
Optimizing FPGA Memory Allocation for
Matrix-Matrix Multiplication using Bayesian

Optimization
Mehmet Gungor

Department of ECE
Northeastern University

Boston MA, USA
0000-0001-5154-1809

Stratis Ioannidis
Department of ECE

Northeastern University
Boston MA, USA

0000-0001-8355-4751

Miriam Leeser
Department of ECE

Northeastern University
Boston MA, USA

0000-0002-5624-056X

Abstract—Matrix-matrix multiplication (MM) of large matri-
ces plays a crucial role in various applications, including machine
learning. MM requires significant computational resources, but
accessing memory can quickly become the bottleneck. Field-
Programmable Gate Arrays (FPGAs) offer a range of memory
options, such as Block RAM (BRAM), UltraRAM (URAM),
and High Bandwidth Memory (HBM), each with unique char-
acteristics. In this study, we explore the optimal combination
of HBM with either BRAM, URAM, or both, depending on
the size of the input data. We employ Bayesian optimization
to optimize the FPGA implementation, analyze the trade-offs
between different memory types, and determine the most suitable
memory allocation based on memory sizes. Our findings provide
insights for designers seeking to optimize their designs, and
demonstrate that URAM outperforms a combination of BRAM
and URAM when data fits in URAM. Overall, our approach
enables more efficient memory allocation for larger matrix sizes
on FPGAs compared to prior research.

Index Terms—matrix-matrix multiply, FPGA, High Bandwidth
Memory, Bayesian Optimization

I. INTRODUCTION

Matrix-matrix multiplication is an important component in
many modern applications, including networking applications
and machine learning. With big data, multiplying large matri-
ces is becoming increasingly important. While matrix matrix
multiplication is compute bound for small matrices, it quickly
becomes memory bound for larger applications.

As data access has increasingly become the bottleneck,
accelerator manufacturers have integrated many different types
of memory to improve data access. As its name implies,
High Bandwidth Memory (HBM) provides higher bandwidth
memory compared to DDR and is widely used in machine
learning applications. NVIDIA introduced HBM into its GPUs
in 2016, and Xilinx introduced HBM in its Ultrascale+ FPGAs
in 2016 [1]. The same Ultrascale+ devices also introduced Ul-
traRAM (URAM) [2]. There is more URAM on an Ultrascale+
FPGA, but it supports fewer ports than Block RAM (BRAM).

While these different types of memory are provided to help
users achieve the best data access for their applications, there
are few optimization tools and little guidance regarding how

best to use them. We address this gap in this paper. Specifi-
cally, we investigate the use of different types of memory on
an FPGA with the goal of determining the best assignment
of data to memory for fast Matrix multiplication. As an
application we analyze GEMM: General matrix multiply, one
of the Basic Linear Algebra subprograms, and investigate
how best to optimize memory assignments to achieve good
performance. We start with data being transferred from the
host to the HBM. We then investigate how best to bring blocks
of memory into either BRAM or URAM to efficiently feed
data blocks for processing on the FPGA fabric and identify
the best assignment of data to memory to improve throughput
and system performance.

We apply Bayesian optimization to choose the best memory
allocation. Several studies discuss how FPGAs have been used
to accelerate Bayesian optimization. There are few examples
where Bayesian optimization is applied to the hardware design.
This paper is the first application of Bayesian optimization to
memory allocation. We use Pareto graphs to provide guidance
for selecting the best memory allocation, based on the size of
the input matrices.

The contributions of this paper are:

• A quantitative analysis of the allocation of different types
of memory on an FPGA to improve overall performance.

• The application of Bayesian optimization to determine
the best allocation of data to different memory types on
an FPGA.

• Advice to designers regarding how to allocate memory
based on the results of the Bayesian optimizer and an
analysis of the Pareto frontier.

The remainder of the paper is organized as follows. We
present background on matrix multiplication, different mem-
ory types, Bayesian optimization and related work in Sec. II.
We present our methodology and experiments in Sec. III, and
present and discuss results in Sec. IV. We end with conclusions
and a discussion of future work. More details can be found in
the first author’s PhD dissertation [3].



