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Abstract— The Dixon method is a clinical Magnetic Resonance 

Imaging (MRI) approach employed to differentiate and separate 

water and fat signals and plays a crucial role in various clinical 

applications. The efficiency of this method is largely influenced by 

the optimal selection of parameters such as Echo Time (TE) and 

Echo Spacing. However, acquiring these optimal parameters can 

be challenging due to the limited availability of training datasets 

and the complexity of manual selection. This study proposes a 

novel parameter selection method using transfer learning on 

simulated images to address these challenges. We leverage pre-

trained models trained on one task as a starting point for a related 

task, under the framework of transfer learning. This approach 

helps identify optimal TE and echo spacing parameters and thus 

aids in optimizing Dixon technique parameters. Our proposed 

method customizes these models to the specific task of 

differentiating water-only or fat-only images. Experimental 

results reveal that these pre-trained models can successfully 

classify the simulated images, thereby providing promising 

implications for enhancing the performance of the Dixon method 

in MRI. 
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I. INTRODUCTION 

The Dixon method [4], a clinical Magnetic Resonance 
Imaging (MRI) approach, plays a vital role in differentiating and 
separating water and fat signals. It has gained substantial traction 
and is widely used in various clinical applications due to its 
robust and insightful outcomes. The Dixon method takes 
advantage of the phase difference between the hydrogen in water 
and fat molecules, there is a phase difference between the 
molecules since their protons’ precess at different times [30, 35]. 

The parameters of the echos itself can greatly affect the 
quality of the final water-fat separation image [17]. Echo Time 
(TE), the interval between the application of the radio frequency 
(RF) pulse and the peak of the echo signal, plays a pivotal role 
in determining the phase difference between water and fat 
signals. Meanwhile, Echo Spacing representing the time gap 
between successive echoes in a multi-echo sequence also holds 
critical importance. It can directly influence the quality of fat-
water separation by affecting the amount of T2* decay that 
occurs between echoes. T2* decay inevitably leads to signal 
loss. Consequently, shorter echo spacing has the potential to 

minimize this decay and enhance the quality of images[1]. 
However, excessively short echo spacing can also introduce 
complications, such as distortions stemming from magnetic field 
inhomogeneities, underscoring the need for careful calibration 
of these parameters to optimize the performance of the Dixon 
method in MRI. 

The quality of the images that are produced from the Dixon 
method for water-fat separation in MRI is dependent on the 
judicious selection of echo parameters. Since there are so many 
parameters to choose from deep learning methods have potential 
in assisting with the optimization of these echo parameters [34]. 
We can do this by using Deep Neural Networks (DNN) [28] to 
learn from large the data sets of images to find the best possible 
echo configurations. By finding the best echo configurations we 
can produce better quality Dixon images. The complication we 
run into is to use DNN we need large sets of training data and in 
this case, they are Dixon images. Since the images for training 
are medical images for legal reasons, we do not have access to 
large sets of these photos. Instead, we will simulate the image, 
and through simulation we are able to create a large and diverse 
set of training data to use in our DNN. 

The DNN we are putting these images through are pre-
trained models and we used transfer learning on each of them 
with our own test set. The utilization of pre-trained models could 
offer valuable insights to determine parameters for simulated 
water or fat images. Transfer learning, a machine learning 
strategy that leverages pre-existing models trained on one task 
as a starting point for a related task, emerges as a potential 
solution for identifying optimal parameters [27, 31]. For 
example, binary classification of water images versus fat images 
can lead to the discovery of optimal TE and echo spacing 
parameters. 

In this paper, we propose a novel transfer learning approach 
aimed at identifying the Dixon parameters using pre-trained 
models. Our method leverages the robustness of these models 
and customizes them to the specific task of differentiating water 
and fat images, thus aiding in the optimization of Dixon 
technique parameters. This paper is structured as follows to 
present our findings: the first section serves as an introduction, 
setting the context, and presenting the problem. The second part 
discusses the current landscape of solutions and related works. 



The third section provides a detailed description of our proposed 
transfer learning method, specifically tailored for classifying 
water-only images or fat-only images. The fourth section unveils 
the experimental results, demonstrating the efficacy of our 
proposed method. Finally, the fifth section concludes the paper, 
summarizing our findings, their implications for identifying 
Dixon parameters, and the potential directions for further 
research. 

