
A Run-Time Configurable NTT Architecture for
Homomorphic Encryption Based on 3D Algorithm

Weicong Lu, Xiaojie Chen, Dihu Chen and Tao Su*
School of Electronics and Information Technology (School of Microelectronics)

Sun Yat-Sen University
Guangzhou, China

{luwc3, chenxj86}@mail2.sysu.edu.cn, {stscdh, sutao}@mail.sysu.edu.cn

Abstract—Homomorphic encryption (HE) allows computations
on encrypted data without compromising data privacy, making
it ideal for scenarios like privacy-preserving computing. The pri-
mary bottleneck within HE schemes is polynomial multiplication,
which can be accelerated using the number theoretic transform
(NTT). This paper proposes a run-time configurable (RTC)
NTT/INTT accelerator supporting HE parameter sets based on
the 3D NTT algorithm. A conflict-free memory access pattern
is proposed to efficiently implement the 3D NTT algorithm
without additional hardware units. Additionally, an on-the-fly
twiddle factor generator (TFG) is proposed to optimize memory
utilization for twiddle factors (TFs). The proposed design achieves
significant improvements in performance and area efficiency
compared to state-of-the-art FPGA implementations.

Index Terms—Homomorphic encryption, run-time config-
urable, number theoretic transform, FPGA.

I. INTRODUCTION

Homomorphic encryption (HE) is a cryptographic scheme
that enables computations directly on ciphertexts without com-
promising data privacy, making it suitable for scenarios like
privacy-preserving computing. Most HE schemes are based
on the ring learning with errors (RLWE) problem, involving
a large number of polynomial operations over the ring, with
polynomial multiplication being the primary bottleneck [1].
The number theoretic transform (NTT) is considered as the
current dominant approach in solving the polynomial multipli-
cation bottleneck in HE. However, existing NTT accelerators
suffer from two limitations. Firstly, for practical applications,
the polynomial degree of HE typically ranges from 215 to
218, and the modulus can be up to 64 bits [2]. Nevertheless,
most NTT accelerators only support small parameter sets, and
scaling them to HE results in performance degradation and
resource utilization increasing. Secondly, the parameters in HE
vary significantly across different schemes and applications,
creating a demand for dynamically configurable NTT accel-
erators that support a wide range of parameter sets without
recompilation, known as run-time configurable (RTC) NTT
accelerators [3]. However, most existing works support either
fixed parameter sets or demonstrate optimal performance only
within relatively narrow parameter set ranges.

Traditional NTT architectures can be categorized into two
types: iterative NTT architecture [4]–[8] and pipelined NTT
architecture [9]–[12]. The iterative NTT architecture employs
multiple parallel processing elements (PEs) and memory

blocks to perform the butterfly operations for each stage,
iterating these PEs to complete all stages. However, for large
polynomial degrees, supporting RTC with the iterative NTT
architecture introduces complex inter-stage data dependen-
cies and increased control logic overhead, which leads to
increased resource consumption and lower clock frequency.
In contrast, the pipelined architecture completely unrolls the
NTT, enabling RTC NTT by bypassing certain pipeline stages.
Nevertheless, this approach requires sufficient resources to
support the highest polynomial degree, and excessive by-
passing of pipeline stages may result in significant resource
underutilization. Additionally, the pipelined NTT architecture
suffers from limited throughput, with most implementations
can only process one or two inputs and outputs per clock
cycle.

Recently, there has been a trend of utilizing multi-
dimensional algorithms in NTT hardware designs. Most works
adopt 2D NTT [13]–[15], and a few of them explore higher
dimensions [16], [17]. Multi-dimensional NTT represents a
one-dimensional polynomial coefficient vector as a multi-
dimensional tensor, decomposing the large-point NTT into
independent small-point NTTs along each tensor dimension.
Such decomposition enables efficient reuse of a small-point
NTT processing unit (PU) across different tensor dimensions.
The simplification of PU greatly mitigates the complex data
dependencies between NTT stages and reduces resource under-
utilization in RTC. Moreover, the independence of the small-
point NTTs suggests a greater potential for parallelism. These
benefits render multi-dimensional NTT an optimal choice
for RTC NTT accelerators supporting HE parameter sets.
However, multi-dimensional NTT also introduces additional
challenges. Transitioning from a one-dimensional vector to a
multi-dimensional tensor complicates memory access, often
requiring additional hardware units, such as transpose units to
implement the algorithms without conflict. Furthermore, twid-
dle factor (TF) multiplications are needed when the dimension
is switched, necessitating additional memory resources.

