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Abstract—Graphics Processing Units (GPUs) have become
pivotal for modern high-performance computing (HPC) and
artificial intelligence workloads due to their substantial compu-
tational prowess. However, this computational prowess comes at
a cost, as GPUs consume vast amounts of power, presenting a
challenge for high-end computing systems, including those aimed
at achieving exascale computing capabilities. In response to the
power efficiency problem, modern GPUs typically offer the ability
to adjust clock frequencies and cap power consumption. However,
the AMD Instinct MI100 takes a unique approach by introducing
a set of predefined power profiles that internally manipulate
clock frequencies to manage power. This study evaluates the
effectiveness of these power profiles through a comparative
analysis of various power and performance metrics. It indicates
that, for most of the selected workloads and during significant
portions of their execution, the GPU consumes power exceeding
its specified Thermal Design Power (TDP). For instance, the
GROMACS workload exceeded its TDP by one-third during
almost half of its execution time. Furthermore, the study notes a
significant increase in temperature reaching as high as 80◦C.
Moreover, DGEMM and STREAM workloads exhibit similar
power consumption patterns, suggesting that the underlying
power management scheme does not adapt power allocation
based on the computational intensity of the workload. Thus,
the study demonstrates that changing the power profile does
not significantly impact crucial metrics such as performance,
clock frequency, voltage, GPU utilization, or temperature. In
summary, this research sheds light on the power dynamics of the
AMD Instinct MI100 GPU, emphasizing the challenges associated
with power, performance, and thermal management in HPC
environments. The findings underscore the importance of fine-
tuning power management strategies to enhance energy efficiency
while maintaining optimal performance in GPUs.

Index Terms—Survey, Power profiles, Energy, Power consump-
tion, GPU, HPC

I. INTRODUCTION

The exponential performance increase at constant cost and
power for the computing industry has slowed as we reach
the end of Moore’s Law [1], [2], [3]. The trajectory of
computational progress in the foreseeable future appears to be
increasingly reliant on accelerators. While graphics processing
units (GPUs) have historically demonstrated impressive com-

putational capabilities, their power consumption has consis-
tently increased with each successive generation. For instance,
the Frontier supercomputer, the first exaflop system at the Oak
Ridge National Laboratory, uses over 20 MW in power and
consists of 37,888 AMD MI250X GPUs [4]. Each node in the
Frontier system is configured with one CPU and four GPUs.
These GPUs, which have a thermal design power (TDP) of 560
W [5], consume approximately 80% of the total node power.
This highlights the necessity for robust power management
on GPUs. Furthermore, the fifth fastest system on the Top500
list, LUMI, also uses the MI250X GPUs. Accordingly, we
attempt to study the power management of the MI100 GPU,
a predecessor to MI250X.

Motivation: We observe that the manufacturer’s TDP limits
are exceeded over significant durations. To scale power, GPUs
provide different power controls, such as dynamic voltage
frequency scaling and power profiles. However, the efficacies
and impacts of these controls, especially the effect of GPU’s
power profiles on the workloads, are not well known. In this
study, we attempt to investigate the following questions: (1)
Is TDP rating a reliable metric to estimate the power budget
of a node? (2) What impact do the GPU power profiles have
on GPU and workload parameters?

Key insights and contributions: This study makes the
following key contributions:

• In-depth analysis of GPU power management: We cover
a broad range of details with the help of several classes
of workloads to provide researchers and architects with
a fundamental understanding of the MI100 power man-
agement. This is important for designing future solutions
that aim to improve the energy efficiency of the GPU.

• Evaluation of the supported power profiles: We evaluated
the impact of the MI100 GPU power profiles on GPU uti-
lization metrics. We empirically observed that changing
the power profile did not noticeably affect power con-
sumption, performance, frequency, voltage, GPU utiliza-
tion, GPU temperature, TDP exceeding, and magnitude of
the TDP exceeding. Furthermore, we provided workload-



specific analyses of these behaviors.
The source code and collected data will be made publicly

available. The rest of the paper is organized as follows.
Section II describes the experimental setup, including appli-
cations and GPU used in this study. Section III evaluates the
effectiveness of the GPU power profiles. Section IV describes
the related work and Section V highlights the key takeaways
and provides the conclusions.