II. BACKGROUND

A. Matrix Matrix Multiplication

Matrix multiplication is a widely used application in ma-
chine learning including linear regression and principal com-
ponent analysis. Neural Networks (NNs) rely heavily on ma-
trix operations. In this research we examine GEMM: GEneral
Matrix Multiplication , one of the Basic Linear Algebra Sub-
programs (BLAS), which involves multiplying matrices A and
B. Optimizations of GEMM frequently involve decomposing
one or both of A, B into block matrices. We use block
matrix multiplication in this work. Our implementation is
straightforward. Our focus is not on the most efficient MM
implementation, but rather on memory access patterns.

B. FPGA Memories

TABLE I
MEMORY FOR ALVEO U280

Memory Capacity Bandwidth Ports Rd Latency
Block RAM 9.072MB 5.4GB/s 2 per BRAM 1-2
UltraRAM 34.56MB 1.35GB/s 2 per block 1-5
HBM 8GB 460GB/s 32 (max) 40-50
DDR 32GB 38 GB/s 2 50-60

There are several different types of memory available on the
Ultrascale+ devices from AMD. We focus on the AMD Alveo
line of data center accelerator cards with High Bandwidth
Memory [4]. We examine the use of HBM in conjunction
with other memory types and how the memory allocation
affects the performance of GEMM. The experiments apply
directly to Alveo U50, Alveo U55c and Alveo U280 accel-
erator cards. We did our experiments on the U280, which
has DRAM; however, DRAM was not used in this research.
Our approach examines the use of Block RAM (BRAM)
and UltraRAM (URAM) in conjunction with High Bandwidth
Memory (HBM). The amount of different types of memory
on the U280 and their characteristics is shown in Table I.
Specifically, the table shows total capacity, peak bandwidth,
maximum ports, and read latency in clock cycles. Each Block
RAM in the Xilinx UltraScale architecture-based devices
stores up to 36 Kbits of data and can be configured as either
two independent 18 Kb RAMs, or one 36 Kb RAM. Block
RAM (BRAM) is integrated within the FPGA fabric. The
Alveo U280 has 2016 Block RAMs which can be configured
as true dual port or simple dual port. True dual port BRAMs
have two independent ports that can be used for either writing
or reading. In contrast, when the block RAM is used in simple
dual port mode, independent read and write operations can
occur simultaneously, however port A is designated as the
write port and port B as the read port. Hence simple dual
port mode is less flexible than true dual port mode.

In addition to BRAM, the Alveo U280 also has 960 Ultra-
RAMs on chip. UltraRAM blocks are 288 Kb, organized as
72 bits x 4K entries. URAMs are single clock, synchronous
memory blocks arranged in columns on the device. Each
UltraRAM has two ports, and each port can perform either a

read or a write operation per cycle. UltraRAM should provide
fast access as it is on chip.

HBM is an in package, but off-chip memory. Due to the
way the memory is integrated with the FPGA, high bandwidth
can be supported. The Alveo U280 has 8GB of HBM with
peak memory bandwidth of 460GB/sec. For HBM, 32 pseudo
channels connect to 16 physical channels. However, there may
be routing complexity added when they are all connected to the
design. The peak bandwidth happens when all the ports are
reading data at the same time from different banks in burst
mode. We benchmarked the case where they are accessing
data from the same bank. If we let 8 or 16 ports issue 25 read
operations to the same memory bank simultaneously and the
ports do not operate in burst mode, the latency for each port
is observed to be 40-50 clock cycles.