This paper focuses on 3D NTT and proposes a high-
performance and area-efficient NTT/INTT accelerator that
supports RTC within HE parameter sets. To overcome chal-
lenges introduced by 3D NTT, several novel optimizations are
applied. The contributions are specified as follows:

(1) An NTT/INTT accelerator based on the 3D NTT algo-



rithm that supports RTC within HE parameter sets is proposed.
A pipelined NTT (PNTT) module is designed as the core
component of PU for small-point NTTs/INTTs.

(2) The conflict-free memory access pattern proposed in
our previous work [18] is extended to efficiently implement
the 3D NTT algorithm without additional hardware units. This
approach reduces the extra hardware cost induced by memory
access while maintaining throughput.

(3) A twiddle factor generator (TFG) is proposed to gen-
erate the TFs on-the-fly for dimension switching. By storing
multiple TF seeds, this unit can generate TFs for NTT/INTT
across various polynomial degrees.

II. BACKGROUND

A. NTT-based Polynomial Multiplication

In this paper, the polynomial multiplication in HE is defined
over the polynomial ring Rq = Zq[x]/(x

N + 1), where q
is a prime modulus satisfying q ≡ 1(mod 2N) and N is a
power of two, representing the polynomial degree. The process
of polynomial multiplication over Rq takes two polynomials
a(x) =

∑N−1
i=0 aix

i and b(x) =
∑N−1

i=0 bix
i as inputs and

produces an output polynomial c(x) = a(x) · b(x). Subse-
quently, the product is reduced by modulo (xN +1) and each
coefficient is further reduced by modulo q. NTT-based poly-
nomial multiplication converts convolution into coefficient-
wise multiplication, reducing the complexity from O(N2)
to O(Nlog2N). Through additional pre-processing and post-
processing steps, the technique negative wrapped convolution
(NWC) [19] can further eliminate the reduction with modulo
(xN + 1). [20] has proposed merging pre-process and post-
process with Cooley-Tukey (CT) butterfly and Gentleman-
Sande (GS) butterfly, respectively. In this work, the merged
algorithms are adopted to further eliminate the costly pre-
processing and post-processing steps.

B. 3D NTT Algorithm

The 3D NTT algorithm represents a one-dimensional poly-
nomial coefficient vector of length N as a three-dimensional
tensor A0 of dimension n1×n2×n3, where N = n1×n2×n3.
Specifically, as shown in Fig. 1, the original coefficient vector
al, l ∈ [0, N) is transformed into aijk, i ∈ [0, n1), j ∈
[0, n2), k ∈ [0, n3) in column-major order. Based on this
transformation, the steps of the 3D NTT algorithm are outlined
as follows [17]:

(1) Perform NTT along axis k on tensor A0, i.e., n1 × n2

n3-point NTTs. Following we denote these NTTs as column-
wise NTTs and the result tensor as A1.

(2) Multiply each element in tensor A1 with dimension-
switching TFs ωk·j

n2·n3 to obtain tensor A2.
(3) Perform NTT along axis j on tensor A2, i.e., n1 × n3

n2-point NTTs. Following we denote these NTTs as row-wise
NTTs and the result tensor as A3.

(4) Multiply each element in tensor A3 with dimension-
switching TFs ωj·i

n1·n2 × ωk·i
n1·n2·n3

to obtain tensor A4.

7 11 15

31

47

63

3
6 10 14

16 20 24 30

32 36 40 46

48 52 56 62

2
5 9 13

16 20 24 29

32 36 40 45

48 52 56 61

1
4 8 12

16 20 24 28

32 36 40 44

48 52 56 60

0

Fig. 1. An example of representing a polynomial coefficient vector of length
64 as a 4× 4× 4 tensor.

(5) Perform NTT along axis i on tensor A4, i.e., n2×n3 n1-
point NTTs. Following we denote these NTTs as depth-wise
NTTs and the result tensor as A5.

(6) Transform the tensor A5 back to a one-dimensional
vector in row-major order to obtain the final output.

For the INTT case, the algorithm steps are reversed, i.e.,
executed in the order of depth-wise INTTs → row-wise INTTs
→ column-wise INTTs, and required taking the inverse of TFs
during dimension switching.

