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Abstract—Parallel imaging techniques, such as GeneRalized 

Autocalibrating Partially Parallel Acquisitions (GRAPPA) play an 

important role in Magnetic Resonance Imaging (MRI) by 

significantly reducing scan times and enhancing patient comfort 

without compromising image quality. GRAPPA's algorithmic 

framework involving calibration and synthesis stages is critical in 

reconstructing high-quality images. However, the computational 

load of the calibration stage, especially with large convolutional 

kernel sizes or an increased number of receiver coils, poses a 

significant bottleneck and limits its efficiency and applicability in 

clinical settings. In this paper, we introduce an approach by 

proposing a hybrid software architecture that integrates quantum 

computing into the GRAPPA reconstruction process. Our method 

exploits the computational capabilities of quantum computing to 

accelerate the calibration phase, thereby enabling real-time 

processing speeds. Through experimentation, we demonstrate that 

the quantum-enhanced approach can expedite the calibration 

process to around 10-20 milliseconds of Quantum Processing Unit 

(QPU) programming time for each Linear Time-Invariant (LTI) 

system solved. The method maintains the integrity of calibration 

outcomes, achieving results on par with conventional central 

processing unit (CPU)-based processes. The result represents the 

progress towards real-time MRI reconstruction by reducing 

clinical MRI workflows times, improving patient throughput, and 

potentially enabling new diagnostic capabilities. Solving LTI 

system with more attributes on D-Wave quantum computer will 

be studied to show advantages of QPU to CPU in the future work. 

Keywords— Magnetic Resonance Imaging Reconstruction, D-

Wave Quantum Computing, Data Calibration, Quantum Processing 
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I. INTRODUCTION 

Magnetic Resonance Imaging (MRI) has revolutionized the 
field of radiology since its inception in the 1970s. It provides 
insights into the human body without the need for invasive 
procedures [16-22]. As a parallel MRI technique, GeneRalized 
Autocalibrating Partially Parallel Acquisitions (GRAPPA) [1] is 
widely used in clinical applications. Modeled as a Linear Time-
Invariant (LTI) systems, GRAPPA operates through a two-stage 
process: calibration and synthesis. During calibration, specific 

patterns within the MRI data are identified to estimate the 
interpolation coefficients, while the synthesis stage uses these 
patterns and estimated coefficients to predict missing k-space 
data and reconstruct the whole k-space from undersampled scan. 
However, the calibration stage is inherently slow due to many 
equations solved. When the number of phased-array coils or the 
size of interpolation kernel expands, the number of equations is 
significantly increased. This bottleneck significantly impacts the 
overall speed of the reconstruction process and poses challenges 
in clinical settings where time is critical. 

To accelerate the slow calibration speed that hinders the 
efficiency of GRAPPA reconstruction in MR imaging, two 
primary strategies have been proposed to accelerate the process. 
The first approach involves optimizing the use of phased-array 
coils by employing dimension reduction techniques like 
Principal Component Analysis (PCA) [6-9] or by directly 
minimizing the number of hardware coils during data 
acquisition. This method essentially reduces the computational 
load by decreasing the dataset's complexity in the calibration 
stage. But information may be lost and reconstructed image 
quality will be degraded. The second strategy focuses on 
hardware-based enhancements using Field-Programmable Gate 
Arrays (FPGAs) which are renowned for their ability to perform 
high-speed and parallel computations, thus providing a pathway 
to real-time image reconstruction [10]. Extra hardware of FPGA 
is needed and existing hardware with MRI reconstruction may 
be modified. Despite the potential of these approaches to 
improve the speed and efficiency of GRAPPA reconstruction, 
they fundamentally rely on classical computing paradigms. 
Classical computers execute algorithms through binary logic 
gates such as AND, OR, and NOT, which still limits the speed 
at which the calibration stage of GRAPPA reconstruction can be 
performed. This inherent limitation emphasizes the need for 
exploring alternative computing paradigms to transcend these 
barriers and achieve unprecedented speeds in MR image 
reconstruction. 

Quantum computing [11, 23-29] as an innovative computing 
paradigm has demonstrated significant advantages over classical 



computing, particularly in tasks that involve complex problem-
solving and data processing. Unlike classical computers that rely 
on binary logic gates to manipulate bits, quantum computers 
utilize quantum annealing or quantum gates to operate on qubits. 
These qubits [12] have the unique capability to exist in multiple 
states simultaneously, due to the principles of superposition and 
entanglement. This enables quantum computers to process vast 
amounts of data at faster speeds. One of the strengths of quantum 
computing is its efficiency in solving LTI systems, which are 
prevalent in various engineering and scientific applications. This 
capability is especially relevant in the context of MRI, where the 
calibration stage of GRAPPA reconstruction can be particularly 
time-consuming.  