II. EXPERIMENTAL SETUP

Our study conducted data collection, analysis, and evalu-
ation on an AMD MI100 GPU within the ChameleonCloud
testbed [6], running Linux Ubuntu 20.04, utilizing ROCm 5.4
for workload deployment and rocm-smi for power profile
management and metric collection. To ensure data integrity, all
tests were conducted with exclusive node access. This diverse
set of workloads enabled comprehensive testing of the GPU’s
computational and memory capabilities. The experimental
setup included an AMD EPYC 7763 CPU and an AMD In-
stinct MI100 GPU. Table I lists the configuration of the AMD
MI100 used in this study. Our investigation encompassed

Table I: Specifications of the AMD Instinct MI100 used in
this study [7].

Specification Description
GPU Frequency Range (MHz) Up to 16 configurations [300:1502]
Memory Frequency 1200 MHz
TDP 290 W
GPU Memory (HBM2) 32 GB
Peak Memory Bandwidth Up to 1228.8 GB/s

nine GPU-accelerated workloads: (1) GROMACS: Molecular
dynamics simulations to study biochemical molecules, specif-
ically a lysozyme solution in water. (2) LAMMPS: Particle
simulations for various materials, using a Leanard-Jones 3D
melt experiment. (3) NAMD: Simulations of biomolecular
systems, using the Apolipoprotein A1 dataset with 92,224
atoms. (4) SPECFEM3D Cartesian: Simulations for wave
propagation across various mediums. (5) DGEMM: Compute-
intensive matrix multiplication with 25600x25600 matrices.
(6) STREAM: Memory-intensive workload, employing a Triad
kernel with 655,360,000 elements. (7) BERT: Natural language
processing model training on the IMDb dataset. (8) ResNet:
Computer vision modeling trained on the CIFAR10 dataset. (9)
LSTM: TensorFlow-based sentiment classification on movie
reviews, with 25,000 reviews for training and testing.

III. POWER PROFILES EVALUATION

The previous section evaluated the behavior of the default
power profile chosen at boot (auto) w.r.t. TDP enforcement
and energy-proportionality. This section investigates whether
the power profiles help reduce TDP violations or improve
energy proportionality. Further, we evaluate the impact of
the MI100 GPU power profiles on GPU utilization, HBM
utilization, execution time, frequency, voltage, and thermal
conditions using nine workloads listed in Table II.

Figure 1 illustrates the critical components involved in (1)
and (4) changing the profile, (2) executing the workload,

Table II: List of applications used in this study.

Category Applications
HPC GROMACS [8], LAMMPS [9], NAMD [10],

SPECFEM3D [11]
Machine Learning BERT [12], ResNet50 [13], LSTM [14]
Benchmarks DGEMM [15], STREAM [16]

(3) collecting the utilization metrics, and (5) evaluating
and analyzing the impacts of power profiles. We collected
metrics at default, i.e., auto and four pre-defined power
profiles supported by AMD MI100 GPU – video, compute,
power saving, and bootup default. The desired power
profile was enforced using AMD rocm-smi [17]. The
workload was executed, as the metrics were collected at
a sampling interval of 250 ms. This sampling interval
was chosen to keep the overhead of the collection
low while getting samples with statistical significance.
These steps were repeated three times for a given power
profile to mitigate the run-to-run variations. The following
metrics power_usage, voltage, edge_temperature,
junction_temperature, memory_temperature,
sclk, gpu_usage, memory_usage, time, FLOPS/s,
and memory_bandwidth were collected.

Figure 1: Overview of the methodology to understand the
efficacies of the AMD MI100 GPU power profiles.

A. GPU and Memory Usage

Figure 2 shows the impact of power profiles on GPU usage.
Each power profile showed approximately 100% GPU usage
at peak for each workload. GPU usage merely indicates how
busy the GPU is and is agnostic of the computational intensity
of the kernel activity. For example, DGEMM and STREAM
reported the same (i.e., 100%).

Memory usage refers to the amount of used memory in
terms of allocations. We observed similar GPU memory us-
age patterns for each power profile, as shown in Figure 3.
Unlike GPU usage, memory usage showed variation for dif-
ferent workloads. As a memory-intensive kernel, STREAM
showed the highest memory usage (∼ 80%). LAMMPS and
SPECFEM3D also showed higher memory usage (∼ 75%).
All other workloads showed ∼< 50% except LSTM, which
used the lowest memory (∼< 5%). Overall, these observations
indicate that power profiles have no significant impact on GPU
and memory usage for a given workload.



Figure 2: Impact of MI100 power profiles on GPU usage.

Figure 3: Impact of MI100 power profiles on GPU memory
usage.

B. Performance – Time, GFLOPS/s, and Bandwidth

We evaluated the impact of power profiles on key per-
formance metrics – execution time, GFLOPS/s, and memory
bandwidth. Table III compares the impact of power profiles on
the execution time (in seconds) of different workloads. Similar
to GPU and memory usage, none of the profiles impacted the
execution time.