II. RELATED WORKS 

The Dixon water and fat signal separation MRI technique 
has a vast spectrum of clinical applications. One application is 
enhancing tissue contrast especially when the fat and water is 
intermingled in certain parts of the body. Some examples where 
fat and water is intermingled is in the liver [3], pancreas, and 
breasts[14, 18]. Also in the liver we can quantify fat [2] and also 
identify lesions or disease [19, 6]. The Dixon method can also 
apply to musculoskeletal imaging [15, 1], and we can use it to 
detect rheumatoid arthritis [13]. Thus the Dixon method’s many 
clinical applications make it a very important tool to optimize. 

The versatility of the Dixon method stems from its ability to 
separate fat and water with high precision, making it valuable 
for a wide range of diagnostic purposes. In liver imaging, for 
instance, it provides a non-invasive approach for assessing 
hepatic steatosis and monitoring fat deposition, which is crucial 
in managing metabolic diseases. In oncology, Dixon imaging 
helps identify and characterize lesions that may be masked by 
fat tissue, improving tumor detection and treatment planning [6]. 
Its application in musculoskeletal imaging allows for detailed 
analysis of fat infiltration in muscles, which is important for 
evaluating degenerative conditions and assessing therapeutic 
outcomes [15]. Furthermore, Dixon techniques are increasingly 
being used in cardiac imaging [29], particularly for detecting 
epicardial fat and its implications in cardiovascular diseases 
[13]. 

III. PROPOSED METHOD 

The Dixon method leverages the difference in the precession 
frequencies of fat and water to separate them in the resultant 
images. Given that fat and water resonate at slightly different 
frequencies, they will be in-phase or out-of-phase at different 
TE. The basic Dixon method requires at least two echoes, 
typically collected at in-phase and out-of-phase timings. In 
mathematical terms, this can be represented as follows. When 
the water and fat signals add together, the in-phase image can be 
represented as 

�_�� � � � �                                   (1) 
, where �_��  is the in-phase image, �  represents the water 

signal, and � represents the fat signal. When the water and fat 
signals are subtracted, the out-of-phase image is represented as 

�_�� � � 	 �                                   (2) 
, where �_��  is the out-phase image. By using these two 
equations, we can isolate the water and fat signals:   

� � 
�_�� � �_���/2                             (3) 
, and 

� � 
�_�� 	 �_���/2                              (4) 
. These are the forms of the Dixon equations, assuming a 2-

point Dixon method, which is the most basic form of the method. 

They do not take into account factors such as T2* decay, B0 
inhomogeneities [23, 24], or the multiple spectral peaks of fat, 
which can complicate matters. In more advanced versions of the 
method (like 3-point Dixon or iterative Dixon), additional 
acquisitions and more complex calculations are used to address 
these issues. 

A. Simulation Tool 

QMRITools developed by Martijn Froeling [5] is a 
comprehensive toolbox written in Mathematica using Wolfram 
Workbench and Eclipse [12]. It’s designed for processing 
quantitative MRI data without the use of a graphical user 
interface (GUI) which focuses primarily on facilitating rapid and 
batch data processing. In addition, it supports the development 
and prototyping of new functions. The toolbox’s core is packed 
with numerous functions for data manipulation and 
restructuring, making it an efficient resource for quantitative 
MRI data analysis. Originally created for analyzing diffusion 
imaging data of skeletal muscles, QMRITools’ functionality has 
exponentially expanded over the years. It is currently employed 
for the analysis, processing, and simulations of quantitative 
muscle, nerve, and cardiac MRI and spectroscopy data. As 
research evolves, so does the library of functions within the 
toolbox, reflecting its dynamic and versatile nature. We used the 
QMRITools for simulating Dixon method in MRI. 

Utilizing QMRITools, we successfully simulated the Dixon 
method to generate distinct water and fat images, as depicted in 
Fig. 1. The water-only images of legs are represented in Fig. 
1(a), and the fat-only images in Fig. 1(b). They clearly 
demonstrate that the fat components are located externally to the 
water components on the legs. The marrow components inside 
water tissues represent fat parts, so they have stronger signals in 
fat images and weak signals in water images. This separation of 
water and fat allows for an enhanced diagnostic perspective, 
potentially improving patient outcomes. As part of our ongoing 
analysis, we aim to generate multiple pairs of these water and fat 
images, adjusting parameters such as TE and echo spacing to 
further optimize the clarity and diagnostic value of the images. 