C. Bayesian Optimization

Bayesian optimization [5] is an optimization framework
designed to optimize objective functions that are expensive to
evaluate. It is particularly well-suited for global optimization
of black-box functions – those for which the analytical form is
unknown and derivatives are not available, but function calls
themselves are expensive to compute; a canonical example
is hyperparameter tuning in deep learning [5]. On a high-
level, the method relies on Bayesian inference to model the
objective function, and produces a sequence of inputs that
both explore the input space, but also are in regions where the
objective is indeed optimized. Formally, Bayesian optimization
models the function as a Gaussian process [6] with a known
covariance (usually determined by a kernel, such as Radial
Basis Function or RBF). As observations (evaluations of
the objective function) are collected, the Gaussian process
assumption allows computing a posterior over unseen function
values. The posterior can be used to both (a) predict function
values for new inputs in expectation, thereby interpolating be-
tween values already seen, but also (b) measure the uncertainty
in these predictions.

Bayesian optimization leverages this to select which inputs
to sample (i.e., evaluate the function on) next. In particular,
inputs to be explored are determined by picking points that
maximize a so-called acquisition function: this usually takes
into account the expected value but also the uncertainty at
that location. Using for example the upper-confidence bound
(UCB) acquisition function, exploration can trade-off between
sampling parts of the input space where the function is
expected to be large, while also exploring inputs where the
function is highly variant. Thus, the sequence of evaluations
produced is guided towards finding an optimal value, while
not leaving regions of the input space unexplored.

We use a publicly available Bayesian optimizer [7] to
explore the best allocation of data to memory types. We use a
Gaussian/RBF kernel with a Upper COnfidence Bound (UCB)
acquisition function. The black box function runs the make file
for the HLS code as described in Sec. III. This is a good match
for Bayesizan optimization, as the equation for implementing



the optimization is unknown and highly non-linear and the
evaluation of each design point takes hours.

D. Related Work

There are several papers describing the results of mapping
applications to FPGAs that take advantage of different types
of memory. ScalaBFS [8] runs the BFS algorithm on multiple
processing elements and uses BRAM and URAM to store
intermediate states. There is no discussion presented regarding
the size or type of URAM vs. BRAM, and their achieved
clock speed, 90MHz, is low. The low frequency may be due
to routing to memory.

A number of papers highlight how HBM can benefit an
application. [9] shows how HBM can benefit a database
application. Graphlily [10] proposes an overlay to accelerate
GraphBLAS on an FPGA with HBM. [11] analyzes the
use of HBM by getting benchmarks of real world usage of
HBM channels and using different access patterns, resulting
in advice to increase the performance of HBM.

Several researchers have looked at tools for optimizing
memory bandwidth and latency. HBM Connect [12] is a
tool for optimizing the bandwidth for HBM accesses. The
Dynaburst project [13], [14] looks at reordering accesses
to DRAM for non-streaming applications to improve DDR
access times. While these tools are solving similar problems
to the one presented here, they do not consider HBM in
conjunction with tradeoffs between BRAM and UltraRAM. An
older paper [15] looks at optimizing different on-chip memory
resources on an FPGA, but the paper predates the availability
of HBM.

[16] focuses on restructuring BRAM resources on an
FPGA by inferring memory allocation in HLS by providing
three different models and an automation tool that analyzes
performance and resource trade-offs to optimize system per-
formance. This research focuses on BRAM, while our research
includes BRAM, URAM and HBM, thus covering a larger
design space on FPGA hardware.

Others have used FPGAs to accelerate Bayesian optimiza-
tion [17]–[19]. We use Bayesian optimization to improve
our FPGA design, specifically to choose the best memory
allocation for a particular matrix multiply problem. Others
have applied Bayesian optimization to circuit design [20], [21].
A recent paper applies Bayesian optimization to optimizing the
resources on an FPGA from an HLS implementation [22]. This
is the first time that Bayesian optimization has been applied
to memory allocation on FPGAs.

III. METHODOLOGY

We have selected a block matrix multiplication design that
takes two large dense square matrices from HBM in smaller
square blocks, and processes these blocks on the FPGA. Our
design assumes the input and output matrices fit completely
in HBM. For the Alveo U280, this means we can multiply
two 2.6 GB input matrices. For our current results, the largest
size we test is square matrices with close to 18 Megabytes for
each input matrix. The size is limited by the time it takes to

create and optimize the design, and not by the implementation.
Larger matrices can easily be handled with the underlying
block-based algorithm. Matrices where the inputs and output
do not entirely fit into HBM can also be handled if they
are broken up into blocks by the host and fed to the FPGA
memory.

