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Abstract— The emergence of companion robots is promising 

to alleviate loneliness and improve mental health. It is critical to 

develop accurate task plans attuned to the various emotional 

states of a human partner. Given the complexity and variability 

inherent in human mental states, manually creating plans for 

companion robots is not feasible. Recent framework that 

integrates Large Language Models (LLMs) with Planning 

Domain Definition Language (PDDL) for automated task 

planning produces precise and flexible task plans. However, this 

framework has not been applied to companion robots, especially 

those responding to emotional states. This work introduces a new 

task planning strategy utilizing LLM and PDDL for companion 

robots. Simulation results demonstrate that the proposed method 

enables the robot to successfully navigate and offer support in 

response to detected states of sadness emotion. The method can 

convert unstructured natural language descriptions into 

structured task planning information. This strategy may enhance 

the interaction quality of companion robots and make them more 

empathetic and contextually aware in their social support roles.  
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I. INTRODUCTION 

The advent of companion robots, as one type of medical 
robotics [18-21], offers a promising solution to combat social 
isolation and loneliness [1,2], particularly in individuals with 
depression. These companion robots [3], similar to therapy 
robots [4], provide on-demand emotional support and adapt 
their interactions based on real-time detection and 
interpretation of human emotional states. While they show 
potential in delivering constant companionship, ethical 
concerns regarding personal privacy and freedom due to 
continuous monitoring arise. Therefore, it is crucial to maintain 
a balance between offering companionship and preserving 
human privacy and ensure that the robot's presence is 
supportive rather than intrusive. The effectiveness of 
companion robots depends on their ability to act as socially 
aware entities and provide companionship appropriately and as 
needed. 

Recent advancements in technology have enabled the use 
of electroencephalogram (EEG) signals for accurately 
identifying human emotional states [5]. EEG signals can assist 

robots to complete the companion tasks. By integrating EEG-
based emotional state detection, companion robots can be more 
effectively simulated to support a human partner [6], and tailor 
their interactions based on these detected emotional cues. 
Furthermore, the incorporation of Large Language Models 
(LLMs) has marked a new frontier in identifying human 
emotions [7-8]. LLMs analyze complex patterns in language 
use and offer an additional layer of emotional understanding. 
Emotion signals acquired from EEG sensing [9] or LLM 
technologies can enhance the empathy and responsiveness of 
companion robots and make them more attuned to the 
emotional needs of their human partners. 

The effective navigation of companion robots depends on 
the creation of accurate task plans for ensuring their presence is 
supportive and non-intrusive. Given the dynamic and varied 
nature of a human partner's emotional states and physical 
activities in daily life, manual planning of a companion robot is 
impractical. Recent studies [10-11] have explored the 
integration of LLMs with Planning Domain Definition 
Language (PDDL) for automated task planning. This 
integration facilitates the generation of precise and adaptable 
plans for robotic actions. However, this strategy has not been 
applied in the field of companion robots, particularly those 
guided by emotion signals. Such an approach could improve 
the way companion robots interact and respond to human 
needs, and make them more empathetic and contextually aware 
in their social support. 

To better combat depression and support mental health, a 
novel task planning strategy is proposed for companion robots 
using LLM and PDDL. Emotion signals detected from EEG or 
chatting procedure can be used to generate the task plans for 
navigating a companion robot. In this paper, the introduction 
and related works are presented in the first and the second 
parts. The third section presents the proposed method. The 
experimental results and conclusion are given in the fourth and 
the fifth components. 

II. RELATED WORKS 

A. Navigating Robot via Emotion Detection 

Companion robot simulation was explored using EEG 
signals for dynamic adaptation to human emotions, enhancing 



robot’s ability to provide emotional support [6]. Incorporating 
EEG-based emotional recognition into navigation planning, 
these robots adjust their behavior according to users' emotional 
states and improves social interaction and responsiveness. 
Jiang et al proposed an emotion-based interactive navigation 
approach for robots, using a variable artificial potential field 
and virtual emotional barriers to tailor obstacle avoidance 
behaviors, verified through MATLAB simulations and ROS-
based TurtleBot 2 experiments [12]. A method for mobile 
robot control in dynamic environments was introduced and 
focused on human impressions of robot movements [13]. It 
emphasizes the importance of natural, comfortable, and 
sociable navigation, and presents a fuzzy controller developed 
to balance navigation objectives with human emotional 
responses, evaluated through questionnaires and simulated 
environments. 

