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Abstract—Identifying trends in on-device performance between
different deep-learning models is often challenging given the
variety of models published and the different devices used in
deployment. ModelGauge is a proposed solution that reports
the latency, memory, and bandwidth behavior of many different
inference configurations. Utilizing ONNX Runtime for CPUs and
NVIDIA TensorRT for GPUs, as well as the standardized ONNX
model format for model definitions, ModelGauge can easily
profile many architectures, allowing deployment engineers easy
access to statistics about inference performance. To demonstrate
the utility of the tool, we compare 32 different ONNX model
definitions and their on-device scaling behavior on an ARM
Cortex-A76 embedded CPU, AMD EPYC 9374F server CPU,
NVIDIA Jetson Orin Nano embedded GPU, and NVIDIA A100
server GPU. For this study, Pearson correlation is used to
show the linear relationship between a metric and a device
measurement to characterize behavior and show the utility of
bulk data collection. When comparing the number of floating-
point operations in a model to the latency for single-image batch
inference, the Pearson correlation is highest on the ARM Cortex-
A76 at 0.990 and lowest on the highly parallel NVIDIA A100
at 0.388. Across all devices and models tested, the linear trend
and Pearson correlation between the number of parameters
in a model and the memory is consistently greater than 0.9.
Additionally, we propose a new metric found by analyzing the
data translation lookaside buffer load miss count and the device
latency to help indicate models not using a significant amount of
the device. Overall, ModelGauge is useful for gathering statistics
about a variety of models across compute at many scales.

Index Terms—deep learning, benchmarking, machine learning,
high-performance computing

I. INTRODUCTION

As the number of deep-learning (DL) architectures con-
tinues to increase across different problem domains, it is
becoming increasingly challenging to determine which model
is likely to perform best for a given task. Beyond accuracy, it
is also important to verify that potential models reach latency
or memory targets for on-device inference given a specific
deployment platform. Therefore, a tool that can easily compare
many different architectures and report their performance
statistics is valuable in modern DL research and deployment.

We propose ModelGauge as a solution to this problem.
ModelGauge is built to profile the latency, memory, and
bandwidth behavior of DL models across CPU and GPU
devices. By providing a single tool to measure these three
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performance constraints, model practitioners can easily query
many architectures to gather additional data and insight into
which models will meet their performance targets.

ModelGauge utilizes two high-performance inferencing
frameworks, ONNX Runtime for CPU and NVIDIA TensorRT
for GPU, to provide a realistic analog for runtimes likely to be
used in deployment. Additionally, the tool utilizes other stan-
dard programs such as Valgrind Massif and NVIDIA Nsight
Systems to improve the accuracy of the values measured.
ModelGauge will measure any ONNX file in a target directory
and report the requested statistics.

To verify the utility of the tool, we compare 32 different
ONNX models on four devices: an ARM Cortex-A76 em-
bedded CPU, an AMD EPYC 9374F server CPU, a NVIDIA
Jetson Orin Nano embedded GPU, and a NVIDIA A100 server
GPU. The 32 models are comprised of seven different base
architectures with different variations in model scale and input
size. We compare the linear correlation between the floating-
point operations (FLOPs) and latency as well as the parameters
and memory to showcase the utility of gathering data across a
variety of models on a given system. Additionally, we propose
a new computational metric for CPUs based on the bandwidth
results. This new metric, titled the “Small Model Inefficiency
Rate,” could help engineers easily identify models that are
likely too small on the given device. Given the potential
benefits to the DL deployment community, we plan to open-
source our tool. Overall, in this research we:

• Propose ModelGauge as an easy tool for gathering the on-
device performance of many models on CPU and GPU
systems

• Validate ModelGauge using four different devices at
opposing compute scales and compute types

• Compare the scalability of 32 ONNX models on the four
target devices

• Discover server CPU performance trends more similar to
GPU systems than embedded CPU systems

• Propose a new metric for checking if a CPU device is
underutilized

II. BACKGROUND AND RELATED WORKS

In this section, we will outline some of the related research
in the field of DL benchmarks. Most benchmarks are designed
to better quantify a system for comparison with others. Mod-
elGauge instead focuses on easy analysis of many different



models on a chosen platform. Additional background on the
ONNX format and deployment runtimes is included.