The block matrix matrix multiplication design is imple-
mented with Vitis HLS. We place square matrices in HBM
from the host. Our design separates each input matrix into
multiple square blocks and reads each block from a separate
channel to HBM. These block are multiplied in parallel; for
an MxM block size the parallelization is M. After execution,
the result is added to an output cache, which holds the final
result, and is then written back to off-chip memory. For lock
matrix multiplication we unroll the innermost for loop in
order to do MAC operations in parallel, and we partition the
block arrays accordingly. The implementation cycles through
until all blocks are multiplied and placed back in HBM. We
read each row of the input matrix block from HBM to on-
chip memory (BRAM, URAM, or a combination) so that the
matrix multiplication computation can be done efficiently by
reading input data from on-chip memory. We do design space
exploration in HLS in terms of resource utilization and timing
effects that result when using different sizes and types of on-
chip memories.

There are many optimizations that can be applied, even
to our straightforward MM implementation, in High Level
Synthesis (HLS). We apply several HLS pragmas, including
array partitioning. The first input is partitioned by row and the
second input array is partitioned by its columns to multiply
rows and columns in parallel. We usethe bind storage pragma
to assign on-chip memories for inputs, outputs and the output
cache. We also apply unrolling to the inner loop of block
matrix matrix multiplication.

We explore how to map the blocks to on-chip memory, and
consider Block RAMs, URAMs and a combination. We ignore
the fact that CLBs can also be used as memory, because we
want the design to be as resource efficient as possible, and on-
chip dedicated memory is a more efficient use of resources.
As the size of on-chip memory required increases, the routing
between memory elements can become an issue. This results
in a lower clock frequency in the design in order to meet
timing requirements.

To explore the memory choices we use a Bayesian optimizer
[7]. In our case, to evaluate the objective function, we generate
and verify the new generated design, calculate performance
and store generation reports in each iteration; this step can
take 2 to 3 hours.

The overall optimization process works as follows. We start
with the HLS code for block matrix-matrix multiplication,
where block size is a parameter. We give the Bayesian op-
timizer a range of block sizes that can fit in on-chip memories
and we set the on-chip memory type to try along with the
HLS code. The optimization goal is throughput of the design.
Throughput is measured from the host, and defined as the
number of bytes in the input matrices divided by the runtime.



The optimizer chooses a block size within the input range,
runs HLS and generates a xclbin file and host code that can
verify and measure the throughput of the design. The generated
bitstream is then downloaded to the Alveo U280 and run. The
throughput is measured and returned to the optimizer. This
process is automated with a python script where a user only
needs to provide memory ranges and memory type.

5Define throughput: Given size of Input matrices in bytes,
measure the time from host until result is returned to the host.
throughput = bytes/time.

In order to download the design generated by Vitis HLS to
the board, we link the IP with a shell from AMD [23]. Both
the generated IP block and the host code changes with block
size. The Bayesian optimizer, given a block size range and
on-chip memory type does the following:

1) change the HLS code block size parameter and sets on-
chip memory types as the user provided.

2) changes the host code test matrix size.
3) builds the project to generate the xclbin file
4) builds the host code
5) loads the xclbin file to the board and runs the host binary
6) reads the performance results and returned it to the

Bayesian optimizer.
7) Bayesian optimizer selects a new block size according

to the performance and goes back to step 1.

We explore with 5 iterations for each memory type and in
addition we experiment with the URAM design in 3 different
ranges to compare with other memory options.

