
AstraMQ: Distributed MQTT Broker
Rohan Doshi

Department of Computer Engineering
Pune Institute Of Computer Technology

Pune, India
rohan.doshi02@gmail.com

Sanika Inamdar
Department of Computer Engineering
Pune Institute Of Computer Technology

Pune, India
sanika.inamdar.2002@gmail.com

Tanmay Karmarkar
Department of Computer Engineering
Pune Institute Of Computer Technology

Pune, India
tanmaykarmarkar49@gmail.com

Madhuri Wakode
Department of Computer Engineering
Pune Institute Of Computer Technology

Pune, India
mswakode@pict.edu

Abstract—Distributed MQTT Broker offers a scalable, fault-
tolerant solution for efficient message brokering in IoT de-
ployments. This architecture integrates a custom load balancer,
MQTT broker nodes, and Redis Streams. The load balancer en-
sures a single point of entry and load distribution among broker
nodes, enhancing system reliability. MQTT broker nodes handle
standard operations and utilize Redis Streams for asynchronous
message passing and state synchronization, ensuring decoupled
communication and fan-out delivery. This system also explores
alternative approaches using etcd with Raft for client state
synchronization and gRPC with protocol buffers for message
passing, as well as Kafka for message storage and inter-broker
communication. AstraMQ addresses the limitations of existing
distributed brokers by leveraging open-source components and
the efficiency of Golang, providing a robust, cost-effective solution
for large-scale IoT applications.

Index Terms—MQTT, Redis, Redis Streams, Load-Balancer,
gRPC, Kafka, Raft, etcd, Distributed Systems, High Availability

I. INTRODUCTION

MQTT is a lightweight messaging protocol based on a
publish-subscribe model. It is most commonly used in the
Internet of Things (IoT) since it is efficient and requires
minimal resources. It is an ideal protocol for connecting
remote devices with minimal network bandwidth [5], [6].

Unlike traditional network communication between clients
and servers directly, the publish-subscribe architecture decou-
ples the sender and receiver of a message by using a central
entity called the MQTT message broker. This broker handles
the communication between multiple publishers (senders) and
subscribers (receivers) of a message based on topics. Topics
are keywords to which messages are published. A subscriber
will receive all messages published on a particular topic by
subscribing to that topic. Topics are arranged hierarchically.

The conventional MQTT Broker deployment typically con-
sists of a single-node setup. This single node manages all
the MQTT operations. Failure of this node results in total
disruption of the communication. Due to the limitations of
Network i/o calls of a single broker, it can only serve a limited
number of clients at a time or has limited message throughput,
resulting in limited performance.

In contrast, a distributed MQTT Broker network comprises
multiple brokers that collaborate in synchronization. These
interconnected brokers facilitate more scalable MQTT im-
plementations. Distributed brokers offer several advantages,
including enhanced performance, scalability, load distribution,
and fault tolerance. Such capabilities are crucial for large-
scale IoT deployments where reliability and performance are
extremely crucial.

Current distributed MQTT brokers offer a range of function-
alities but often come with some limitations that restrict their
accessibility or are highly priced [15]. Our system incorporates
open-source components like Mochi-MQTT broker and Redis.
Our system is developed using Golang, which in turn ad-
dresses these shortcomings to provide a compelling alternative.
Distributed brokers like HiveMQ use closed-source for their
distributed features. HiveMQ written in Java, requires more
system resources compared to Golang. EMQX and VerneMQ
developed in Erlang, is difficult to setup, manage and configure
[12], [16]. Golang programs typically require less memory and
startup time compared to their Java or Erlang counterparts,
making them ideal for these scenarios [1].

II. ARCHITECTURE

Our architecture consists of a load-balancer, MQTT broker
nodes, and Redis (Streams) at the abstract level. The load-
balancer acts as a reverse proxy, that intercepts MQTT Con-
nect requests from the clients and forwards them to different
broker nodes in the system. The load balancer also acts as
a single point of entry to our system, protecting the direct
identities of the server nodes, ensuring that there is only one
single IP address for clients to connect. A private network
of load-balancer and broker nodes can be created to only
expose the default MQTT port 1883. MQTT broker nodes
are standard broker nodes that support all the default MQTT
operations along with certain capabilities to send and receive
data between the brokers. Redis a freely available open-source
system, popularly used as a cache mechanism, is a distributed
key-value store. Redis also provides us with the functionality
of Redis Streams, which is like an in-memory append-only log.