Motivated by the potential of quantum computing, this paper 
proposes leveraging quantum computing to accelerate the 
calibration stage of GRAPPA. By harnessing the power of 
quantum annealing or quantum gates and the inherent 
parallelism of quantum computing, we aim to significantly 
reduce the time required for the calibration of GRAPPA image 
reconstruction. A hybrid software using GitHub Codespaces and 
MATLAB is developed to accelerate the calibration of 
GRAPPA reconstruction. Introduction is presented in the first 
section of the paper. Method and implementation is given in the 
second part. Experimental results and conclusion are presented 
in the third and the fourth sections of the paper. 

II. METHOD AND IMPLEMENTATION 

A. GRAPPA Reconstruction 

The GRAPPA method contains two stages: calibration and 
synthesis. During the calibration phase, the method focuses on 
estimating the coefficients of a convolutional kernel, as a 
process achieved by solving a linear system of equations to 
obtain a least-squared solution for these coefficients. 
Subsequently, in the synthesis phase, the missing k-space data 
are predicted by employing the previously estimated coefficients 
of the convolution kernel, facilitating the reconstruction of the 
image. Note that the calibration stage demands a significantly 
higher time investment compared to the synthesis stage, 
primarily due to the intricate computations involved in 
estimating the convolutional kernel's coefficients. 

In GRAPPA reconstruction [1], the process is essentially a 
linear interpolation process. This is demonstrated in equation 
(1), which mathematically represents the estimation of missing 
k-space data. The equation is defined as 
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where S denotes the signals in k-space, w represents the weight 
coefficients, which are calculated from auto-calibration signal 
(ACS) data, R stands for the reduction factor, j refers to the target 
coil, which is interpolated through all other coils counted by l, 
and b as blocks along phase-encoding direction and h as 
columns along frequency-encoding direction construct the 
interpolation kernel. Additionally, kx and ky are indices that point 
to the data positions along the frequency encoding and phase 
encoding directions, respectively. 

 For the k-space-based GRAPPA without the coil 
suppression in a generalized form, the missing k-space data % 
can be recovered based on the following equation set 

& = '%,                                       (2) 

where both & and ' are ACS for estimating the interpolation 
coefficients %  in the calibration process, and ' represents the 
acquired k-space data and &  is the reconstructed data in the 
synthesis process. Equation set (2) represents an LTI system. 

B. Quantum Computing for Linear Calibration 

During the calibration stage, the target vector & is extracted 
from ACS data. The coefficients vector % undergoes estimation 
by solving the equation set (2). Constructing the matrix ' with 
the size ( by ) involves utilizing ACS data acquired within the 
vicinity of the target data point (green color) as shown in Fig.1, 
with the inclusion of more neighborhood points exponentially 
increasing the matrix's attributes but calibration time will be 
significantly increased. Consequently, this expanded matrix 
facilitates the estimation of additional unknown coefficients 
within the LTI system. In the demonstration depicted in Figure 
1, a fitting process utilizes six neighboring k-space points 
(annotated in blue color) to match the target data point (as green 
color). Although only one coil is illustrated, neighboring points 
from other phased-array coils can be integrated, introducing 
additional unknowns (denoted as %) into the equation set, as 
depicted on the right side of Figure 1. Consequently, the attribute 
count )  increases correspondingly. The target data points, 
denoted as &, are fitted within the LTI system. The total number 
of equations, denoted as (  and illustrated in Figure 1, is 
determined by the number of ACS target data points utilized in 
the calibration process. 

 

Fig. 1. During the calibration stage, the target ACS data point depicted in 
green is aligned with its neighboring acquired data points represented in blue. 
These neighboring data points can span both the phase-encoding and 
frequency-encoding directions within k-space. As the number of target data 
points increases, more equations are incorporated into the system, as illustrated 
on the right side of the figure. 