A. DL Inference Benchmarks

The field of benchmarks for DL models is wide and con-
tinues to grow. Perhaps the most important effort in inference
benchmarking is the MLPerf Inference suite [1]. This bench-
mark is designed to be reproducible across varying systems
by quantifying representative workloads and provides rules to
fairly compare hardware setups and software packages. This
flexible tool has become a popular way to compare the overall
performance of a system and its accompanying software. The
benchmark fixes the model architectures which are profiled,
allowing for the comparison of systems. Similar to MLPerf
Inference, MLPerf Mobile Inference is designed to benchmark
the performance of ML models on mobile systems, though
it will run on non-smartphone devices as well [2]. Devices
typically benchmarked with this framework include mobile
phones and laptops.

Other smaller projects tend to focus on particular test
cases. Kustikova et al. created an inference benchmark that is
agnostic to the training framework and focuses on inference for
Intel platforms utilizing OpenVINO [3]. They analyze devices
by measuring latency, and therefore processing framerate,
at multiple batches. EDLAB is another benchmark tool for
measuring model inference performance on a variety of edge
systems [4]. Specifically, it measures performance on an Intel
Neural Compute Stick, NVIDIA Jetson Xavier, and Google
Edge TPU. This framework transforms a TensorFlow model
into the appropriate type for the given device-specific inference
framework. It records device latency, accuracy, throughput,
power, and floating-point operations per second.

Finally, Zhang et al. create a benchmark to study how deep-
learning hardware and libraries affect inference performance
on mobile (i.e., phone) processors [5]. They analyze the results
across CPU, GPU, and DSP subprocessors in device system-
on-chips. They also compare performance across different in-
ference libraries. Overall, they find large fragmentation among
model types, libraries, and devices. They find that library
selection can be one of the most impactful decisions for model
inference speed.

B. ONNX

ONNX is an open standard for defining models. It is
designed to enable transportability between systems and run-
times [6]. Given a DL model in a training framework such as
PyTorch or TensorFlow, an ONNX definition of the model can
easily be exported to a serialized file that includes details on
model operators and contains the trained weights. Downstream
inference pipelines can use this standardized definition as an
input for their runtime framework.

C. Deployment Runtimes

There are two deployment runtimes utilized in this research.
ONNX Runtime is a high-performance library that can uti-
lize many accelerators but is used for deployment on the

CPU systems in this research. NVIDIA TensorRT is a high-
performance framework for deployment on NVIDIA GPUs.
Both these runtimes are detailed below.

1) ONNX Runtime: ONNX Runtime is a model-inference
framework backed by Microsoft [7]. It is designed to perform
inference on many accelerator types, including GPUs and
FPGAs, while also supporting operations with a performant
CPU implementation. In this research, only these CPU imple-
mentations will be utilized for high-performance inference on
the CPU test platforms.

2) NVIDIA TensorRT: NVIDIA TensorRT is designed
specifically for high-performance inference on NVIDIA
GPUs [8]. This framework can convert models from other
formats, including ONNX, and generate performant TensorRT
Engines. The Engine is constructed using profiling from the
specific device to determine which kernel implementation
performs the best on that given platform. TensorRT Engines
can be serialized and saved for future use on that device as
generating the engine is non-deterministic and can be slow
due to the generation-time profiling.

III. APPROACH

ModelGauge measures the latency, memory, and bandwidth
behavior of models. Latency is often important because many
applications require models to reach real-time constraints, and
therefore, measuring the latency is required. Memory is a finite
resource on the device and must be shared by the applications
running, including the model inference frameworks. Finally,
bandwidth results help to provide lower-level insight into
model behavior and constraints on inference performance.

In this section, we will detail the setup for the ModelGauge
tool, including the testing parameters used. Additionally, we
will highlight the test platforms examined in this study. Next,
we will showcase the models tested to demonstrate the data
that can be gathered from ModelGauge.

A. ModelGauge

ModelGauge is developed in Python. Command line options
allow the user to choose which folder they would like to
search. This folder and any subdirectories are searched for
‘.onnx’ files representing the models to be analyzed. Addi-
tionally, the user can choose between the two runtimes, as
well as name the device they are testing on for saving the
results. Results are saved individually for each model in a
results folder.

As the parameters for testing slightly differ between the
CPU and GPU, they will be annotated separately in the fol-
lowing subsections. Please note that many of these parameters
are also configurable through a YAML file. The same base
ModelGauge script can be used on the different systems, and
runtime dependencies are not loaded until the user selects their
runtime type.