Fig. 1. System Architecture

We use Redis Streams to decouple the connections between
the brokers, i.e. each broker doesn’t need to be connected with
every other broker in the cluster but rather has a single connec-
tion with the Redis Stream. Redis Streams also ensure a fan-
out delivery to other brokers, meaning a guaranteed delivery.
We use Redis Streams to forward MQTT Publish messages to
other brokers who might have intended subscribers connected.

To better understand the architecture, consider a system
consisting of 3 broker nodes. A “Client A” sends an MQTT
Connect request to the system. The load-balancer receives the
Connect packet and forwards it to one of the broker nodes
(N1). Now, the broker node completes the TCP handshake
and all communication occurs directly between the broker
and the client without involving the load-balancer. Similarly
“Client B” connects to node (N2), and “Client C” to node
(N3). Consider that “Clients A, B, and C” are subscribed to a
common topic. ”When ’Client A’ publishes a message on this
topic, it will be handled by the Node N1. N1 will then insert
this message into the Redis Stream. Nodes N2 and N3 will
asynchronously consume this message from the Redis Stream
and subsequently process it by sending it out to ”B” and ”C”
respectively.”

Components:
1) Load-balancer: The load-balancer acts as a single point

of entry to the system and is responsible for 3 things.
1) To forward the client MQTT Connect message to
any one of the brokers. 2) To discover broker nodes
in the system by using the GOSSIP protocol (Node
Discovery). 3) Health check and remove dead nodes
from the system using the GOSSIP protocol again. We
are using a custom load-balancer for this purpose but can
be easily replaced by other load-balancing solutions. The
load-balancer provides a single IP Address for clients

to connect to, which in turn helps in hiding the IP
Addresses of our broker nodes. The load-balancer uses
a simple Round-Robin algorithm to distribute clients
equally across each node. Once a load-balancer has
forwarded the incoming MQTT Connect packet (TCP
packet) from the client to the broker node, the load-
balancer has no further interaction between the client
and broker communication.

2) MQTT Broker: We are using a modified Mochi-MQTT
broker [9] to support data exchange between other
broker nodes. The modified MQTT Broker adds any
Publish Packet that it receives from the client to the
Redis Stream. To avoid a cyclic loop the broker does
not add Publish packets that other Brokers have added.
The broker node also listens for every message in the
Redis Stream to process it and deliver messages to the
intended subscriber connected to it.

3) Redis-Streams: They are used to decouple the connec-
tions between the broker nodes and also for a fan-out
(guaranteed) message delivery to other broker nodes.
As messages live in-memory, we are running a service
to periodically clean this Redis Stream. A cron job runs
every few seconds which checks the memory usage of
the server where Redis Stream is deployed. Depending
on the usage, the process prunes the Redis Stream,
keeping only the top messages, and freeing up space
for new messages to be stored.

It is important to note that we are using the Mochi-MQTT
broker because of its exceptional raw performance. The Mochi
broker, written in Golang, is simply unmatched in its efficiency
and speed.

III. NODE DISCOVERY AND HEALTH MONITORING

We will now dive deep into the Node Discovery compo-
nent of the load balancer. Our custom Load Balancer uses
Hashicorp Memberlist [7] to discover new brokers in the
system. The Memberlist is the backbone of many distributed
systems as these systems are required to maintain the nodes
present in a system. The Hashicorp Memberlist is based on
the SWIM protocol [2]. SWIM protocol is a peer-to-peer
membership protocol. The protocol takes care of health checks
for the system and removes stopped nodes from the system.

The Memberlist improves in this area by implementing a
process called Lifeguard because the node may be healthy
but due to slow message processing or network latency, the
protocol marks it to be down. The Lifeguard process works
on the principle of local health which drastically reduces the
number of false positives in the system.

The Load Balancer is configured to listen for incoming
gossip requests on port 7946. The Load Balancer maintains
a list of broker nodes connected to it in a simple Array data
structure. Configuring the Memberlist depends on whether the
network is a LAN or a WAN. There are various factors like
ProbeInterval, and SuspicionMult that need to be configured
based on the network for efficient performance. The Suspicion-
Mult should be set by figuring out what the packet round trip

time looks like. Higher latency should have a higher multiplier.
Setting this to very low-value marks that the node is down
even though it is healthy. This results in a large number of
false positives.

v1: The Load Balancer scans through the Memberlist. Every
5 seconds the Memberlist checks for new devices to be added
to the list of connected brokers to the Load Balancer. On
testing, we found that this was a bottleneck and hampering
the performance of the load balancer.

v2: Harnessing the beauty of Golang we have implemented
a channel-based design pattern, to add and remove nodes from
the Memberlist to the list of the Load Balancer. There are 2
events of interest that the brokers emit to the Load Balancer
1) NodeJoin & 2) NodeLeave.