Quantum annealing [13], particularly in systems like D-
Wave, is fundamentally described by various equations 
including the system's Hamiltonian and the dynamic evolution 
of its quantum state. The time-dependent Schrödinger equation 
is a foundational principle that describes how the quantum state 
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evolves over time within the framework of the system's 
Hamiltonian. In quantum annealing, this Hamiltonian usually 
comprises two distinct terms: the problem Hamiltonian and the 
annealing Hamiltonian. This framework provides a robust 
mathematical foundation for understanding the intricate 
dynamics and optimization capabilities of quantum annealing 
systems like those developed by D-Wave [14] quantum 
computer system. In quantum annealing, the adiabatic theorem 
asserts that the system's evolution rate holds profound 
significance. At its core, this theorem assumes that as long as the 
system's evolution proceeds at a sufficiently gradual pace, it will 
steadfastly maintain its ground state throughout the entirety of 
the process. This principle indicates the delicate balance 
between the rate of evolution and the system's ability to retain 
its lowest energy state, thereby illuminating a fundamental 
aspect of quantum annealing's efficacy and reliability in solving 
optimization problems. 

The application of the D-Wave quantum annealer is 
successful in solving a LTI system for model predictive control 
[2]. A quadratic unconstrained binary optimization problem is 
constructed by deriving an LTI filter [3], which provides 
innovative approaches in dynamic control problems. Motivated 
by the promising outcomes in LTI system solutions, we extend 
the application of quantum annealers to solve the LTI system 
challenges encountered in the GRAPPA calibration process. A 
hybrid software via Codespaces and MATLAB is constructed to 
solve the linear calibration process in GRAPPA reconstruction. 

C. Hybrid Software Implementation on Codespaces and 

MATLAB 

We use GitHub Codespaces [4] and MATLAB [5] to build a 
hybrid software to implement quantum computing based 
GRAPPA calibration and reconstruction. GitHub Codespaces is 
a cloud-based development environment, which enables to 
write, run, and debug code directly in their browsers without the 
need to configure and maintain a development setup on local 
machines. This platform provides a fully configured 
development space that is accessible and manageable via 
GitHub repositories. Note that Codespaces supports the Python 
programming language and its frameworks, providing flexible 
configuration options. This flexibility allows for the 
customization of environments based on specific requirements 
for Quantum Computing and the processing of MRI k-space 
data utilizing MATLAB. The architecture of GRAPPA 
reconstruction process on the hybrid software is demonstrated in 
Fig.2.  

 

Fig. 2. Workflow diagram illustrating the interaction between a local 
computer, cloud-based GitHub Codespaces, and a D-Wave Quantum 
Computer. The process begins with data before calibration, which is sent from 
the local computer to Codespaces. Codespaces then communicates with the D-
Wave Quantum Computer, which performs the calibration and computes the 
coefficients. These calibration coefficients are returned to Codespaces and 
subsequently sent back to the local computer which can be connected to a MRI 
scanner in a hospital. This represents the loop process of calibration and data 
synthesis in a quantum computing environment. It contains the roles of cloud 
computing and local processing. 

Fig. 2 presents a three-tiered data calibration and processing 
software system that integrates a local computer, cloud 
computing via GitHub Codespaces, and a D-Wave Quantum 
Computer. Initially, uncalibrated data, potentially from a MRI 
scanner, is preprocessed on a local computer which can interface 
directly with MRI hardware. This preprocessed data is then 
uploaded to GitHub Codespaces, as a cloud development 
environment that facilitates the processing and analysis to 
calibration data. GitHub Codespaces send data to the D-Wave 
quantum computer for fast calibration. Leveraging the 
computational power of quantum computing, the D-Wave 
system calculates the necessary coefficients to calibrate the data. 
Once this quantum-calibrated process is complete, the refined 
coefficients are sent back to Codespaces. From there, the 
calibrated coefficients are transferred to the local computer 
where they can be further used for GRAPPA synthesis or to 
inform subsequent MRI scans, thus creating a feedback loop that 
enhances the precision and accuracy of the MRI data collected 
and reconstructed. This system shows the integration of classical 
and quantum computing resources. It utilizes cloud and local 
computational strengths to accelerate data calibration processes. 

We use GitHub Codespaces for the D-Wave system based 
quantum computing  and exemplify its adaptability. MATLAB 
on a local computer plays a crucial role in generating data for 
linear calibration. Following the completion of calibration, we 



apply the calibrated coefficients in k-space synthesis on a local 
computer. This hybrid software framework provides numerous 
potential benefits which can swiftly initiate and conduct 
experiments with quantum algorithms. By customizing the 
Codespaces environment, we can select appropriate 
computational resources such as CPU, graphics processing unit 
(GPU), quantum processing unit (QPU) configurations, and 
install specific versions of software and libraries including D-
Wave Ocean SDK [15]. This adaptability is particularly 
beneficial for managing complex quantum computing models 
and datasets. It facilitates a more efficient and streamlined 
research and development process in the quantum computing 
based MRI reconstruction. 