  
(a). Water-Only Image                            (b). Fat-Only Image 

Fig. 1. Simulated water-only and fat-only images of legs from QMRITools. The 
left figure represents water images, and the right figure denotes fat images. It is 
seen that the fat images are outside of water components on legs. In addition, 
marrow tissues represent fat components so they have strong signals in fat 
images and weak signals in water images. 

B. Generation of water and fat image training data 

Pre-processing data for our experiment can be divided into 
several steps, which include importing the necessary toolbox, 
creating images with various parameters, saving these images in 



a specific format, and finally converting them to a more 
commonly used format. The first step of pre-processing the data 
involves importing the QMRITools toolbox since it contains a 
host of functions that are mandatory for simulating MRI images. 
After importing the toolbox we use a double for loop to create 
images with different parameters. Next we use a double ’For’ 
loop to create images with different echo spacing’s and TE’s. A 
loop is a control flow statement that allows the image simulation 
to be executed repeatedly automatically. A nested loop allows to 
iterate over multiple dimensions, which in this context means 
systematically changing both the echo spacing’s and initial echo 
times. By setting a range of both of these parameters we can 
generate a lot of images with many different parameters. After 
generating the images they are saved locally to our local drive 
for ease of access. Finally, we convert the recently saved images 
from Nifti format to Portable Network Graphics(PNG) format. 
Nifti is a commonly used format for storing neuroimaging data 
sets and is commonly used in the field of MRI. The images are 
being converted to PNG format since the images can be more 
easily viewed and shared to other people and artificial 
intelligence models. 

After we have the images in PNG format we then need to 
generate training data so our DNN can learn from the training 
data set. First we use a loop to create each of the labels for the 
all the individual images created. Adding labels to your data is 
important since it will provide the artificial intelligence with 
information about the data given to it. The labels in our case are 
binary which means there are two classes, but there can even be 
multi-class or even more complex labels depending on the 
experiment. the next step involves a triple nested loop over a 
range of echo spacing, initial echo times, and a list of pre-trained 
models. The aim of this iterative process is to train each pre-
trained model with different sets of echo spacing and initial echo 
times. This comprehensive approach ensures that our models are 
thoroughly trained across a variety of scenarios, which can 
contribute to a more robust performance. Once the models are 
trained with various parameters, the next step is to apply the 
labels to .png images of either water or fat scans. Labeling is 
crucial in supervised learning as it allows the model to learn the 
relationship between the input (images) and the output (labels). 

C. Thresholding classes of binary classification via pre-

trained models 

In our experimental approach, we implemented a manual 
threshold on echo times and echo spacing to classify water or fat 
images into two respective classes. This binning strategy was 
integral to the establishment of a framework for evaluating the 
performance of various classification methods. Each class 
representing a range of echo times or echo spacings was labeled 
for this evaluative process. Given the practical challenges 
associated with procuring a sizeable amount of training data for 
water and fat images from Dixon methods in clinical settings, 
our approach pivoted towards utilizing existing pre-trained 
models. We chose to use a range of models, including 
DenseNet-121 [10], Efficient-Net [22], EfficientNet-V2 [36], 
Inception V3[21], MobileNet V3[8], ResNet-101[7], ResNet-
152 [7], ResNet-50[7], ShuffleNet-V2 [16], Squeeze-and-
Excitation Net [9], SqueezeNet V1.1 [11], VGG-16 [20], and 
VGG-19 [20]. The decision to use pretrained models capitalizes 
on the wealth of learning these models have acquired from large-

scale training data and allows us to circumvent the difficulty of 
generating our own exhaustive data set. 

Subsequent to the classification process using these pre-
trained models, we collected classification accuracy for each 
model. The metric of accuracy serves as an objective measure of 
the performance of each pre-trained model, providing a 
quantitative basis to compare and analyze their efficacy. It’s 
noted that our approach involves a manually determined 
threshold on the echo times and echo spacing. This threshold 
isn’t a rigid and unchanging element. Instead, it can be 
modulated to facilitate a comprehensive evaluation. This 
capacity to adjust the threshold ensures a flexible and robust 
evaluation, enabling a more thorough understanding of the 
relationship between the Dixon parameters and the classification 
performance. 