When any broker emits a NodeJoin or NodeLeave event the
Node is added or removed respectively from the broker’s list.

IV. DETAILED DESIGN AND IMPLEMENTATION

A. The Load Balancer

The main entry point in any distributed system is a Load
Balancer or a Reverse Proxy. The same is the case with
our system. When it comes to using an out-of-the-box Load
Balancer, it is a complete black box. No one knows what
actually goes on in the back. To have complete transparency
and control on our system we decided to go with a custom
Load Balancer.

We needed to make sure that the load balancer was not a
bottleneck in our system. For this, we compared the throughput
of the system with some reputed Load Balancers like HAProxy
and NginX.

When a publisher or subscriber wants to enter our system
only the connect packet is intercepted by the Load Balancer.
This Load Balancer forwards this connect packet to the brokers
in the system using the round-robin algorithm.

As the load balancer only intercepts the connect packet after
which the connection is maintained by the broker the load
balancer does not prove to be a bottleneck. Which claim was
also proved when stress tested against HAProxy and NginX.

B. Redis

In our architecture, every message is stored and passed
through Redis [8]. One may assume that Redis acts as a major
bottleneck in our system, but this is not the case. Redis is a
widely adapted distributed system and is a major contributor
to modern architectural patterns. Let’s see how Redis scales
to handle the large message throughput.

1) Redis in-memory database: Redis is an in-memory
database, which is persistent (using Snapshotting (RDB) /
Append-only File (AOF)). To ensure fault tolerance, Redis
allows us to create multiple replicas of the Master for both
Redis Cluster and Redis Sentinel. However, it’s important to
note that Redis does not ensure high synchronization between
the replicas. Let us understand how exactly Redis Replication
works:

1) Client writes transfer to Replicas: Master sends a stream
of client operations to the replica asynchronously. Repli-
cas asynchronously acknowledge these operations to the
master.

2) Partial Resynchronization: Due to any failure (network,
hardware, system crash, etc) of replicas, the master only
rolls out the missed operations during which the replica
was not connected.

3) Initial Synchronization: When a new replica is added
or partial resynchronization is impossible, the master
creates a snapshot of its entire state and then transfers
it to the replica. This can be a huge amount of data and
is a very costly operation [18].

2) Redis Sentinel: Another thing to mention is that Redis
Replication is used for High Availability / Data Safety and
Scalability (read-only Replicas). Redis also supports Cas-
cading Replicas: Replicas can be connected to other Replicas.
Redis is primarily a multi-master architecture.

But what happens when one of the masters fails? The key
to addressing this lies in Redis Sentinel. Redis Sentinel is a
standalone process independent of the Redis database, ideally
running on separate machines.

Redis Sentinel Use Cases:

1) Monitoring: Continuously checks the status of the Mas-
ter and Replicas.

2) Notification: Alerts system administrators if the master
or replicas are offline.

3) Automatic Failover: Promotes a Replica to Master in the
event of a Master failure.

4) Configuration Provider: Stores the latest Master’s
address to provide to clients.

3) Automatic Failover System: For robustness, a minimum
of three Sentinels operate simultaneously in the system, elimi-
nating single points of failure. These Sentinels regularly assess
the health of all nodes in the system. In the event of failure
or other critical events, they notify clients through Pub/Sub
Messages.

In the case of a Master failure, a Sentinel triggers the
failover process. To execute a failover, a majority of Sentinels
must reach a consensus, as determined by the Quorum number.
This number represents the count of Sentinels required to agree
on the master failover, preventing false failover scenarios.
During the failover process, one of the Redis replicas is
promoted to the new master. The remaining replicas are
promptly informed of their new master nodes to ensure the
continuity of write operations.

Using these approaches, we can understand that Redis is a
highly available (HA) system and can scale well for a large
number of operations, hence it is not a bottleneck.