III. HARDWARE ARCHITECTURE

A. Architecture Overview

The overall architecture of our proposed NTT/INTT is
illustrated in Fig. 2, which takes n, m and mode as inputs to
dynamically support different parameter sets for NTT/INTT.
n is set at compile time, while m can be changed at runtime
and is a power of two less than or equal to n. We define
N = n × n × m, fixing the polynomial degrees of the
row-wise and the depth-wise NTTs/INTTs at n and dynami-
cally configuring the polynomial degree of the column-wise
NTTs/INTTs to achieve RTC. The architecture supports a
dynamic configuration range from n × n × 1 to n × n × n,
sufficiently covering most HE scenarios.

The architecture consists of four main components: a control
unit (CU), coefficient memory (CM), PU and TFG. CU gener-
ates control and address signals, while CM and TFG provide

: Data signal: Control signal: Input

C
ontrol Logic

Control Unit

mode

m

Address G
eneration Logic

n Processing Unit

PNTT

MMG

PNTT

MMG

PNTT

MMG

Coefficient Memory

Twiddle Factor Generator

Input

MUXs

MUXs

MUXs

MUXs

Fig. 2. Overall architecture of proposed NTT/INTT.



Coefficient Memory

Addr 19 18 17 16 3 2 1 0

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

MuxMux
Mux

PNTT1PNTT2PNTT3PNTT1

MuxMux
Mux

(a)

Coefficient Memory

Addr 19 18 17 16 3 2 1 0

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

MuxMux
Mux

PNTT1PNTT2PNTT3PNTT1

MMG4MMG3MMG2MMG1

MuxMux
Mux

(b)

Addr 7 6 5 4 3 2 1 0

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

23 22 21 20 19 18 17 16

Coefficient Memory

MuxMux
Mux

MuxMux
Mux

PNTT1PNTT2PNTT3PNTT1

MMG4MMG3MMG2MMG1

(c)

Fig. 3. Proposed memory access pattern for a 256-point NTT, which is further represented as a 8 × 8 × 4 tensor. (a) The memory access pattern of the
column-wise NTTs. (b) The memory access pattern of the row-wise NTTs. (c) The memory access pattern of the depth-wise NTTs.

polynomial coefficients and dimension-switching TFs to PU.
PU comprises a series of PNTTs capable of supporting n-
point or smaller NTT operations. Each PNTT is accompanied
with a modular multiplier group (MMG) which contains two
modular multipliers (MMs) for dot multiplication required
during dimension switching and is reused for small-point
NTTs within each dimension of 3D NTT. We select four
PNTTs in this work to achieve sufficient parallelism and area
efficiency. Notably, our proposed architecture is scalable to
support higher parallelism.

Our PNTT is derived from the multi-path delay commutator
(MDC) structure [10]. For an n-point NTT, the pipeline has
log2n PEs, each containing a butterfly unit (BFU), two FIFOs
and two multiplexers. The FIFO depth varies across stages
to achieve the desired access stride. Based on [21], our BFU
supports both CT and GS butterfly for merged NTT/INTT.
By dynamically changing the data paths between PEs, our
PNTT enables run-time switching between NTT and INTT
modes. Moreover, by selectively bypassing stages, our PNTT
is capable of supporting polynomials with arbitrary power-of-
two degrees m(≤ n).

B. Conflict-free Memory Access Pattern

In this paper, we propose a conflict-free memory access
pattern that avoids the need for extra hardware units by
adjusting memory addresses and employing multiplexers for

data exchange between CM and PU. We illustrate our memory
access pattern using a 256-point NTT example, decomposed
into an 8×8×4 (n = 8,m = 4) tensor. Each k−j plane of the
tensor is sequentially stored into CM by an ascending index i.
Within each k− j plane, columns j = 0 through n/2− 1 are
assigned to bank 0-3, while columns j = n/2 through n − 1
are allocated to bank 4-7. Coefficients from each column are
interleaved across different banks to achieve the subsequent
memory access pattern.

The memory access pattern is shown in Fig. 3. Each subplot
shows two distinct planes, highlighting the first two clock
cycles for each plane, denoted as t0, t1 for one plane and
t′0, t

′
1 for the other. Specifically, Fig. 3a and Fig. 3b focus on

planes with indices i = 0, 4, while Fig. 3c displays planes with
indices k = 0, 1. The colors highlighted in CM correspond to
the MMGs and PNTTs. During each clock cycle, the data is
read out from CM and sent to the corresponding MMGs or
PNTTs via multiplexers. Once the pipeline is filled, PNTTs
write eight outputs back into CM following the same rule.