D. Apply transfer learning to the model 

After being labeled we apply transfer learning to the pre-
trained models. Transfer learning is a machine learning method 
where we use a pre-trained model’s DNN architecture to train 
our own labeled images on the DNN. This process allows us to 
leverage the learned features of the pre-trained model, saving 
computation time and potentially improving performance. 
Finally, we calculate the classifier measurement. This 
measurement evaluates the performance of the model in 
accurately predicting labels. Common measurements include 
accuracy, precision, recall, and F1 score. This evaluation step is 
essential to understand how well our model is performing and to 
identify areas for potential improvement. These steps represent 
a systematic approach to generating training data for transfer 
learning, providing a strong foundation for creating robust and 
efficient machine learning models. 

IV. EXPERIMENTAL RESULTS 

A. Data sets 

We simulated four echo dixon method images where we 
only changed the initial echo and the set of images created 
satisfy a range of initial echos from 2 ms to 3.5 ms and a range 
of echo spacing’s (e.g. times between each echo) is from 0.7 ms 
to 1.7 ms. We generated 1517 pairs of water and fat images 
where a few examples are show in Fig. 2. Changing these 
parameters created a large set of images that all have unique 
information that could be put into the models. Due to 
computational performance constraints only 1000 out of the 
1517 images were trained on each of the models. Also, 
excluding the 1000 pairs trained on each model there where 17 
pairs out of the 517 left that were used to record a classification 
score measurement. 



 

Fig. 2. Through changing Dixon parameters including echo times and echo 
spacing, a sequence of water and fat images is generated. Here, n represents the 
amount of echoes, f denotes the initial echo, and d represents the time between 
each echo. Both the initial echo and the time between each echo has units of 
milliseconds. 

B. Classification performance 

The overall mean classification measurement for all models 
as shown in Fig. 5. Two out of the eighteen models tested came 
out to have the best on average classification score even though 
all models have a mean classification score above 55%. 
Squeeze-and-Excitation Net and ShuffleNet-V2 both got a score 
of 70% which is at most 15% more than the other models. 

We also decided to look at the fat image classification 
measurement means as shown in Fig. 3 and the water image 
classification means in Fig. 4. First after collecting the fat image 
means we found that the two models that had the highest overall 
mean classification measurement have the highest classification 
measurement for both echo spacing and TE. Also both models 
exchange the prominent classification measurement in both 
echo spacing and echo spacing. 

 

Fig. 3. The following figure shows the collected means of all classification 
measurements by models are optimizing the initial echo (ms) and the echo 
spacing (ms) of fat images. The length of each of the model’s bars is a 
qualitative representation of the models means. All models had better 

optimization results identifying the fat images over a range of echo spacings 
(ms) compared to initial echos. 

The water image classification measurements show 
EfficientNet and Inception V3 DNN models having the highest 
mean classification score. Which is different from the two 
models that got the highest overall mean classification score. A 
similarity between the water classification measurement means 
and the fat classification measurement means is echo spacing 
has shown a general higher score compared to initial echo. 

 

Fig. 4. The following figure shows the collected means of all classification 
measurements by models are optimizing the initial echo (ms) and the echo 
spacing (ms) of water images. The length of each of the model’s bars is a 
qualitative representation of the models means. All models had better 
optimization results identifying the water images over a range of echo spacings 
(ms) compared to initial echos. 

 

Fig. 5. The figure shows a bar graph of the mean over all classification 
measurements collected from each model. Each bar is labeled signifying each 
model and the length of each bar represents the performance metric. 

V. CONCLUSION 

The models we tested all had a feasible average classification 
measurement greater than or equal to 59%, two of the models 
had the best average classification measurement which was 



Squeeze-and-Excitation Net and ShuffleNet-V2. This means 
both of these models are a viable option for identifying 
parameters of a Dixon image which can be further applicable to 
being used in further Dixon echo optimization experiments. 
Further we are planning to use a larger range of parameters and 
see if these two image classification models are good with a 
higher or lower range of initial echos and echo spacing’s. We 
will also try further testing in python with a wider range of pre-
trained models to compare and see if there are any other models 
that are much more suitable for parameter selection for Dixon 
MRI water-fat separation. 
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