Fig. 2. Authentication Mechanisms

V. SECURITY CONSIDERATIONS

A. Node Discovery in Memberlist

There are two main authentication mechanisms that we need
to configure in order to completely secure the system. The first
is to secure the broker load balancer authentication. Only the
brokers having a shared secret key can join the Memberlist.
For this purpose, we use an AES-256 standard Key. AES-256
provides a symmetric key encryption [19]. If and only if the
broker has the correct key it can connect to the load balancer.

B. Client Broker Communication

The second mechanism is between the client and the broker.
Only clients authenticated by us should be able to connect
to the brokers. For this, we have configured the server and
client to use TLS Certificates. These certificates are signed by
a common Certificate Authority. The clients will be able to
connect to the broker if and only if they are able to present
the broker with valid certificates signed by the Common Cer-
tificate Authority. This ensures a secured channel for message
transmission between the client and the broker. The client here
can be anyone a publisher as well as the subscriber. The clients
can connect only to a ”ssl://x.x.x.x:port” and not a plain TCP
connection. The broker will not accept the TCP connection in
such cases.

VI. EXPLORED APPROACHES

A. ETCD coupled with GRPC

1) etcd: etcd-io is a distributed key-value store used for
shared configuration and service discovery in distributed
systems. It provides a reliable way to store data across a
cluster of machines. It gracefully handles leader elections
during network partitions and can tolerate machine failure,
even in the leader node. Being built on Raft, etcd ensures
strong consistency. Raft is a protocol with which a cluster
of nodes can maintain a replicated state machine. The state

machine is kept in sync through the use of a replicated log.
The state machine takes a Message as input. A message can
either be a local timer update or a network message sent
from a remote peer. The state machine’s output is a 3-tuple
[]Messages, []LogEntries, NextState consisting of an array
of Messages, log entries, and Raft state changes. For state
machines with the same state, the same state machine input
should always generate the same state machine output.

2) Raft Consensus Algorithm: Raft is a simpler and im-
proved version of Paxos.Raft is based on a leader-follower
algorithm. Any changes made by clients are forwarded to the
Raft leader, which then replicates them to other nodes in the
cluster. Raft takes care of leader election, which ensures fault
tolerance in the system [3].

1) Raft Log Entries:
Each node in the Raft cluster maintains a replicated log.
Each log entry should represent a single client state
change operation (e.g., connect, disconnect, subscribe,
unsubscribe).

2) Raft Leader:
In Raft, one node is elected as the leader.When a client
state change occurs on the leader, it creates a new log
entry and replicates it to a majority of nodes in the
cluster.

3) Raft Replication: Raft ensures that the log entries are
replicated to a majority of nodes before they are con-
sidered committed. Once a log entry is committed all
nodes have the same client state.

4) Handling failures in Raft:

a) Leader Failure:
If the leader fails, a new leader is elected from
the remaining nodes. The new leader continues to
replicate client state changes and ensure consis-
tency across the cluster.

b) Node Failure:
If a follower node fails, the leader continues to
replicate log entries to other nodes, ensuring fault
tolerance.

3) Configuring etcd: On system startup, the brokers will
initially connect to the Load Balancer using the gossip proto-
col. The first broker that joins the system will start the etcd
cluster. Any subsequent broker that joins the system, will join
this pre-existing cluster.

There must be a reliable and continuous communication
channel (stream)/connection between all the brokers in the
cluster. Etcd internally uses gRPC to maintain this connection.
gRPC, which stands for Google Remote Procedure Call [11].

Whenever a broker joins the cluster it needs to form a gRPC
connection with each of the remaining broker nodes in the
system. When it leaves the cluster all the connections must be
gracefully handled and closed to mitigate any security threats
to the system.

1) The Client State

a) Connection properties: It contains information like
the will properties, which broker it is connected to
in the system, QoS levels, etc.

b) Subscriptions: It contains the list of topics the
client is subscribed to.

c) Client sessions: It contains information about the
active client sessions.

2) When to sync the data?
The client state of the broker will be updated when the
broker receives either a subscribe, unsubscribe, connect
or disconnect packet. The state across the brokers should
be synced when the broker receives any one of these
packets.