B. LLM for Robot Planning 

LLM+P as a framework combining LLMs with classical 
planners for robot planning was proposed [10, 21-25]. It 
translates natural language descriptions into PDDL, uses 
classical planners for solutions, and reconverts these into 
natural language. LLM+P outperforms LLMs in generating 
optimal plans for robot planning scenarios, as demonstrated in 
comprehensive experiments. LLM-Planner was introduced [11] 
as a method utilizing large language models for few-shot 
planning in embodied agents. It enhances LLMs with physical 
grounding for task completion in visual environments. Using 
minimal training data, LLM-Planner shows competitive 
performance on the public dataset and demonstrates potential 
for versatile and sample-efficient embodied agents. 

III. PROPOSED METHOD 

In the proposed method, the integration of high-level 
planning logic and low-level execution and control logic will 
be explored for a companion robot navigation that responds to 
human emotion signals. This bifurcation of logic not only 
streamlines the method but also clarifies the implementation 
process. It allows for a more nuanced and effective interaction 
between the robot and its human partner. The core of this 
interaction hinges on the utilization of EEG-based emotion 
signals, which are incorporated into both the high-level 
planning and the low-level execution phases. This dual-level 
integration of EEG signals facilitates a more empathetic and 
responsive robotic companion. 

A. Framework of the Proposed Method 

A novel framework is introduced for companion robotic 
navigation and control based on human emotion signals, as 
demonstrated in Fig.1. This framework begins with the detailed 
description of the problem and its domain, which are then input 
into a LLM. The LLM generates specific plans formulated in 
PDDL. A key aspect of this process is the incorporation of 
context into the LLM's planning stage including the 
interpretation of human partner emotion signals captured 
through portable EEG device. These contextual details ensure 
that the generated plans are not only efficient and practical but 
also sensitively attuned to the emotional state of the human 
user. Once these plans are created by LLM, they are 

transmitted to the companion robot for executing its navigation 
and control in a manner that is both responsive and empathetic 
to the human. 

 

Fig. 1. The framework of the proposed navigation via LLM-based planning 
and emotion signals.  

B. PDDL Generation from LLM 

For the high-level planning logic in the proposed method, 
the effectiveness of the LLM+P framework [10] is 
demonstrated for leveraging the advanced capabilities of GPT-
4 [17] as a LLM for the generation of structured PDDL files.  

 

Fig. 2. One example of GPT-4 as a LLM in planning the companion robot. 
Both problem PDDL and domain PDDL files are output from GPT-4. 

Initially, GPT-4 is provided with detailed descriptions of 
the problem and domain in a natural language format as shown 
in Fig.2. This process includes the integration of context-
specific information such as emotion detection through EEG 
signals to tailor the solution to scenarios where emotional sense 
is critical. Upon receiving this information, GPT-4 proficiently 



translates the unstructured description into structured PDDL 
files including both problem and domain files. These structured 
PDDL files are key in enabling a companion robot to navigate 
and provide emotional support and companionship to human 
partners. This approach not only streamlines the process of 
programming complex robotic behaviors but also opens new 
avenues for creating more empathetic and responsive robotic 
companions in various care settings. 

The generated domain PDDL file  outlines a domain for 
robotic navigation with the primary goal of responding to 
human emotions in a living space. As shown in Fig.3, the 
domain is structured with basic Stanford Research Institute 
Problem Solver (STRIPS) [14] requirements and defines 
several key predicates to describe the state of the robot and the 
human. These predicates include whether the robot is in the 
room, at the corner of the room, near a human, if the human 
feels sad, and if the robot is ready for interaction. 

 

Fig. 3. One example of the domain PDDL file written by GPT-4. 

Besides predicates, two main actions are defined within this 
domain. The first action of "navigate-to-human" is triggered 
under specific conditions: the robot must be in the room and at 
the corner, and the human must be feeling sad. When these 
preconditions are met, the action results in the robot no longer 
being at the corner and instead being near the human. The 
second action of "react-to-emotion" is designed for the robot to 
become ready to support or assist once it is navigated to a 
human who is feeling sad. This structured approach allows for 

the development of a companion robot that can not only detect 
human emotions through EEG signals like sadness but also 
respond by navigating to and preparing to assist the human in 
need. It emphasizes the robot's role in providing emotional 
support and companionship. 

 

Fig. 4. An example of the problem PDDL file written by GPT-4. 