Along with the ‘.onnx’ file for a model, the tool will look
for a ‘.info’ file with the same name. This file can contain any
data stored in JSON format that will then be concatenated to
the result file for that model. The info file is useful for storing



model information such as version, parameter count, accuracy,
or FLOP count.

1) CPU Model Profiling: Latency is relatively simple to
measure on the CPU. Simply profiling the wall-clock time
of inference on a model allows us to understand the over-
all latency of model processing. In Python, this can be
performed with the built-in time package, specifically, the
time.perf_counter() function. First, the inference is
run and not timed for 20 cycles to prime any caches in the
device. Then, latency is averaged over 100 inference cycles.

Memory is more complicated to measure. Memory itself
can be a loose term due to complex and often obfuscated
components of the memory subsystem such as virtual mem-
ory and paging. Additionally, Python libraries themselves
are often written in C/C++, meaning Python’s own memory
management may not be aware of all allocated memory.
Therefore, to measure the memory for inference, Valgrind
Massif is utilized [9]. Massif measures memory accesses and
allocation over time. While some memory may still not be
fully measured, we have determined Massif to be the best
tool given its long history and support. Additional discussion
on memory can be found in Section V. Python is set to
use a standard malloc function via an environment variable
to help with analysis via Massif. A simple Python script
that performs inference 10 times is analyzed via Massif. The
maximum memory, including allocations on the heap and the
stack, is recorded. Memory measurements are averaged across
10 samples. Larger sample counts are time-consuming with
Massif.

Bandwidth, or caching behavior, is measured by the Linux
perf tool [10]. This tool can capture details about the
instruction calls, cache hit and miss rates, and other detailed
reports of program performance. The main downside to perf
is that it requires elevated privileges of the kernel to measure
these values. Therefore, bandwidth measurements cannot be
gathered on all devices when the kernel is more restricted (e.g.,
shared computing resources hosted by universities). Measured
values in this research include: cpu cycles, instructions, cache-
references, cache-misses, L1-dcache-loads, L1-dcache-misses,
branch misses, and dTLB-load-misses. Again, a simple Python
script runs the model for 100 inferences. All collected values
are averaged across 10 samples. Due to the depth of perf,
recording additional samples can be time-consuming.

2) GPU Model Profiling: Latency is measured using
NVIDIA’s trtexec program [11]. This program is designed
to profile NVIDIA TensorRT engines. It will automatically
measure the overall latency of the engine. The minimum
warmup for priming the caches is set to one second. Data is
then gathered for a minimum of five seconds and at least 100
iterations. trtexec then reports statistics about the latency
average and standard deviation, which is saved with the other
results for the model.

Memory is measured utilizing NVIDIA Nsight Sys-
tems [11]. Nsight Systems reports a detailed account of mem-
ory transfers and allocations on a GPU subsystem for a given
program. This detailed information can then be leveraged

to understand memory transfers between the host and the
device, as well as memory transfers within the device itself.
A TensorRT engine is first generated with trtexec and is
serialized. This engine is then profiled with Nsight Systems
with inference performed for one iteration using trtexec to
analyze the memory required for loading the model, an input,
and an output. Since model generation is nondeterministic,
this process from engine generation to analysis is repeated
100 times.

Bandwidth is also measured utilizing NVIDIA Nsight Sys-
tems. Using one of the TensorRT engines, the execution of
trtexec is again profiled for 100 iterations. Note that due
to the time to generate multiple engines, only one engine is
profiled. Measured behavior includes host-to-device transfers
and device-to-device transfers. The count, average bytes, av-
erage transfer time, and average bandwidth are collected for
each transfer type.

TABLE I: Table highlighting the devices under test. Note
that the NVIDIA Jetson Orin Nano has a shared-memory
architecture.

Type Device Class System
Memory

Device
Memory

CPU
4-core ARM Cortex-A76
(Raspberry Pi 5) Embedded 8 GB -

32-core AMD EPYC 9374F
(Genoa) Server 768 GB -

GPU NVIDIA Jetson Orin Nano Embedded 8 GB
NVIDIA A100 Server 40 GB 40 GB

B. Test Platforms

The four test platforms highlighted in the research are
shown in Table I. The embedded CPU under test is a quad-core
ARM Cortex-A76 processor found in the Raspberry Pi 5. This
system features 8 GB of RAM. The server CPU under test is
a 32-core AMD EPYC 9374F (Genoa) CPU with 768 GB of
system RAM.