The memory access pattern for the column-/row-/depth-wise
NTTs is different, mainly reflected in the memory addresses of
each bank and the data switching performed by multiplexers.
The column-wise and the row-wise NTTs operate on the k−j
planes indexed by i, following similar patterns across each
plane. For instance, in the i = 0 plane depicted in Fig. 3a and



Fig. 3b, during the column-wise NTTs, eight banks initialize
their addresses to 0 and increase by 1 each clock cycle. In the
row-wise NTTs, for bank 0, 1, 4, 5, the initial value of the
address is 0 and increases by m/4 per cycle, while bank 2, 3,
6, 7 starts at m/4 and alternates in subsequent cycles by first
decreasing by m/4 and then increasing by 3m/4, following a
cyclic pattern. For the depth-wise NTTs on the j − i planes
indexed by k, consider the k = 0 plane illustrated in Fig. 3c.
Banks with even indices start their addresses from 0, while
banks with odd indices begin at n × m/2. Each clock cycle
increases the address of all eight banks by n ×m/8. In this
way, 3D NTT is performed naturally without extra hardware
units.

The proposed memory access pattern covers all scenarios
where m ≤ n and supports both NTT and INTT operations
flexibly. Specifically, when m = 1, 3D NTT reduces to 2D,
implemented by skipping the depth-wise NTT step. For the
INTT operation, we execute the steps in reverse order. Based
on this conflict-free memory access pattern and the PNTTs
that support multiple polynomial degrees, we achieve a high-
performance, area-efficient and dynamically configurable 3D
NTT/INTT architecture.

C. On-the-Fly Twiddle Factor Generator

3D NTT introduces a substantial number of TFs required
for dimension switching, limiting its application under the
memory-bound constraint of HE. This paper proposes an on-
the-fly TFG for dimension-switching TFs that aligns with the
memory access pattern. In TFG, we allocate two n×n initial
planes of TFs ωl1·l2

n·n , an n × n buffer plane, and TF seeds
ωl1
n·n·m for various m values, where l1, l2 ∈ [0, n) and employ

MMs for dynamic TF generation. As shown in Fig. 4, the
two initial TF planes are stored in memory with different
address ranges following a specific pattern. The l2 direction
of the initial planes is distributed across eight banks, while
the l1 direction is arranged in a sequence corresponding to the
processing order of the row-wise NTTs (0, 1, 4, 5, 2, 3, 6, 7,
when n = 8) and the depth-wise NTTs (0, 2, 4, 6, 1, 3, 5, 7,
when n = 8). With increasing addresses, the TF values in
the l2 direction cyclically shift downwards by two positions
of memory banks, exhibiting a periodic pattern every four
consecutive addresses.

For k− j dimension switching, the TFs are identical across
different k−j planes and depend on the run-time configurable
parameter m, prepared in advance by squaring. In contrast,
the TFs for j − i dimension switching vary across different
j− i planes and are generated dynamically in real-time during
computation. In the case of k − j dimension switching, as
shown in Fig. 4a, specific initial TF values (l1 = 0, 1, 2, 3,
when m = 4) are squared to obtain ωk·j

n·m and stored cyclically
in the buffer during the column-wise NTTs. During the row-
wise NTTs, these precomputed TFs are sequentially fetched
for PU following the cyclic pattern. The colored area in Fig.
4a illustrates the buffer outputs for the first clock cycle, with
different colors indicating outputs to different MMGs. For
j − i dimension switching, as depicted in Fig. 4b, initial

MM8MM2
MM1

TF Memory

Addr 5 4 1 0

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Buffer

Addr 3 2 1 0

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

(a)

Buffer

Addr 3 2 1 0

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

SeedReg

MM8MM2
MM1

TF Memory

Addr 11 10 9 8

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

(b)

Fig. 4. On-the-fly TFG for 256-point NTT. (a) k − j dimension switches
during the column-wise and the row-wise NTTs. (b) j− i dimension switches
during the depth-wise NTTs.

TF values are cyclically output to PU and multiplied by the
seeds ωi

n·n·m to yield ωj·i
n·n×ωi

n·n·m, which are then stored in
the buffer. Subsequent j − i TF planes are fetched from the
buffer and the buffer is overwritten using the same process,
allowing the buffer to be reused for generating all j − i
dimension-switching TFs ωj·i

n·n × ωk·i
n·n·m. With TFG, only

minimal memory resources and eight MMs are required to
dynamically generate all necessary dimension-switching TFs
for various polynomial degrees.