Figure 4 shows the GFLOPS/s using DGEMM (left) and
GPU memory bandwidth (GB/s) using STREAM (right) for
each GPU power profile. DGEMM and STREAM achieved
more than 80% of their performance in terms of FLOPS/s
and bandwidth. While a maximum variation of 38 GFLOPS/s
was observed across the different profiles, the variation is very
close to the run-to-run variation and, therefore, insignificant.
STREAM’s bandwidth across profiles remains unchanged.

C. GPU Frequency

AMD MI100 supports 16 GPU frequencies ranging from
300 MHz to 1502 MHz. This GPU supports a single memory
frequency of 1200 MHz. These frequencies are immutable
to users; however, power profiles are meant to internally
control these frequencies based on workload activity. Figure 5
shows the execution timeline for the workloads with each
power profile. Power profiles do not significantly impact
GPU frequency variations for a given workload. Generally,
each profile likely sets the GPU frequency to high when
executing instructions and low when waiting on memory or

Figure 4: The figure on the left illustrates the GFLOPS per
second for all the power profiles using DGEMM. The figure
on the right illustrates the GPU memory bandwidth (GB/s) for
all the power profiles using STREAM.

idling. More specifically, we observed different patterns for
the following workloads: (1) hybrid workloads (GROMACS,
LAMMPS, NAMD, SPECFEM3D), (2) machine learning
workloads (ResNet50, BERT, LSTM), and (3) GPU-only
workloads (DGEMM, STREAM).

For hybrid workloads, the CPU periodically offloads a
chunk of work to the GPU, which causes a change in GPU
frequency from the lowest frequency to higher frequencies.
After execution of the chunk of compute, the GPU clock is
scaled to the idle frequency (lowest frequency). This pattern
continues during the entire execution of workloads. The size of
the offloaded chunk of compute varies from workload to work-
load. For example, GROMACS offloads comparatively small
sizes (∼1 to 2 seconds) of the compute; therefore, there are a
lot of back-and-forth switches between the lowest frequency to
the higher frequencies. However, the chunk of compute size
for LAMMPS and NAMD is comparatively large, so GPU
runs on higher frequencies for a longer duration. SPECFEM3D
execution consists of three key steps: mesh generation,
database creation, and solver computation. The
first two steps are performed on the CPU; therefore, the GPU
runs idle for a long duration. The solver computation
is performed on GPU as a single chunk of compute.

For machine learning workloads, models are trained using
one or more epochs. Each epoch is generally executed
on higher frequencies. BERT and ResNet50 involve many
epochs; therefore, frequent switches between the lowest
and higher frequencies occur. However, a single epoch is
sufficient for training the LSTM workload. That is why LSTM
is executed at a constant higher frequency.

For GPU-only workloads, the code and data are transferred
to GPU memory before execution. After transferring the code
and data, these workloads are continuously executed on higher
frequency ranges. At the end of executions of these workloads,
the results are transferred to CPU memory space.

We observed that peak operating frequencies depend on the
workloads’ computational intensity. The higher the computa-
tional intensity of a workload, the lower the GPU peak op-
erating frequency. For example, DGEMM and SPECFEM3D
are comparatively more compute-intensive, and their operating
frequencies are lower than other workloads. This behavior
is corroborated by Intel CPUs reducing their frequencies