3) Packet forwarding to other brokers
We have tackled the client state synchronisation problem
with the above-mentioned approach. Now comes another
challenge that we need to tackle. We have to find some
way to transfer packets from one broker node to the
other.
The question arises why do we need to do this? Let’s
say there are 2 subscribers subscribed to the same topic
connected to 2 different brokers. Now some publisher
‘X’ publishes a message on this topic. It may happen
that this publisher ‘X’ is connected to some other broker
in the system. The broker to whom the publisher is
connected needs to process this packet. There will be
two cases the broker needs to handle:

a) There will be subscribers connected to the same
broker, subscribed to the topic the publisher has
published to.

b) There will be subscribers connected to some other
broker in the cluster, subscribed to the topic the
publisher has published to.

The first case is fairly simple to handle; the broker just
sends out the message to the intended subscriber. The
client state sync that we mentioned above comes into
the picture here. The broker figures out which brokers
have subscribers connected to them with the same topic.
Using the same gRPC connection that Raft uses, the
broker will forward the message to these brokers so that
they can further send these messages to the intended
subscribers.

4) One last thing left to do!
Now, there is only one thing left to do. How do we send
these packets to the brokers? One might think as it is
a gRPC connection we ought to use protocol buffers.
He may not be completely wrong about this one. Here’s
where Cap’n Proto comes into the picture. Cap’n Proto is
an insanely fast data interchange format and capability-
based RPC system. Cap’n Proto is highly efficient due
to the absence of encoding and decoding procedures. Its
encoding method is well-suited for both data exchange
and in-memory representation. This means that after
constructing your structure, you can save the bytes
directly to disk without any additional steps. As there

are no encoding and decoding processes involved, Cap’n
Proto is significantly faster than protocol buffers.

B. Kafka

Kafka is an open-source distributed event streaming plat-
form developed by LinkedIn and later open-sourced as a
part of the Apache project. It is designed to handle high-
throughput, fault-tolerant, and scalable event streaming in
real-time [4]. Kafka follows a distributed architecture model,
consisting of the following core components:

1) Architecture :
• Broker: Kafka brokers are the fundamental building

blocks of a Kafka cluster. They are responsible for storing
and managing the streams of records. Each broker can
be thought of as a single Kafka server instance. Brokers
are deployed as a cluster to provide fault tolerance and
scalability.

• Topic: Kafka organizes data into topics. A topic is a
particular stream of records, similar to a database table
or a message queue. Producers publish records to one
or more topics, while consumers subscribe to topics to
consume records.

• Partition: Each topic is divided into one or more parti-
tions. Partitions allow Kafka to parallelize data and write
and read across multiple brokers. Each partition is an
ordered, immutable sequence of records.

• Replication: Kafka provides built-in replication of parti-
tions across multiple brokers. Replication ensures fault
tolerance and high availability. Each partition has one
leader and one or more follower replicas. If a broker fails,
one of the replicas can be promoted to leader to continue
serving requests.

• Producer: Producers are applications that publish records
to Kafka topics. They send records to one or more bro-
kers, which then distribute the records to the appropriate
partitions.

• Consumer: Consumers are applications that subscribe to
Kafka topics to consume records. They read records from
one or more partitions in the topics they subscribe to.

• Consumer Group: Consumers can be organized into con-
sumer groups. Each consumer group consists of one or
more consumers that collectively consume all the records
in a topic. Kafka ensures that each record is consumed
by only one consumer within a consumer group, enabling
parallel processing of records.

2) How Kafka can be used in our architecture: In the
current system, Redis Streams is used to decouple connections
between MQTT brokers. Similarly, Kafka can be used to
achieve this decoupling by acting as the intermediary message
queue between brokers.

Each broker in the cluster acts as a producer and subscriber
to the same broadcast topic for the Kafka cluster. Every publish
packet is received by Kafka, consumed by all the brokers in the
cluster and processed by only those brokers which has clients
(consumers) connected to it for the topic of the published
message.

Test Broker publish fastest median slowest receive fastest median slowest

2 Clients 10000
Messages

AstraMQ 124,772 125,456 124,614 314,461 313,186 311,910

Mosquitto
v2.0.15

155,920 155,919 155,918 185,485 185,097 184,709

EMQX v5.0.11 156,945 156,257 155,568 17,918 17,783 17,649

Rumqtt v0.21.0 112,208 108,480 104,753 135,784 126,446 117,108

10 Clients
10000
Messages

AstraMQ 45,615 30,129 21,138 232,717 86,323 50,402

Mosquitto
v2.0.15

42,729 38,633 29,879 23,241 19,714 18,806

EMQX v5.0.11 21,553 17,418 14,356 4,257 3,980 3,756

Rumqtt v0.21.0 42,213 23,153 20,814 49,465 36,626 19,283

100 Clients
10000
Messages

AstraMQ 51,044 4,682 2,345 72,634 7,645 2,464

Mosquitto
v2.0.15

3,826 3,395 3,032 1,200 1,150 1,118

EMQX v5.0.11 4,086 2,432 2,274 434 333 311

Rumqtt v0.21.0 78,972 5,047 3,804 4,286 3,249 2,027

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT BROKERS UNDER VARIOUS CONDITIONS.