The embedded GPU under test is the NVIDIA Jetson Orin
Nano. This system has 8 GB of shared memory between the
CPU and GPU on the system-on-chip. The server GPU under
test is the NVIDIA A100, which has 40 GB of host memory
and 40 GB of device memory.

The two server-class systems are housed at the University of
Pittsburgh Center for Research Computing. Due to the shared
nature of these systems, Linux perf could not be run on
the AMD EPYC CPU. Therefore, bandwidth results are not
included for this device. No additional privileges were required
for the GPU measurements.

C. Model Analysis

To analyze the usability of ModelGauge, we compared the
performance of seven different image-classification models,
shown in Table II. The models chosen were meant to compare
with commonly used mobile-designed models, such as Mo-
bileNetV2 and MobileViT, as well as both convolutional neural
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Fig. 1: Comparing model FLOPs count versus the latency for inference. Error bars represent the standard deviation for each
measurement. Dashed lines represent a linear fit for each series of data. Note the semi-log axis.
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Fig. 2: Comparing model parameter count versus the memory consumption for inference. Error bars represent the standard
deviation for each measurement. Dashed lines represent a linear fit for each series of data. Note the semi-log axis.

TABLE II: Table highlighting the models tested, any variations
tested, and the input image sizes tested. CNNs are retrieved
from the TorchVision model zoo [12]. ViTs are retrieved
from the HuggingFace Transformers library [13]. Original
publication sources are listed in the “Pub” column.

Type Model Name Variants Input Sizes Pub.

CNN

EfficientNetV2 small 32,128,224 [14]

MobileNetV2 width mult
={0.2,0.4,0.6,0.8,1.0} 32,128,224 [15]

MobileNetV3 small,large 32,128,224 [16]
ResNet-50 - 32,128,224 [17]
WideResNet-50 - 32,128,224 [18]

ViT ViT - 224 [19]
MobileViT - 256 [20]

networks (CNNs) and vision transformers (ViTs). Addition-
ally, to investigate the effect of input size, we varied the input
size between 32, 128, and 224 pixels square for the CNNs.
The CNNs were downloaded from the Torchvision [12] library
and exported to the ONNX format. The ViTs were constrained
to set input sizes, which could not be easily changed. These
models were downloaded from the HuggingFace transformers
library [13].

Additionally, the number of parameters and FLOPs of each
model were exported. The number of parameters is found
by counting the number of trainable values in the PyTorch
models. The number of FLOPs is estimated using the PyTorch-
OpCounter library [21]. This additional data will allow us to
compare the scaling trends across the different input models.
While additional metrics, such as Critical Datapath Length
(CDL) [22] would also help explain model performance, our
focus in this research is to highlight the ease of gathering data
and the quick ability to identify trends amongst many models
on varying systems.

IV. RESULTS

The main result of this research is a tool for easily mea-
suring the on-device behavior of many models. In order to
exemplify the utility, we highlight the results of gathering
latency, memory, and bandwidth data for the models listed
in Table II. We explore the linear scaling trends of latency,
memory, and bandwidth behavior. On all charts, a dashed line
represents the linear fit for each series of data, with a series
being a different input image size. Additionally, error bars on
each point represent the standard deviation, which is often
negligible and not visible. An additional subsection details
how bandwidth results can be utilized for developing derived
metrics.

By utilizing linear regression and finding the Pearson corre-
lation, we can capture how well a model metric characterizes
a linear scaling trend for device performance. While this type
of result could theoretically be used for predicting device
performance given the metrics of a new model, inference per-
formance is often too complex for one metric alone. Instead,
we use these results to see how the linearity of the trends
differs across the four devices tested.

A. Latency and FLOPs

The latency trends for the models and devices tested are
shown in Figure 1. Here, latency is compared to the number
of FLOPs estimated to be in the model. The FLOPs metric is
an approximation of the computational complexity of a model
assuming each operation would occur serially.

The Pearson correlations between FLOPs and latency on
each device are shown in Table III. On the more serial embed-
ded CPU, the correlation is quite strong at 0.990. However,
on a highly parallel device such as the NVIDIA A100, the
correlation drops significantly to 0.388.

These results match previous research [22], which showed
that FLOPs alone are insufficient for explaining performance



TABLE III: Pearson correlation between FLOPs and latency.