The problem PDDL file as shown in Fig.4 focuses on a 
single companion robot - robot1, which represents a robot 
tasked with providing support to a human. The initial state of 
this scenario outlines that robot1 is located within a room, 
specifically at a corner. A human partner within the same 
environment is feeling sad. Additionally, the robot is not near 
the human and is not in a ready state to interact or assist. The 
goal of this problem is twofold: firstly, to bring the robot into 
proximity with the human (is-near-human robot1), and 
secondly, to transition the robot into a ready state (robot-ready 
robot1). This setup encapsulates a situation where a robot is 
programmed to recognize and respond to human’s emotional 
distress like sadness, by navigating towards them and preparing 
itself for offering emotional support and companionship in a 
human-centric environment. 

C. Robot Navigation Using Emotion-Based Plans 

To simulate a living room, map as shown in Fig.5, a visual 
representation of layout on a 100x100 occupancy grid is 
created. This map is characterized by clear boundaries 
representing the walls of the room with an exception for a door 
opening. Within this defined space, various pieces of furniture 
are strategically placed. A sofa is positioned against one wall. 
While directly opposite it, a TV is set up by creating a typical 
living area arrangement. Central to the room is a table. 
Surrounding this table are four chairs. The map provides a 
clear overview of a living room's layout via highlighting the 
spatial relationships between different furniture items and the 
overall structure of the living space. This setup not only helps 
in visualizing the living room's arrangement but also serves as 



a useful tool for planning navigation paths a simulated or real-
world environment. 

 

Fig. 5. A floor map of a living room scenario. A companion robot navigate 

For the low-level execution and control logic, a companion 
robot formulates its route considering the barriers present in the 
living room environment. For robot path planning, an effective 
global planner is the A* algorithm [15, 27], which is 
deterministic in nature by computing the distance from the start 
to the end points by optimizing the cost function: 

,                            (1) 

where g(n) represents the expense of traveling from the starting 
point to a given node, and h(n) denotes the estimated least 
expensive path from the current node to the destination. A* 
path planning is implemented on MATLAB for navigating the 
companion robot in a simulation environment of Fig.5. 

D. Emotion Detection via EEG Signal Representations 

In companion robot simulation, we explore the integration 
of EEG signal-based emotion detection utilizing traditional 
Common Spatial Pattern (CSP) representations [16]. A 
significant aspect of our simulation includes the emulation of 
emotional states derived from CSP representations. The 
detection of a "Sad" emotion via CSP representation initiates 
the robot's navigation by employing the A* algorithm within 
MATLAB for completing the emotional support task. Different 
regions on CSP represent deviated electrical potentials on the 
human brain's scalp. These CSP representations are monitored 
sequentially in real-time to accurately track the emotional 
states. Once a CSP represents the “Sad” emotional state, the 
companion robot is triggered for performing tasks as created in 
both high-level planning logic of PDDL files and low-level 
execution and control logic with A* algorithm. 

IV. EXPERIMENTAL RESULTS 

In our study, the performance of companion robot 
navigation was meticulously evaluated using the simulated 
map depicted in Fig.5. The initial path plotted for the robot to 
reach the human partner is illustrated in the left sub-figure of 
Fig.6. This sub-figure showcases the initial trajectory planned 
for the robot, highlighting its journey towards the human in 
need of companionship. The right sub-figure provides a 
detailed view of the robot's complete route, encompassing both 
its movement towards the human partner and its subsequent 
return to the corner of the room. This comprehensive depiction 
provides insights into the robot's navigation capabilities within 
a simulated environment.  

 

 



Fig. 6. Initial route to human is presented in the left figure, and companion 
robot route to human and back at the corner of the living room is illustrated in 
the right figure. 

The domain PDDL file's two primary actions, "react-to-
emotion" and "navigate-to-human," are effectively mirrored in 
the low-level execution logic of the companion robot. This 
integration shows an advancement over traditional manual 
planning methods because the high-level planning achieved 
through GPT-4 offers enhanced flexibility with its ability to 
process natural language inputs. However, the current system 
requires a manual process to bridge high-level planning with 
low-level execution, with a gap in creating an automatic 
pipeline for this connection. To address this, our future work 
aims to develop a seamless integration between these two 
components and enable a more efficient and autonomous 
operation of companion robots. 

CONCLUSION 

In conclusion, the work introduces a novel task planning 
strategy for a companion robot by utilizing the synergy of 
LLM and PDDL under the LLM+P framework. The 
experimental results show that structured PDDL files can be 
efficiently and flexibly generated from unstructured natural 
language descriptions, in compared to inflexible manual 
planning. The simulated companion robot is enabled to 
navigate towards and support a human partner in need of 
emotional support. Future work will focus on the development 
of a physical companion robot in a real-world environment by 
leveraging this LLM-based planning approach integrated with 
EEG signals.  
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