III. EXPERIMENTAL RESULTS 

A. MRI Datasets 

Two MRI datasets were used for MRI reconstruction. The 
firstly scanned dataset was acquired on a GE 3T scanner (GE 
Healthcare, Waukesha, WI) with an 8-channel head coil. The 
dataset was an axial brain image acquired using a 2D spin echo 
sequence (TE/TR = 11/700 ms, matrix size = 256 x 256, FOV = 
220 mm2). In the first dataset, a uniform water phantom was 
scanned using a gradient echo sequence (TE/TR = 10/100 ms, 
31.25 kHz band-width, matrix size = 256 x 256, FOV = 250 
mm2). The code was implemented in MATLAB (Natick, MA) 
on a local computer with using only CPU. The local computer is 
connected to GitHub Codespaces which is connected to D-Wave 
quantum computing cloud.  

We use the metric Normalized Mean Square Error (NMSE) 

[30] to evaluate reconstruction performance. NMSE is 

commonly used to measure the differences between values 

predicted by a model and the reference values of MR image 

without k-space data undersampling. It serves to gauge the 

accuracy of a reconstruction process. NMSE calculates based 

on reconstruction errors, i.e., the differences between 

reconstructed and actual values. It provides the square root of 

the average of these error squares as a measure of the magnitude 

of errors. It can be formulated as 
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where 4 is the total number of pixels, 56 is the actual reference 

values for the 7-th pixel, and 5̂ is the reconstructed value for the 
�-th pixel. The smaller the RMSE value, the higher the accuracy 
of the reconstructions. 

B. Results 

For the first brain dataset, k-space data is undersampled with 
10 ACS lines and the outer reduction factor of 2. The NMSE 
value is 0.0172. The convolutional kernel size is 1 by 1 which is 
very small. The current implementation of LTI system solution 
on D-Wave quantum computing cannot accept over 30 attributes 
for each equation, so the kernel size selection is very small. This 
will degrade reconstruction image quality. Because k-space has 
complex data and D-Wave quantum computing cannot accept 
complex data, 8 coils of complex data are split into 16 coils of 
real data. Real and imaginary parts of complex data are assigned 
to different coils. D-Wave Solver Advantage_system4.1 is used.  

 

Fig. 3. Reconstructed images by using fully sampled k-space data as the 
reference image, GRAPPA reconstruction using regular CPU, and GRAPPA 
reconstruction in which D-Wave quantum computing is used for the calibration 
and regular CPU is used from the synthesis. 

The parameters of D-Wave quantum computing are shown 
in  TABLE I, which also shows the duration for each step of 
quantum computing for solving one equation set in data 
calibration. The qpu_sampling_time is the time spent by the 
QPU to sample solutions. The qpu_anneal_time_per_sample is 
the time taken for the QPU to perform one quantum annealing 
process for a sample. The qpu_readout_time_per_sample is the 
time required to read the qubits' states for one sample after 
annealing. The qpu_access_time is the total time the 
computation occupies the QPU including all processes and 
overheads. The qpu_access_overhead_time is extra time spent 
on tasks not directly related to computation, such as setup and 
initialization. The qpu_programming_time is time required to 
configure the QPU with the problem parameters before 
annealing. The qpu_delay_time_per_sample is additional delay 
for each sample not involved in annealing or readout. The     
total_post_processing_time is time spent on processing the 
QPU's output to obtain the final solution.  The     
post_processing_overhead_time is overhead time associated 
with post-processing tasks, like data transfer and formatting. 
Furthermore, µs represents microseconds and ms denotes 
microseconds. On the other hand, calibration time on regular 
CPU of local computer costs 337 µs, which is shorter than the 
total time of all quantum computing steps shown in TABLE I. 

The current quantum computing based calibration cannot 
show advantages of faster calibration speed to calibration on 
regular CPU. This may be caused that the convolutional kernel 
size is too small, so the number of attributes in the LTI system 
is also tiny. Regular CPU can compute a small number of a LTI 
system with a small number of attributes in a fast way. 