Device Pearson p-value

ARM Cortex-A76 0.990 p=8.8 · 10−27

AMD EPYC 9374F 0.698 p=9.0 · 10−6

NVIDIA Jetson Orin Nano 0.878 p=4.3 · 10−11

NVIDIA A100 0.388 p=2.8 · 10−2

on parallel devices such as GPUs. ModelGauge additionally
shows that FLOPs are not a strong linear predictor on server-
grade CPUs. On the AMD EPYC 9374F, the Pearson corre-
lation is 0.698. This result highlights that current server-class
CPUs have enough parallelism for FLOPs to not scale linearly
with performance as they do on the embedded CPU.

B. Memory and Parameters

Memory behavior is shown in Figure 2 and is compared
to the number of parameters in a model. Across all devices,
memory and the number of parameters relate very well,
showing near-linear scaling behavior across the tested models.
On the AMD EPYC 9374, the outlier with many parameters
but below the general trend for s=224 is ViT. Since ViT has
a different compute structure than the other CNNs tested, it
likely has a different memory layout and requirements.

TABLE IV: Pearson correlation between the number of pa-
rameters and memory.

Device Pearson p-value

ARM Cortex-A76 0.999 p=6.9 · 10−40

AMD EPYC 9374F 0.938 p=2.5 · 10−15

NVIDIA Jetson Orin Nano 0.998 p=9.9 · 10−39

NVIDIA A100 0.999 p=1.5 · 10−43

The trends shown in the graphs are confirmed by the
Pearson correlations across the models on the four devices,
shown in Table IV. Across all four devices, memory and the
number of parameters have a Pearson correlation greater than
0.9. The device with the lowest correlation is the AMD EPYC
9374 at 0.938. This correlation is lower because of the ViT
model; when the ViT model is not included in the regression,
the Pearson correlation increases to 0.999 (p=4.3 · 10−40).

C. Bandwidth
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Fig. 3: Comparing bandwidth performance on two devices.
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The bandwidth behavior varies by platform. Here, we high-
light the cache misses on the ARM Cortex-A76 and the aver-
age device-to-device (D2D) transfer size on the NVIDIA Jet-
son Orin Nano, shown in Figure 3. On the CPU device, cache
misses correlate higher with FLOPs (Pearson=0.984, p=4.9 ·
10−24) than with the number of parameters (Pearson=0.816,
p=1.2 · 10−8).

On the NVIDIA Jetson Orin Nano, no clear trend is evident
between the average D2D transfer size and the number of
parameters or FLOPs. Additionally, there is often a larger
variance in the average D2D transfer size shown by the larger
error bars in Figure 3b. Likely, a different perspective than the
two common base metrics of the number of parameters and
FLOPs is needed to better detail the caching behavior on the
GPU.

D. CPU Bandwidth Metric: Small Model Inefficiency Rate
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Fig. 4: Histogram showing the frequency of different values
for the “Small Model Inefficiency Rate” metric. This metric
is found by dividing the dTLB load misses by the latency in
milliseconds. Additionally, the value has been scaled down by
106 for legibility and discussion.

With the ability to measure bandwidth statistics, we can
investigate novel metrics that help to explain performance
and model structure. For example, on the CPU device, we
can measure the data translation lookaside buffer (dTLB) load
misses divided by the model latency, which we will call the
“Small Model Inefficiency Rate” (SMIR). Essentially, this
value appears to highlight the models that are particularly
small and likely not fully utilizing the embedded CPU.

Figure 4 shows a histogram of the tested models. Note that
SMIR values have been scaled down by 106 for legibility and
to ease the discussion of data. We find that in this exponential
trend, the models in the tail tend to be small, have small inputs,
and have small latencies. Essentially, the models and their
inputs appear to be so small that they don’t effectively use
all the compute capabilities of the device for the number of
memory transactions. For example, the largest SMIR belongs
to MobileNetV2 at 0.2× scaling with a 32×32 input. All other
input sizes for MobileNetV2 at 0.2× scaling have a SMIR
greater than 0.15. Additionally, MobileNetV3 small with the
smallest input falls in this range.

We believe this metric could be useful for providing insight
into the memory access patterns for models. Lower SMIR
values show a mix of model types, latencies, and input sizes.



However, larger SMIRs in our testing specifically belong to
models with very low latencies and disproportionately larger
dTLB load misses. Comparing SMIR across larger devices
would help to highlight more of these memory access trends,
but the restrictions on the shared server CPU system limit
this study. More verification of SMIR is needed to confirm its
utility for identifying models that are too small.