Table III: Execution time (seconds) of workloads for each MI100 GPU power profile.
`````````Application

Profile
COMPUTE POWER SAVING BOOTUP DEFAULT VIDEO AUTO

LAMMPS 14 14 14 14 14
NAMD 78.7 78.7 78.9 78.7 78.3
GROMACS 112.7 112.1 112.8 112.5 112.4
SPECFEM3D 180 180 179.9 179.9 180.1
ResNet50 63.9 64.2 63.2 63.8 63.2
LSTM 30 29.2 29.4 30.4 29.4
BERT 277.6 278.1 279.2 277.2 279.2
DGEMM 727.2 728.1 726.5 729.5 727.9
STREAM 467.6 467.6 467.6 467.6 467.6

Figure 5: Impact of power profiles on GPU frequency changes
during the execution of an application.

when AVX-heavy instruction threatens to exceed the power
limits [18].

D. GPU Voltage

One distinction of AMD GPUs is that they expose voltage.
This metric is unavailable in NVIDIA’s high-end GPUs such
as GP100, GV100, and GA100. We observed that each power
profile similarly impacts voltage for a workload. We also
observed that voltage follows the footprint of the GPU clock
frequency, as discussed above. In other words, a change in
frequency causes a change in GPU voltage. Figure 6 shows
the impact of power profiles on GPU voltage during the entire
execution of each workload. The power profiles generally do
not significantly impact GPU voltage variations for a given
workload.

Overall, voltage fluctuated in the range of 656 - 956 milli-
volts (mV) across all workloads. The operating voltage of each
workload is generally commensurate with the GPU frequency
and the computational intensity of a workload. It is pertinent to
mention that the voltage level can be reduced up to 50% for a
compute-intensive workload and involves significant memory
usage. The higher the computational intensity and memory
use, the lower the GPU operating voltage. For example,
DGEMM and SPECFEM3D can use 50% and 75% of the
maximum available voltage levels, but why? There are two key
factors behind restricting voltage for compute-intensive work-
loads. First, compute-intensive workloads stress all computing
resources to the maximum level, which can cause significant
power. According to Ohm’s Law (P = V 2

R ), voltage plays a

Figure 6: Impact of power profiles on GPU voltage during the
entire execution of each workload.

critical role in controlling power usage, given the resistance
is constant. Second, GPU compute, and GPU high-bandwidth
memory (HBM) blocks share the same voltage configuration;
therefore, a change in voltage can impact power consumption
by compute and HBM (1200 MHZ) blocks simultaneously.
Thus, GPU voltage is adjusted to a comparatively lower
voltage for compute-intensive tasks and significant memory
usage to keep power consumption under the thermal budget.

E. GPU Junction, HBM, and Edge Temperatures
Figure 7 shows the impact of the power profiles on GPU

junction, HBM, and edge temperatures in degrees Celsius
(◦C) for each workload. We observed that each power profile
similarly impacts thermal conditions for a given workload.
The edge temperature is always lower than junction and
memory temperatures, regardless of the workload nature. The
compute-intensive workloads, such as DGEMM, GROMACS,
LAMMPS, and NAMD, cause a significant increase in junction
temperature. For DGEMM, we observed an increase in junc-
tion temperature up to ∼ 76◦C. On the other hand, memory-
intensive workloads, such as STREAM and SPECFEM3D,
cause a significant increase in memory temperature. For
STREAM, we observed an increase in memory temperature
up to ∼ 80◦C. While DGEMM and STREAM caused a
significant increase in junction and memory temperatures,
respectively, we did not observe any thermal throttling.

F. Power Consumption
Understanding the impact of power profiles on power con-

sumption behavior is one of our key objectives. In Figure 8,



Figure 7: Impact of the power profiles on GPU junction,
memory, and edge temperatures (◦C) for each workload.

Figure 8: Impact of MI100 power profiles on the power
consumption of each workload.

we found that power profiles uniformly affect power for each
workload, determined by GPU thermal conditions, compu-
tational intensity, operating frequency, and voltage. Notably,
GPU thermal conditions play a role in power reduction when
junction temperatures exceed thermal throttling thresholds.
However, none of our workloads triggered thermal throttling,
thus consuming power to its maximum potential within the
GPU’s thermal budget [19].

We observed distinct trends in power management for differ-
ent workloads: compute-intensive workloads (e.g., DGEMM,
SPECFEM3D) were allocated lower frequency and voltage
to minimize TDP breaches. In contrast, hybrid and memory-
intensive workloads (e.g., GROMACS, LAMMPS, NAMD,
STREAM) operated at higher frequencies and voltages, lead-
ing to varied rates of TDP exceedance. Specifically, dense
compute workloads were managed with lower frequency and
voltage to keep power in check. In contrast, hybrid and
memory-intensive workloads did not consistently exceed TDP
despite higher settings due to their computational demands.
The MI100 GPU’s frequency and voltage selection are in-
versely related to workload computational intensity—lower for
compute-heavy tasks and higher for less intensive tasks.

1) TDP Violation Magnitude: Power consumption exceed-
ing the manufacturer’s TDP limit refers to power usage beyond
the manufacturer’s power maximum limit (TDP violation). We

calculate this metric using the ratio of the maximum power
value of the workload to the TDP of the GPU. Figure 9 shows
the power consumption exceeding the manufacturer’s TDP
limit for seven workloads across MI100 GPU power profiles.
We observed that the power consumption of workloads with
low computational intensity, such as STREAM and LSTM,
did not exceed the TDP limit. Comparing power exceeding