A. Experiments

For our experiments we use an AMD/Xilinx Alveo U280
card that has 7.8 MB of on-chip Block Memory (BRAM)
and 33 MB of Ultra RAM (URAM) as well as 8 GB of
HBM with 32 pseudo channels. For High Level Synthesis
we use Vitis 2022.1. Each experiment requires 2 to 3 hours
to generate a solution. We generate two random matrices on
the host machine and transfer them to the FPGA’s HBM.
We experimented with matrices in the range of .5 Megabytes
(200 x 200 elements) to close to 18 Megabytes (2164 x 2164
elements). Then we start our matrix matrix multiplication
design, which runs until all blocks are multiplied and the
results are stored back in HBM. Finally the results are read
back to the host. We measure end to end performance starting
with the time that the input matrices are sent to the FPGA and
ending with the read back of the results from the FPGA by
the host, so total time includes matrix transfer time between
host and FPGA. We integrate the Bayesian optimizer by giving
it the configuration of memories and the block matrix upper
and lower size bounds, The Bayesian optimizer tries different
block matrix sizes, gets performance results, and tries to
optimize the overall performance. A range of block matrix
sizes are given to the Bayesian optimizer as an input parameter
and the output parameter is the measured throughput of that
particular design.

IV. RESULTS

Our results examine the mapping of many different designs
onto the Alveo U280. Each design represents a different size
of matrix and a different assignment of blocks to memory. We
experiment with different ranges, for BRAM experiments we
set each block is between 100x100 to 600x600, for URAM
designs we set block sizes 100x100 to 900x900, and for
the combination design we map two inputs on URAM and
the output cache to BRAM and set ranges from 400x400 to
1200x1200. Our goal was to push the size of data needed in
our designs.

In Fig. 1 we show the overall clock frequency of designs
for different sizes of matrix blocks and different assignment of
these blocks to memory as a Pareto graph. In Fig. 2 we show
the same experiments with the figure of merit being overall
throughput. Designs that use only BRAM are labeled hbx,
designs that use only URAM are labeled huX, and designs
that use a combination are labeled hcx.

We observed that clock frequency between different designs
changes significantly even for very similar block sizes. This is
largely due to routing complexity. While no clear rule emerges
for assigning memory types, we do observe important trends.
For smaller sizes of matrices, where the blocks fit completely
into BRAM, many designs have high clock frequency and high
throughput, and BRAM can be a good choice. The clock speed
for designs that use only BRAM drops significantly when more
than 50% of BRAM is used, for example in hb6.

URAM is competitive for small block sizes. Since BRAMs
are smaller, you need more of them which increases the routing
complexity. Since we are only using one read port and one
write port for our designs, assigning data to URAM provides
very good results even at small block sizes. Some of the best
performing designs, hu17 and hu18, use only URAM, or use
a very small amount of BRAM for other purposes.

We experimented with mapping input matrices to both
BRAM and URAM with a 1:2 ratio in order to can fit larger
matrices when BRAM alone does not provide enough storage.
Designs that use a combination of URAM and BRAM always
perform worse than only using URAM. This combination
should only be chosen if there is insufficient URAM to store
all the data. This is due to the increased routing congestion
and can be seen in all of the hcx designs.

Based on these experiments, we observe that there is not
an easy rule for choosing the optimal mapping of data to
memory, other than to avoid a combination of memories.
Bayesian optimization is a good choice for a designer wishing
to optimize their designs as it automates the search of the
design space.

In previous work, the authors [24] do not consider using
URAM and only using BRAM which leaves a big portion of
on-chip memory un-utilized. We believe their designs could
be improved by making use of URAM on the chip.

There has been much research conducted on optimizing the
matrix matrix multiplication kernel, and we plan to continue
to experiment with these techniques. We experimented with