The proposed on-the-fly TFG can also be applied to INTT.
To avoid additional memory consumption for two extra initial
TF planes required for INTT, we further propose a reuse
mechanism. This mechanism obtains the necessary initial
planes for INTT through a refresh operation. Specifically, the
initial plane ω−l1·l2

n·n required for INTT satisfies:

ω−l1·l2
n·n mod q ≡ ω−l1·l2

n·n · ωn·l2
n·n · ω−n·l2

n·n · ωl2
n·n · ω−l2

n·n mod q

≡ ω
(n−l1−1)·l2
n·n · ω−n·l2

n·n · ωl2
n·n mod q (1)

According to (1), the values of ωl1·l2
n·n and ω

(n−l1−1)·l2
n·n

are identical, differing only in their memory address order.
Based on this observation, we can multiply the original initial



TABLE I
IMPLEMENTATION RESULTS OF NTT/INTT ARCHITECTURE AND COMPARISON TO PRIOR WORKS

Work Dev.a log2N / Resource Freq. Latency Throughput EqSb

TPSc

log2q LUT FF DSP BRAM (MHz) (CCs) (µs) (Mbps) (K)
Mert [5] V690T 12 / 60 99.4K - 992 176 125 972 7.70 31917 167.33 0.19
Ye [9] V485T 12 / 60 17.0K 11.0K 286 24.5 150 8284 55.23 4450 39.23 0.11
Su [6] VU190 14 / 60 99.4K 93.2K 1080 3680 300 28672 95.57 10286 495.34 0.02

Öztürk [7] V690T 14 / 32 219.2K 90.8K 768 193 250 - 24.50 21400 178.30 0.12
15 / 32 50.90 20601 0.12

Roy [8] V240T 16 / 30 72.6K 63.1K 250 84 100 47795 477.95 4114 63.27 0.07
Hirner [10] V485T 16 / 64 37.5K 29.9K 320 383 135 65706 486.71 8618 131.15 0.07
Kim [11] VU190 17 / 62 365.0K 335.0K 1332 2258 200 98304 491.52 16533 376.20 0.04

Ours ZU102

12 / 60

75.2K 42.6K 428 508 259

1197 4.62 53195

90.34

0.59
13 / 60 3260 12.59 39041 0.43
14 / 60 6340 24.48 40157 0.44
15 / 60 12493 48.24 40756 0.45
16 / 60 24792 95.72 41080 0.45
17 / 60 49383 190.67 41246 0.46
18 / 60 98558 380.53 41334 0.46

a Device: V690T: Virtex-7 XC7VX690T; V485T: Virtex-7 XCVX485T; VU190: Virtex UltraScale XCVU190; V240T: Virtex-6 XC6VLX240T-
1FF1156; ZU102: Zynq UltraScale+ ZCU102.

b Equivalent slice (EqS) = #Slice + Eq. DSP + Eq. BRAM. #Slice ≈ #LUT
4

(7 Series) / #LUT
8

(UltraScale), 1 DSP ≈ 102.4 Slices (7 Series) /
51.2 Slices (UltraScale), 1 BRAM ≈ 232.4 Slices (7 Series) / 116.2 Slices (UltraScale) [22].

c Throughput per slice (TPS) [22].

planes by the refresh factor ω−n·l2
n·n · ωl2

n·n and read the TFs in
reverse order to achieve initial planes reuse between NTT and
INTT. This approach further reduces the memory overhead for
dimension-switching TFs. It should be noted that since NTT
and INTT are generally not performed consecutively in HE,
the refresh time can be hidden without affecting performance.