the manufacturer’s TDP limit across different power profiles
shows that AUTO caused lower power exceeding the TDP
limit for most workloads. GROMACS’s peak power exceeded
the TDP limit by 30%. The peak power consumption of
the cluster must be designed by considering the workload’s
peak power consumption. The node utilized in our study
was equipped with a single GPU. However, in typical HPC
environments featuring more GPUs per node, this could place
significant stress on the power supply infrastructure.

2) TDP Violation Frequency: Figure 10 shows the fre-
quency of TDP violations during the entire run of seven
workloads across MI100 power profiles. The power profiles
showed a similar count of power consumption exceeding the
TDP for most workloads. We observed that HPC workloads
exceeded the TDP limit by over ∼ 20%. The ML workloads
exceeded the TDP limit comparatively for a shorter duration,
not more than ∼ 10%.

IV. RELATED WORK

Numerous studies have delved into the performance analysis
of the MI100 GPU. Melesse et al. [20] initially explored the
porting of three workloads onto the AMD MI100 within the
Summit supercomputer environment, albeit without a compre-
hensive understanding of the power and energy consumption
associated with these workloads on the GPU. In a similar vein,
Dufek et al. [21] conducted a study focusing on workload
portability across NVIDIA GA100, AMD MI100, and Intel
Gen9 GPUs; however, they omitted an in-depth characteriza-
tion of power consumption.

Most modern GPUs support the DVFS mechanism and
pre-designed power profiles to manage power, performance,
and energy behaviors [22], [23]. Kang et al. [24] introduced
a mechanism leveraging DVFS for energy conservation, but
the applicability of their findings primarily extends to sce-
narios involving data movement over network interfaces. On
a different note, Allen et al. [25] extensively examined the
impact of DVFS on GPU memory but concentrated their
research within the domain of memory-intensive applications.
In contrast, the MI100 GPU diverges by adopting power
profiles restricting direct GPU frequency adjustments. These
profiles autonomously manipulate GPU frequency and voltage,
likely in response to workload computational intensity. As
demonstrated in this study, these profiles appear to fall short
of achieving their intended effects. Jin et al. [26] presented
distinct power and performance analyses employing an integer
sum reduction kernel. However, while insightful, their work is
limited in its coverage of GPU power consumption behaviors,
workload diversity, and power profiles’ influence.



Figure 9: The magnitude of TDP violations for seven workloads across MI100 power profiles.

Figure 10: The frequency of TDP violations during the entire run of seven workloads across MI100 power profiles.

To the best of our knowledge, this is the first study that
explores the impact of MI100’s power profiles on various
utilization metrics across a diverse range of workloads encom-
passing High-Performance Computing, Machine Learning, and
microbenchmarks. Furthermore, our study provides workload-
specific analyses, delving into topics such as TDP violations,
frequency/voltage behaviors, and thermal conditions, collec-
tively contributing to a comprehensive understanding of power
management in MI100 GPUs.

V. CONCLUSIONS AND FUTURE WORK

This paper underscores the importance of GPU power man-
agement techniques to devise strategies to mitigate escalating
power demands and enhance energy efficiency. Through an
empirical analysis, we characterize the power consumption
patterns of the AMD MI100 GPU across a diverse set of
real-world workloads, encompassing four HPC applications,
three ML applications, and two benchmarks emphasizing
compute and memory intensiveness. Our investigation focuses
on the efficacy of the GPU’s power management framework
in adhering to TDP constraints and examines how workloads’
computational characteristics influence power allocation. Ad-
ditionally, we assess available power profiles to tailor power
consumption to user requirements.

Our findings reveal several critical insights: (1) All eval-
uated power profiles demonstrate comparable power, per-

formance, and utilization metrics across varied workloads,
indicating a lack of adaptability in current power profiles for
dynamic power control and energy efficiency enhancement. (2)
TDP breaches are prevalent under GPU workload conditions,
with many workloads surpassing the TDP threshold for signif-
icant portions of their execution time. For instance, the GRO-
MACS workload exceeded its TDP limit by approximately
45% for over 20% of its runtime, posing substantial implica-
tions for data center design and operational strategies. This
necessitates overprovisioning beyond the GPUs’ collective
TDP to ensure operational safety. (3) Our analysis extends to
the frequency and voltage behavior under different workloads,
noting a 50% reduction in both parameters for compute-
intensive tasks. (4) The STREAM benchmark observed a
marked increase in memory temperature, approximately 80°C,
which raises concerns regarding the reliability of memory
devices and warrants further exploration.

This study aims to furnish researchers and system archi-
tects with a foundational comprehension of MI100 power
management practices. The insights derived underscore the
probable need for power and infrastructure overprovisioning
in data centers to manage frequent TDP violations. Future
work will extend this inquiry to the power, performance, and
thermal dynamics of subsequent AMD GPU architectures to
develop a more comprehensive understanding of GPU power
management across different architectures.
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