0 200 400 600 800 1000
Matrix block size MxM

100

150

200

250

300
Cl

oc
k 

fre
q(

M
Hz

)
hb1

hb2
hb3

hb4

hb5
hb6

hu17
hu18
hu20

hu14
hu19

hu15

hu21
hu10
hu11

hu9

hu12

hu16
hu13 hu1

hu2

hu3
hu4
hu5
hu8

hu6 hu7
hc1

hc2 hc3
hc4

hc5 hc6
hc7

matrix dimension vs clock freq
HBM_BRAM
HBM_URAM
HBM_comb

Fig. 1. Matrix sizes vs clock frequencies

making our design more parallel. However, highly parallel
designs run out of DSP resources available on the chip and can
not utilize all the on-chip memories available. [25] propose a
sparse dense matrix matrix (SpMM) multiplication method.
They reschedule to access non zero elements of a matrix
and utilizing on-chip BRAM memory and HBM channels
on an Alveo U280. Their design utilizes 76% percent of
total available BRAM and reaches peak performance of 181.1
GFLOP/s with a clock speed of 189MHz. Their flexible design
can be reused for different hardware. We plan to investigate
this and other advanced MM implementations in the future.

V. CONCLUSIONS AND FUTURE WORK

Matrix matirx multiplication is a widely used part of many
applications. It has become increasingly important in machine
learning, where large sizes of matrices are processed. There
are numerous different ways to optimize the matrix matrix
multiplication kernel. In this research, we focus on optimizing
the memory usage and the ability to feed data to the process-
ing. We use a combination of high bandwidth memory and
on-chip memory (BRAM and URAM) to determine the best
assignment of data to memory to achieve fast clock cycles
and good throughput. This work represents one of the few
applications of Bayesian optimization to FPGA design, and is
the first to use Bayesian optimization for memory allocation
on an FPGA. Our results show that Bayesian optimization is
a good match for this problem whose results are highly non-
linear.

There is much work that has been done in optimizing the
matrix matrix multiplication algorithm itself. In the future
we plan to combine kernel optimization with memory op-
timization to further improve GEMM performance. We will
investigate applying Bayesian optimization to the MM kernel.
We will also investigate applying our technique to other
applications to improve the use of memory on the FPGA.
We also plan to investigate optimizations targeting the Versal
architecture.



0 200 400 600 800 1000
Matrix block size MxM

0

1

2

3

4

5
th

ro
ug

hp
ut

 (M
B/

s)
hb1

hb2
hb3

hb4

hb5
hb6

hu17
hu18

hu20
hu14

hu19

hu15 hu21

hu10
hu11

hu9

hu12

hu16
hu13

hu1

hu2

hu3hu4

hu5
hu8

hu6 hu7
hc1

hc2

hc3
hc4

hc5
hc6
hc7

matrix dimension vs throughput
HBM_BRAM
HBM_URAM
HBM_comb

Fig. 2. Matrix sizes vs throughput

TABLE II
RESULTS FOR DIFFERENT EXPERIMENTS SORTED BY MATRIX SIZE

Experiment ID Experiment type Block size MxM Matrix size (MB) Clock freq(MHz) BRAM utilization(%) URAM tilization(%) throughput (MB/s)
hu17 HBM with URAM 100x100 0.153 211 0.11 41.67 3.49
hb1 HBM with BRAM 101x101 0.156 300 22.4 0 5.016
hu18 HBM with URAM 101x101 0.156 217 0.11 21.25 3.64
hu20 HBM with URAM 114x114 0.198 223 0.11 23.75 3.34
hu14 HBM with URAM 130x130 0.258 212 0.11 27.08 2.83
hu19 HBM with URAM 158x158 0.381 193 0.11 32.92 2.13
hb2 HBM with BRAM 209x209 0.667 223 35.81 0 1.908
hb3 HBM with BRAM 210x210 0.673 242 35.94 0 2.071
hb4 HBM with BRAM 218x218 0.725 214 36.93 0 1.75
hu15 HBM with URAM 245x245 0.916 218 0.11 34.17 1.51
hb5 HBM with BRAM 320x320 1.563 171 49.58 0 0.981
hu21 HBM with URAM 375x375 2.146 198 0.11 39.17 0.95
hc1 HBM with comb 400x400 2.441 152 19 62 0.695
hu10 HBM with URAM 400x400 2.441 201 0.11 41.67 0.918
hu11 HBM with URAM 401x401 2.454 195 0.11 33.75 0.868
hu9 HBM with URAM 440x440 2.954 184 0.11 36.67 0.736
hb6 HBM with BRAM 442x442 2.981 155 64.71 0 0.65
hc2 HBM with comb 450x450 3.090 187 24.7 46.88 0.74
hu12 HBM with URAM 451x451 3.104 215 0.11 37.92 0.858
hu16 HBM with URAM 454x454 3.145 196 0.11 37.92 0.77
hu13 HBM with URAM 460x460 3.229 207 0.11 38.33 0.803
hu1 HBM with URAM 545x545 4.532 204 0 37.9 0.66
hu2 HBM with URAM 552x552 4.649 190 0 38.33 0.62
hu3 HBM with URAM 560x560 4.785 207 0 39.17 0.66
hu4 HBM with URAM 564x564 4.854 205 0 39.17 0.65
hu5 HBM with URAM 565x565 4.871 186 0 39.58 0.59
hu8 HBM with URAM 574x574 5.027 182 0.11 40 0.568
hc3 HBM with comb 619x619 5.847 178 40.6 48.44 0.526
hc4 HBM with comb 620x620 5.865 175 40.6 48.44 0.526
hu6 HBM with URAM 730x730 8.131 146 0 76.67 0.37
hu7 HBM with URAM 824x824 10.360 140 0.11 76.67 0.312
hc5 HBM with comb 840x840 10.767 103 83.48 100 0.219
hc6 HBM with comb 1072x1072 17.535 106 86.33 91.88 0.181
hc7 HBM with comb 1082x1082 17.864 91 88.02 92.86 0.154