Kafka achieves ”at-least-once” delivery semantics by de-
fault. This means a published message is replicated across
multiple brokers in the cluster and delivered to at least one
subscribed consumer. Since each broker acts as a consumer,
all brokers will receive a copy of the message, guaranteeing
delivery to all.

3) Redis vs. Kafka: Redis Streams are faster with in-
memory operations, while Kafka relies on disk I/O, which
can introduce more latency. Kafka needs a complex setup
with multiple components, whereas Redis is simpler and easier
to manage. Kafka uses topic partitions for load balancing
and efficient offset management; Redis Streams do not have
partitions. Kafka automatically manages consumer groups and
rebalances them when consumers join or leave, offering robust
at-least-once and exactly-once processing.

VII. PERFORMANCE METRICS

Our test bench consisted of a Macbook Air M2 with 8GB
RAM. We had a cluster of 3 nodes running on the same system
along with Redis. We tested our system with multiple test
scenarios and found out that the system was quite resilient
to broker failures. The clients can reconnect to other broker
nodes in case the one where a client was connected fails.

Key tests included ensuring no packets are sent once a node
disconnects, and resuming packet transmission upon node
reconnection. Discovery time, reaction to burst messages, and
auto-scaling capabilities were assessed, alongside the master-
slave load balancer’s performance during master node failure
[13], [14]. Essential tests covered Redis failure and bandwidth
overload. The system’s convergence time and resilience against
DDOS attacks were also tested. Edge cases included the
system’s behaviour when only the load balancer is present, fan-
in scenarios, message sequencing under different QoS levels,
and handling broker failures before acknowledgement [17].

The above performance metrics show the results of mqtt-
stresser for the configuration of 2 clients, 10 clients, and 100
clients where each client is publishing 10000 messages each
second, which results in about 1 million messages for 100
clients.

For the following test we used the mqttloader tool for mea-
suring the latencies and average throughput. Configuration:

1) No of Publishers: 10
2) No of Subscribers: 10
3) No of messages published per publisher: 10000

Maximum latency [ms]: 42.063
Average latency [ms]: 37.380

Type Maximum Throughput Average Throughput
Publisher 30335 25000.000
Subscriber 229165 204081.633

VIII. CONCLUSION

The solution thus, provides increased scalability and perfor-
mance by the use of a Load-Balancer that is responsible for
distributing every Connect packet between broker nodes, to
ensure equal load among all the brokers. Redis is responsible
for storing inflight (messages that are not processed) messages
and the client state (including subscription tables, will mes-
sages, etc). Redis streams provide us with a fan-out delivery
of messages. This packet-level distribution approach proves
efficient in implementing the MQTT broker. This approach
with enhanced client connectivity, improves scalability. Dis-
tributing broker nodes ensures fault tolerance of the system
and makes it robust. Using a load-balancer ensures equal load
distribution across each node. Redis acts as a global shared
memory maintaining consistency. Redis-Streams are used to
decouple connections between client nodes and for guaranteed
message delivery.

ACKNOWLEDGMENT

We would like to express our heartfelt gratitude to Mr. Ishan
Daga, the founding engineer at Golain, for sponsoring the
essential research work. We are also deeply thankful to Dr.
Geetanjali Kale for her invaluable guidance throughout the
project.

REFERENCES

[1] R. Doshi, S. Inamdar, T. Karmarkar and M. Wakode, ”Distributed MQTT
Broker: A Load-Balanced Redis-Based Architecture,” 2024 International
Conference on Emerging Smart Computing and Informatics (ESCI),
Pune, India, 2024

[2] A. Das, I. Gupta and A. Motivala, ”SWIM: scalable weakly-consistent
infection-style process group membership protocol,” Proceedings Inter-
national Conference on Dependable Systems and Networks, Washington,
DC, USA, 2002

[3] Ongaro, D. and Ousterhout, J., 2014. In search of an understandable
consensus algorithm. In 2014 USENIX annual technical conference
(USENIX ATC 14) (pp. 305-319).