IV. RESULTS AND DISCUSSION

A. Experimental Setup

Our design takes the maximum degree n supported by
PNTTs and the modulus bit width log2q as compile-time
inputs to generate synthesizable Verilog HDL code. We dy-
namically configure the polynomial degree by adjusting the
value of m at runtime. The Xilinx Vivado Design Suite is
used for synthesis and place & route stages on the Xilinx
Zynq UltraScale+ ZCU102 FPGA platform. To evaluate the
area and performance of our design under HE parameters, we
set log2q = 60 and n = 64, enabling the accelerator to support
polynomial degree ranging from 212 to 218, covering most HE
scenarios. Latency is determined by the ratio of clock cycles
(CCs) to the clock frequency, while throughput refers to the
number of bits processed by the accelerator per unit of time,
calculated as follow:

Throughput (Mbps) =
Number of bits (bits)

Latency (µs)
(2)

B. Comparison and Discussion

We compare our design with prior works on FPGA [5]–[11],
as shown in Table I. Due to different hardware platforms and
parameter sets between different studies, we use equivalent
slice (EqS) to measure resource consumption and throughput
per slice (TPS) as a comparative metric for a fair comparison

[22]. EqS combines LUTs, FFs, DSPs, and BRAMs into a
unified measure, defined as follows,

EqS = #Slice + Eq. DSP + Eq. BRAM (3)

where #Slice approximately equals to #LUT/4 for 7 series
FPGAs and #LUT/8 for UltraScale FPGAs. One DSP block
and one BRAM unit can be replaced by 102.4, 232.4 and 51.2,
116.2 slices for 7 series and UltraScale FPGAs, respectively.

TPS serves as a measure of the area efficiency, defined as
follows:

TPS (Mbps/Slice) =
Throughput (Mbps)

EqS (Slice)
(4)

Several studies implemented HE parameter sets [7], [8],
[10], [11]. Öztürk et al. [7] designed a large-degree NTT-
based polynomial multiplier for somewhat homomorphic en-
cryption (SWHE) based schemes, utilizing a large number
of multipliers and on-chip memory, leading to suboptimal
area efficiency. Our design, with its optimized memory access
pattern and TFG, achieves better performance and TPS. Roy
et al. [8] proposed a single-FPGA design of FV and optimized
the memory access to parallel several cores for the butterfly
operations. However, their operating frequency is relatively
low. Our design, by simplifying the data dependencies between
NTT stages of PU, achieves a higher frequency, leading to a
9.9× improvement in throughput and a 6.4× improvement in
TPS. Hirner et al. [10] proposed PROTEUS, an open-source
parameterized tool for generating synthesizable pipelined NTT
architectures. While their MDC architecture is similar to our
PNTTs, our use of the 3D NTT algorithm and the simpli-
fied PU achieves a 4.8× improvement in throughput and a



6.4× improvement in TPS. Kim et al. [11] proposed a fully
pipelined INTT architecture supporting a polynomial degree
N = 217. However, their design requires five intermediate
buffers for coefficient reordering to avoid pipeline stall, leading
to increased memory consumption. Our conflict-free memory
access pattern can implement the 3D NTT algorithm with-
out the need for extra hardware units, resulting in a 11.5×
improvement in TPS. Furthermore, although our computing
and memory resources are sufficient to support NTT up to
218 polynomial degrees, our design maintains an advantage of
performance and TPS even with small parameter sets [5], [6],
[9].

V. CONCLUSION

This paper presents an FPGA implementation of an RTC
NTT/INTT accelerator supporting HE parameter sets based on
the 3D NTT algorithm. To mitigate the extra overhead induced
by 3D NTT, we propose a conflict-free memory access pattern
and an on-the-fly TFG. Compared to state-of-the-art works,
our design achieves significant improvements in performance
and area efficiency.

REFERENCES

[1] J. Zhang, X. Cheng, L. Yang, J. Hu, X. Liu, and K. Chen, “Sok: Fully ho-
momorphic encryption accelerators,” arXiv preprint arXiv:2212.01713,
2022.

[2] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full rns
variant of approximate homomorphic encryption,” in Selected Areas in
Cryptography–SAC 2018: 25th International Conference, Calgary, AB,
Canada, August 15–17, 2018, Revised Selected Papers 25. Springer,
2019, pp. 347–368.

[3] A. C. Mert, E. Öztürk, and E. Savaş, “Fpga implementation of a
run-time configurable ntt-based polynomial multiplication hardware,”
Microprocessors and Microsystems, vol. 78, p. 103219, 2020.

[4] X. Hu, J. Tian, M. Li, and Z. Wang, “Ac-pm: An area-efficient and
configurable polynomial multiplier for lattice based cryptography,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 70, pp.
719–732, 2023.

[5] A. C. Mert, E. Karabulut, E. Öztürk, E. Savaş, and A. Aysu, “An
extensive study of flexible design methods for the number theoretic
transform,” IEEE Transactions on Computers, vol. 71, no. 11, pp. 2829–
2843, 2022.