TABLE I.  DURATIONS OF ALL STEPS IN D-WAVE QUANTUM 

COMPUTING FOR DATASET 1 

Timing Performance Duration 

qpu_sampling_time 213 µs 

qpu_anneal_time_per_sample 20 µs 

qpu_readout_time_per_sample 173 µs 

qpu_access_time 15.996 ms 

qpu_access_overhead_time 3.419 ms 

qpu_programming_time 15.783 ms 

qpu_delay_time_per_sample 21 µs 



Timing Performance Duration 

total_post_processing_time 1 µs 

post_processing_overhead_time 1 µs 

The second dataset has a similar format as the first Dataset. 
Fig. 4 presents a comparison of reconstructed images, 
showcasing different k-space data processing methods in MRI. 
The reference image is reconstructed using fully sampled k-
space data. This high-quality image serves as a benchmark. The 
second image is obtained through GRAPPA reconstruction 
using a regular CPU. This demonstrates the capabilities of 
traditional computational techniques. The third image uses a 
hybrid approach. D-Wave quantum computing is employed for 
the calibration phase of GRAPPA reconstruction. A regular 
CPU is used for the synthesis phase. This combination aims to 
leverage quantum computing for better calibration accuracy. It 
potentially leads to improved image reconstruction quality. The 
comparison illustrates the potential benefits of integrating 
quantum computing into the MRI reconstruction process. 

  

Fig. 4. Reconstructed phantom images by using fully sampled k-space data as 
the reference phantom image, GRAPPA reconstruction using regular CPU, and 
GRAPPA reconstruction in which D-Wave quantum computing is used for the 
calibration and regular CPU is used from the synthesis. 

The Table II presents the durations of various steps in D-
Wave quantum computing for Dataset 2. The 
qpu_sampling_time is 210.62 microseconds. 
Qpu_anneal_time_per_sample is 20 microseconds. 
Qpu_readout_time_per_sample is 170.04 microseconds. The 
qpu_access_time is 15.99739 milliseconds. 
Qpu_access_overhead_time is 547.61 microseconds. The 
qpu_programming_time is 15.78677 milliseconds. 
Qpu_delay_time_per_sample is 20.58 microseconds. 
Total_post_processing_time is 1 microsecond. 
Post_processing_overhead_time is also 1 microsecond. This 
table provides a detailed breakdown of the timing performance 
of each step. 

TABLE II.  DURATIONS OF ALL STEPS IN D-WAVE QUANTUM 

COMPUTING FOR DATASET 2 

Timing Performance Duration 

qpu_sampling_time 210.62 µs 

Qpu_anneal_time_per_sample 20 µs 

qpu_readout_time_per_sample 170.04 µs 

qpu_access_time 15.99739 ms 

qpu_access_overhead_time 547.61 µs 

qpu_programming_time 15.78677 ms 

qpu_delay_time_per_sample 20.58 µs 

total_post_processing_time 1 µs 

post_processing_overhead_time 1 µs 

 

C. Limitations of Solving Linear Calibration on D-Wave 

Quantum Computer 

The equation set depicted in Fig.1 has a crucial bottleneck in 
the calibration process. The number of attributes denoted by V 
increases, the local computer's calibration time is proportionally 
increased. This computational time becomes significantly 
elongated when dealing with thousands of attributes, potentially 
extending calibration time to several hours or days. However, 
the current calibration implementation on the D-Wave quantum 
computer are limited to handling no more than 30 attributes (V

≤ 30). This constraint degrade the potential advantages of 
quantum computing, because the reduced attribute capacity 
results in marginal time savings compared to traditional local 
computer implementations. Therefore, a significant 
improvement for future work is clear to enhance the capability 
of D-Wave's quantum computing for accommodating a larger 
attribute set within LTI systems. Such an advancement would be 
necessary to fully leverage the theoretical computational speed 
of quantum algorithms for more complex and attribute-dense 
calibration tasks. Furthermore, since the data needs to be 
submitted to D-Wave Quantum Cloud Service. Data uploading 
and downloading also cost time usage. This is an disadvantage 
to the local CPU computation for data calibration in GRAPPA 
reconstruction. 

IV. CONCLUSION 

In conclusion, a hybrid software is proposed for data 
calibration using quantum computing. D-Wave Quantum Cloud 
Service, GitHub Codespaces and MATLAB are used for data 
calibration and synthesis in GRAPPA MRI reconstruction. 
Equation sets of a LTI system are solved by quantum computing. 
Experimental results show that the quantum computing based 
solution of a LTI system has the same solutions as solved by a 
CPU on local computer. Total time of quantum computing steps 
is slower than that on local CPU, because the number attributes 
of the LTI system cannot be over 30 using the current 
implementation of quantum computing. Future work will focus 
on enlarging the number of attributes and finding advantages of 
QPU over CPU. 
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