V. DISCUSSION

Through the use of ModelGauge, we were able to quickly
and efficiently identify performance trends across a variety
of models on four different systems. The ability to gather
this data represents the most impactful component of our
research. In future efforts, we will use this tool to expand our
understanding of how model metrics and performance scale
across devices.

In this scalability study, we found that the modern server
CPU system has enough parallelism to have a lower correlation
between FLOPs and latency than the embedded GPU system.
Given the 32 cores found on the AMD EPYC 9374F CPU
and its high power ceiling, ONNX Runtime is able to perform
very quick inference. This result highlights the need for other
metrics such as CDL on the server-class CPU system as well
as the GPU systems. Given that the linear correlation between
latency and FLOPs is lower for the AMD EPYC CPU than it
is for the NVIDIA embedded GPU, it also highlights how the
server CPU performance is more similar to the embedded and
server GPU systems than the embedded CPU system.

It is also worth noting that the AMD EPYC CPU has
similar latencies to the Orin Nano GPU. The Orin Nano has
an approximate power budget of 15 W for the whole system,
while an EPYC CPU has a default TDP of 320 W [23]. Given
the similar performance of these two systems with a batch size
of one, but vastly different power requirements, a study into
throughput differences between the devices would likely help
to differentiate the systems.

The Pearson correlation between memory and parameter
count is high, even on the GPU devices. This result differs
from previous research in [24] where an estimation of GPU
memory often fluctuated due to the size of memory required to
store the activations. In this study, there was in general a low
standard deviation for the memory measurements. Given the
previous study in [24] had estimated memory, while this study
measures the on-device performance, there likely does exist
lower variability in TensorRT Engine memory usage as seen in
Table IV. Therefore, studying many different implementations
of a TensorRT engine for the same models is likely not needed
in future research.

Additionally, we believe our measurements of memory on
the CPU to be the most useful. Other measurements of the
resident set size or virtual memory size would measure the
values currently in RAM or would include shared libraries
and other data objects. Massif, instead, focuses on memory
allocated to the heap and memory stored on the stack [9].
Essentially, Massif allows ModelGauge to focus on the mem-
ory allocations needed specifically for the model under test.

We believe, by wrapping Massif into this easy-to-use tool, we
provide a fair representation of memory usage for comparing
across model types while reducing variability from shared
libraries or other memory components.

VI. CONCLUSIONS

Measuring the on-device performance of DL models is
increasingly important given the growth of many modern ar-
chitectures and the increasing ubiquity of machine learning. By
understanding the latency, memory, and bandwidth behavior of
these different models, we can make better-informed decisions
about which models we choose in a deployment scenario
or develop better architectures for more efficient inference.
However, benchmarking performance can be challenging given
the number of models in existence and the need for varying
performance metrics such as latency and memory.

ModelGauge is our proposed solution to this problem.
Through this tool and the use of the standardized ONNX
format, many models can easily be measured and quantified
across a variety of devices. By using the high-performance
inferencing frameworks of ONNX Runtime on CPUs and
TensorRT on GPUs, ModelGauge is able to profile expected
model behavior on devices ranging from embedded to server
scales. Built on top of other industry standard tools such as
Valgrind Massif and NVIDIA Nsight Systems, our tool was
able to successfully profile many models and their variants
across four test devices. With the models tested, we found
a high linear correlation between the number of parameters
in a model and the memory used across all devices. The
latency linearly correlates well to the number of FLOPs on
the embedded CPU, but the correlation degrades on the other
devices where more parallelism exists. The server CPU system
tends to have latency and parameter count trends more similar
to GPU systems than to the embedded CPU system.

Additionally, we propose SMIR as a new metric to capture
memory access patterns. SMIR is found by dividing the dTLB
load misses by the model latency. This metric followed an
exponential trend, with models that were particularly small
having a disproportionately large SMIR. After further future
verification of SMIR on more architectures and more devices,
we aim for model deployers to be able to check to see if
their model is underutilizing the device. Overall, ModelGauge
is designed to be useful to the community, and we plan to
open-source the tools so others may use it and add additional
devices and runtimes.

VII. FUTURE RESEARCH

Development of the ModelGauge and study of standard
image-classification models limited the scope of this article. In
future research, we plan to utilize this tool to benchmark the
scalability of models across CPUs and GPUs targeted at em-
bedded and server workloads. We plan to explore how model
metrics scale with device performance. Additionally, further
study on the impact of batch size would be useful. Finally,
adding support for models with weights stored separately from
the definition would allow testing with larger models.
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