[6] Y. Su, B. Yang, J. Wang, F. Zhang, and C. Yang, “Reconfigurable multi-
core array architecture and mapping method for rns-based homomophic
encryption,” AEU-International Journal of Electronics and Communica-
tions, vol. 161, p. 154562, 2023.

[7] E. Öztürk, Y. Doröz, E. Savaş, and B. Sunar, “A custom accelerator for
homomorphic encryption applications,” IEEE Transactions on Comput-
ers, vol. 66, pp. 3–16, 2017.

[8] S. S. Roy, K. Järvinen, J. Vliegen, F. Vercauteren, and I. Verbauwhede,
“Hepcloud: An fpga-based multicore processor for fv somewhat homo-
morphic function evaluation,” IEEE Transactions on Computers, vol. 67,
no. 11, pp. 1637–1650, 2018.

[9] Z. Ye, R. C. Cheung, and K. Huang, “Pipentt: A pipelined number
theoretic transform architecture,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 69, no. 10, pp. 4068–4072, 2022.

[10] F. Hirner, A. C. Mert, and S. S. Roy, “Proteus: A tool to generate
pipelined number theoretic transform architectures for fhe and zkp
applications,” Cryptology ePrint Archive, 2023.

[11] S. Kim, K. Lee, W. Cho, Y. Nam, J. H. Cheon, and R. A. Rutenbar,
“Hardware architecture of a number theoretic transform for a boot-
strappable rns-based homomorphic encryption scheme,” in 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 2020, pp. 56–64.

[12] T. Ye, Y. Yang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna,
“Fpga acceleration of number theoretic transform,” in High Performance
Computing: 36th International Conference, ISC High Performance 2021,
Virtual Event, June 24–July 2, 2021, Proceedings 36. Springer, 2021,
pp. 98–117.

[13] Y. Zhang, S. Wang, X. Zhang, J. Dong, X. Mao, F. Long, C. Wang,
D. Zhou, M. Gao, and G. Sun, “Pipezk: Accelerating zero-knowledge
proof with a pipelined architecture,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2021, pp. 416–428.

[14] N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A fast and programmable acceler-
ator for fully homomorphic encryption,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
238–252.

[15] N. Samardzic, A. Feldmann, A. Krastev, N. Manohar, N. Genise,
S. Devadas, K. Eldefrawy, C. Peikert, and D. Sanchez, “Craterlake: a
hardware accelerator for efficient unbounded computation on encrypted
data,” in Proceedings of the 49th Annual International Symposium on
Computer Architecture, 2022, pp. 173–187.

[16] S. Kim, J. Kim, M. J. Kim, W. Jung, J. Kim, M. Rhu, and J. H. Ahn,
“Bts: An accelerator for bootstrappable fully homomorphic encryption,”
in Proceedings of the 49th annual international symposium on computer
architecture, 2022, pp. 711–725.

[17] C. Wang and M. Gao, “Sam: A scalable accelerator for number theoretic
transform using multi-dimensional decomposition,” in 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD). IEEE,
2023, pp. 1–9.

[18] X. Chen, W. Lu, T. Su, and D. Chen, “Shp-fsntt: A scalable and high-
performance ntt accelerator based on the four-step algorithm,” in 2024
IEEE International Symposium on Circuits and Systems (ISCAS). IEEE,
2024, pp. 1–5.

[19] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic for
lattice-based cryptography on reconfigurable hardware,” in Progress
in Cryptology–LATINCRYPT 2012: 2nd International Conference on
Cryptology and Information Security in Latin America, Santiago, Chile,
October 7-10, 2012. Proceedings 2. Springer, 2012, pp. 139–158.

[20] T. Pöppelmann, T. Oder, and T. Güneysu, “High-performance ideal
lattice-based cryptography on 8-bit atxmega microcontrollers,” in In-
ternational conference on cryptology and information security in Latin
America. Springer, 2015, pp. 346–365.

[21] Y. Su, B.-L. Yang, C. Yang, Z.-P. Yang, and Y.-W. Liu, “A highly
unified reconfigurable multicore architecture to speed up ntt/intt for
homomorphic polynomial multiplication,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 30, no. 8, pp. 993–1006,
2022.

[22] W. Liu, S. Fan, A. Khalid, C. Rafferty, and M. O’Neill, “Optimized
schoolbook polynomial multiplication for compact lattice-based cryp-
tography on fpga,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 27, no. 10, pp. 2459–2463, 2019.