ACKNOWLEDGMENT

This research was partially funded by grant NSF SATC
1717213. The authors would like to thank colleagues at
Northeastern University for useful conversations, especially
members of the Reconfigurable Computing Laboratory.

REFERENCES

[1] “Virtex UltraScale+ HBM Devices,” 2016. [Online].
Available: https://www.xilinx.com/products/silicon-devices/fpga/virtex-
ultrascale-plus-hbm.html

[2] “UltraRAM: Breakthrough Embedded Memory Integration
on UltraScale+ Devices,” Jun. 2016. [Online]. Available:
https://docs.amd.com/v/u/en-US/wp477-ultraram

[3] M. Gungor, “Optimizing the use of different memory types on modern
fpgas,” Ph.D. dissertation, Northeastern University, Boston, MA, 2024.

[4] “UltraScale Architecture Memory Resources User Guide,” September
2021. [Online]. Available: https://docs.amd.com/v/u/en-US/ug573-
ultrascale-memory-resources

[5] P. I. Frazier, “A tutorial on bayesian optimization,” arXiv preprint
arXiv:1807.02811, 2018.

[6] E. Schulz, M. Speekenbrink, and A. Krause, “A tutorial on gaussian pro-
cess regression:Modelling, exploring, and exploiting functions,” Journal
of Mathematical Psychology, vol. 85, pp. 1–16, 2018.

[7] F. Nogueira, “Bayesian Optimization: Open source constrained
global optimization tool for Python,” 2014–. [Online]. Available:
https://github.com/bayesian-optimization/BayesianOptimization

[8] C. Liu, Z. Shao, K. Li, M. Wu, J. Chen, R. Li, X. Liao, and H. Jin,
“Scalabfs: A scalable bfs accelerator on fpga-hbm platform,” in The
2021 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2021, pp. 147–147.

[9] K. Kara, C. Hagleitner, D. Diamantopoulos, D. Syrivelis, and
G. Alonso, “High Bandwidth Memory on FPGAs: A Data Analytics
Perspective,” arXiv:2004.01635 [cs], Apr. 2020, arXiv: 2004.01635.
[Online]. Available: http://arxiv.org/abs/2004.01635

[10] Y. Hu, Y. Du, E. Ustun, and Z. Zhang, “Graphlily: Accelerating graph
linear algebra on hbm-equipped fpgas,” in 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD). IEEE, 2021, pp. 1–9.