[4] Kreps, Jay, Neha Narkhede, and Jun Rao. ”Kafka: A distributed mes-
saging system for log processing.” Proceedings of the NetDB. Vol. 11.
No. 2011. 2011.

[5] [mqtt-v3.1.1] MQTT Version 3.1.1. Edited by Andrew Banks and
Rahul Gupta. 29 October 2014. OASIS Standard. http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html. (last visited: 1st May
2024)

[6] [mqtt-v5.0] MQTT Version 5.0. Edited by Andrew Banks, Ed
Briggs, Ken Borgendale, and Rahul Gupta. 07. March 2019. OA-
SIS Standard. https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-
os.html. (last visited: 1st May 2024)

[7] HashiCorp. ”Memberlist: Golang Package for Gossip-Based Member-
ship Protocols.” GitHub, https://github.com/hashicorp/memberlist. (last
visited: 1st May 2024)

[8] Redis. ”Redis: Open source in-memory data structure store.” GitHub,
https://github.com/redis/redis. (last visited: 1st May 2024)

[9] Mochi-MQTT Server - The fully compliant, embeddable high-
performance Go MQTT v5 server for IoT, smarthome, and pubsub.
https://github.com/mochi-mqtt/server (last visited: 1st May 2024)

[10] Comqtt - A lightweight, high-performance go mqtt
server(v3.0—v3.1.1—v5.0) supporting distributed cluster.
https://github.com/wind-c/comqtt (last visited: 1st May 2024)

[11] gRPC - https://grpc.io/ (last visited: 1st May 2024)
[12] Mishra, B.; Mishra, B.; Kertesz, A. Stress-Testing MQTT Brokers: A

Comparative Analysis of Performance Measurements. Energies 2021,
14, 5817.

[13] R. Banno, K. Ohsawa, Y. Kitagawa, T. Takada and T. Yoshizawa,
”Measuring Performance of MQTT v5.0 Brokers with MQTTLoader,”
2021 IEEE 18th Annual Consumer Communications & Networking
Conference (CCNC), Las Vegas, NV, USA, 2021, pp. 1-2.

[14] Load testing tool for MQTT, capable of benchmark test for both
MQTT v5.0 and v3.1.1 brokers. https://github.com/dist-sys/mqttloader.
(last visited: 1st May 2024)

[15] Koziolek, H., Grüner, S., Rückert, J. (2020). A Comparison of MQTT
Brokers for Distributed IoT Edge Computing. In: Jansen, A., Malavolta,
I., Muccini, H., Ozkaya, I., Zimmermann, O. (eds) Software Architec-
ture. ECSA 2020. Lecture Notes in Computer Science(), vol 12292.
Springer, Cham.

[16] Mishra, B. (2018). Performance Evaluation of MQTT Broker Servers.
In: Gervasi, O., et al. Computational Science and Its Applications –
ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol
10963. Springer, Cham.

[17] I. -D. Gheorghe-Pop, A. Kaiser, A. Rennoch and S. Hackel, ”A Per-
formance Benchmarking Methodology for MQTT Broker Implementa-
tions,” 2020 IEEE 20th International Conference on Software Quality,
Reliability and Security Companion (QRS-C), Macau, China, 2020,
pp. 506-513, doi: 10.1109/QRS-C51114.2020.00090. keywords: Trans-
port protocols;Performance evaluation;Standardization;Software qual-
ity;Benchmark testing;Software reliability;Security;Performance test-
ing;Benchmarking methodology;MQTT;IoT;Open Source;TTCN-3,

[18] Chen, Shanshan & Tang, Xiaoxin & Wang, Hongwei & Zhao, Han
& Guo, Minyi. (2016). Towards Scalable and Reliable In-Memory
Storage System: A Case Study with Redis. 1660-1667. 10.1109/Trust-
Com.2016.0255.

[19] National Institute of Standards and Technology (2001) Advanced
Encryption Standard (AES). (Department of Commerce, Wash-
ington, D.C.), Federal Information Processing Standards Publi-
cation (FIPS) NIST FIPS 197-upd1, updated May 9, 2023.
https://doi.org/10.6028/NIST.FIPS.197-upd1

