in Figure 1, is incredibly
valuable in its own right to network studies. For each graph,
we shuffle its adjacency matrix randomly in order to reduce
the influence of the given or generation sequence on RCM,
AMD, and NED. The other schemes, SlashBurn and Fcut1, are
invariant to the initial ordering.

There are four key takeaways from Table I. (D-i) On the
three elementary graphs, all schemes reach the ideal score of
(7) on the biclique, the first two graphs expose the specificity
and limitation of SlashBurn and Fcut1, which are far short
of reaching the ideal score of (5). (D-ii) On the small-world
graphs, the performance of SlashBurn degrades more from
𝐺wheel of diameter 2 to 𝐺ws of diameter 𝑂plogp𝑛qq, in
comparison to the others. (D-iii) Even on its intended graphs
with heavy-tail degree distributions, SlashBurn is consistently
outperformed by AMD and NED. (D-iv) On networks with
subcommunity structures, 𝐺PoK, 𝐺LFR, 𝐺football, 𝐺polblogs,
𝐺polbooks, 𝐺aps2020 and 𝐺Flickr, AMD is behind RCM. In
summary, each scheme is limited to certain type(s) of graphs.
By our analysis, each scheme is also short of reaching the
theoretically expected in its favorite type(s) of graphs.

IV. THE NEW METHOD: viFPS

We introduce a new method, viFPS. In Table I, it demon-
strates superior and versatile performance in graph compres-
sion across diverse types of networks and graphs. Figure 5
shows its additional benefits in improving the efficiency of
subspace iterations with a sparse matrix. We delineate its
principled properties and describe its simple procedure.

The development of viFPS originates from our better under-
standing of the advantageous features and shortcomings of the
existing methods. RCM keeps locally connected neighbors as
close as possible. AMD adaptively, although implicitly, sepa-
rates the globally shared neighbors from the locally shared
ones. SlashBurn is recursive but inflexible in adjusting its
removal of high-degree nodes through its recursive division
process, and it is unable to decouple the graph at the weakest
links as Fcut1 does. Absent multi-resolution graph partitions,
RCM, Fcut1 and AMD are limited in extracting substructures
as NED and SlashBurn do. All but Fcut1 are combinatorial
algorithms and sensitive to structural or random variation.

We educe three principled properties for a versatile vertex
ordering method to acquire. (a) The persistent effectiveness
in the presence of inevitable variations, structural or ran-
dom, within an intended class or type of networks/graphs.
(b) The generalizability to diverse types of networks/graphs.
This property warrants adaptability to the degree distribution.
According to the AAL analysis in Section II, this also entails
the algorithmic capability to decompose a graph into locally
closely connected sub-communities detached from their com-
monly affiliated nodes, at multiple resolution levels. (c) There
is an explicit, easily interpretable, and computationally effi-
cient approximation path, as with Fcut1, to the minimization
of mLogGapA of (2) over Πp𝑛q. Almost counterintuitively,

Fig. 5: The execution time in subspace iteration in responding to random-walk
queries on the citation graph aps2020 with 5 different vertex orderings: DOI,
RCM, AMD, NED and viFPS. The measured time (sec) is for 10 iterations
𝑥𝑘`1 “ 𝐴𝑥𝑘 with the adjacency matrix 𝐴 and 𝑑 iterate vectors 𝑥𝑘 , 𝑑 is
the subspace dimension, on the Apple M2 Max processor, using the package
SparseArrays in Julia. Left: The time variation with the number of threads
𝑝 P t1, 2, 4, 8u, at 𝑑 “ 64. Right: The time variation with the subspace
dimension 𝑑 P t8, 16, 32, 64u, at 𝑝 “ 8. Observation: viFPS shows better
parallel scalability and cache utilization.

making choices and modifications by these properties, we
arrive at a remarkably simple, recursive procedure.

Provided at input the adjacency matrix 𝐴 for a graph 𝐺, a
pair of Pareto ratios prvol, rminorq, and a basecase vertex set
size 𝑛min, viFPS returns a vertex permutation. The procedure
is recursive, it takes the following steps on the current graph
𝐺. (1) If in the basecase |𝑉 p𝐺q| ď 𝑛min, apply AMD to
𝐺 and return the permutation. (2) The Pareto Split. If rvol%
of the total volume

ř

𝑖P𝑉 𝑑p𝑖q is held by rminor% or less
of the nodes, split the minority nodes from the majority.
Denote by 𝐺major the graph induced by the majority nodes.
(3) The Fiedler cuts. Apply Fcut1 to every connected compo-
nent of 𝐺major, followed by a recursive call of viFPS to every
divided subgraph. (4) Aggregation. Return the permutation
aggregated from the split and cuts.

The procedure extends to any digraph 𝐺, such as the
citation graph aps2020, or a bipartite, via the embedding
matrix r0, 𝐴;𝐴T, 0s. It returns both a row permutation and a
column perturbation. We omit the rationale and nuance details
due to the document length limit.

The time complexity of viFPS scales with 𝑐𝑚 log2p𝑛q,
where 𝑚 “ |𝐸|, 𝑛 “ |𝑉 |, and 𝑐 is a modest constant,
proportional to the low dimension of a subspace iteration for
obtaining the single Fiedler vector of a sparse subgraph.

In the viFPS approach, the algebraic Fiedler cuts extract
the substructures, the statistical Pareto splits adapt to the
degree distributions of the divided subgraphs. If the split
condition by the ratio pair is not met on a subgraph, no split
takes place. All splits can be deactivated by setting the ratio
pair as prvol, rminorq “ p100, 1q. Only in the ideal case of
a Pareto distribution, the split condition can be set by the
single Pareto scale parameter. We find that an estimate of the
scale parameter for a real-world network can be unreliable.
For every graph/network in Table I, we use a global split
condition prvol, rminorq “ p20, 4q, which guides the adaptive
split in each divided subgraph. One can adjust or tune the
split control, globally or recursively, in an attempt to further
improve the compression, via parallel search or coordinated
search. The granularity for such parameter tuning is to be
further investigated in the cost-effectiveness aspect.
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