[11] P. Holzinger, D. Reiser, T. Hahn, and M. Reichenbach, “Fast hbm access
with fpgas: Analysis, architectures, and applications,” in 2021 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2021, pp. 152–159.

[12] Y.-k. Choi, Y. Chi, W. Qiao, N. Samardzic, and J. Cong, “Hbm
connect: High-performance hls interconnect for fpga hbm,” in The 2021
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2021, pp. 116–126.

[13] M. Asiatici and P. Ienne, “DynaBurst: Dynamically Assemblying
DRAM Bursts over a Multitude of Random Accesses,” in 2019
29th International Conference on Field Programmable Logic and
Applications (FPL). Barcelona, Spain: IEEE, Sep. 2019, pp. 254–262.
[Online]. Available: https://ieeexplore.ieee.org/document/8892073/

[14] G. Csordas, M. Asiatici, and P. Ienne, “In Search of Lost Bandwidth:
Extensive Reordering of DRAM Accesses on FPGA,” in 2019
International Conference on Field-Programmable Technology (ICFPT).
Tianjin, China: IEEE, Dec. 2019, pp. 188–196. [Online]. Available:
https://ieeexplore.ieee.org/document/8977899/

[15] H.-J. Yang, K. Fleming, M. Adler, F. Winterstein, and J. Emer, “Scav-
enger: Automating the construction of application-optimized memory
hierarchies,” in 2015 25th International Conference on Field Pro-
grammable Logic and Applications (FPL). IEEE, 2015, pp. 1–8.

[16] J. Cong, P. Wei, C. H. Yu, and P. Zhou, “Bandwidth optimization through
on-chip memory restructuring for hls,” in Proceedings of the 54th Annual
Design Automation Conference 2017, 2017, pp. 1–6.

[17] H. Fan, M. Ferianc, M. Rodrigues, H. Zhou, X. Niu, and W. Luk, “High-
performance fpga-based accelerator for bayesian neural networks,” in
2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE,
2021, pp. 1063–1068.

[18] H. Fan, M. Ferianc, Z. Que, S. Liu, X. Niu, M. R. Rodrigues, and
W. Luk, “Fpga-based acceleration for bayesian convolutional neural
networks,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 41, no. 12, pp. 5343–5356, 2022.

[19] M. Ferianc, Z. Que, H. Fan, W. Luk, and M. Rodrigues, “Optimiz-
ing bayesian recurrent neural networks on an fpga-based accelerator,”
in 2021 International Conference on Field-Programmable Technology
(ICFPT). IEEE, 2021, pp. 1–10.

[20] H. M. Torun, M. Swaminathan, A. K. Davis, and M. L. F. Bellaredj, “A
global bayesian optimization algorithm and its application to integrated
system design,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 26, no. 4, pp. 792–802, 2018.

[21] S. Zhang, F. Yang, C. Yan, D. Zhou, and X. Zeng, “An efficient
batch-constrained bayesian optimization approach for analog circuit
synthesis via multiobjective acquisition ensemble,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 41,
no. 1, pp. 1–14, 2021.

[22] A. Mehrabi, A. Manocha, B. C. Lee, and D. J. Sorin, “Bayesian
optimization for efficient accelerator synthesis,” ACM Trans. Archit.
Code Optim., vol. 18, no. 1, dec 2021. [Online]. Available:
https://doi.org/10.1145/3427377

[23] “U280 Gen3x16 XDMA base 1 Platform,” 2023. [Online].
Available: https://docs.amd.com/r/en-US/ug1120-alveo-platforms/U280-
Gen3x16-XDMA-base 1-Platform

[24] J. de Fine Licht, G. Kwasniewski, and T. Hoefler, “Flexible communica-
tion avoiding matrix multiplication on fpga with high-level synthesis,”
in Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2020, pp. 244–254.

[25] L. Song, Y. Chi, A. Sohrabizadeh, Y.-k. Choi, J. Lau, and J. Cong,
“Sextans: A streaming accelerator for general-purpose sparse-matrix
dense-matrix multiplication,” in Proceedings of the 2022 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2022,
pp. 65–77.


