HPC Network Simulation Tuning via Automatic
Extraction of Hardware Parameters

Joshua Suetterlein, Stephen J. Young, Jesun Firoz, Joseph Manzano,
Nathan Tallent, Ryan D. Friese, Kevin Barker, Timothy Stavenger
Pacific Northwest National Laboratory, USA
{{first name}.{last name}} @pnnl.gov

Abstract—Popular HPC network interconnection simulators
such as SST/macro provide a variety of configurable parameters
to explore the design space of hardware components such as
network interface cards (NIC), switches, and links among them.
While such knobs provide flexibility to explore design trade-offs
for novel hardware, manually configuring simulations for match-
ing configurations of the existing hardware to focus on topology
exploration can be cumbersome and error-prone, leading to
widely inaccurate simulations. This challenge is compounded
when specifications of various (proprietary) technologies are not
readily available or intentionally omitted.

In this work, we propose a framework to autotune the multiple
network models’ simulation configurations within SST/macro
using Tree-structured Parzen Estimator-based Bayesian opti-
mization to observe the effect on simulation accuracy across
different message regimes. These regimes consist of small to
large message sizes and latency to bandwidth-bound messages.
We provide a detailed analysis of the simulation error for
four representative HPC systems. Our Bayesian optimization-
based autotuning framework for network models achieves a
maximum of 5x improvement in accuracy over best-effort manual
configurations based on available hardware specifications.

I. INTRODUCTION

Researchers heavily rely on advanced simulation frame-
works to develop, test, and validate new designs and complex
technologies before making procurement or design decisions.
Some notable simulators include Structural Simulation Toolkit
Macroscale Element Library ( SST/macro ) [2], Co-Design
of Multi-layer Exascale Storage Architecture (CODES) [3],
BookSim [4], and others. While the flexibility of these sim-
ulators permits diverse and rapid prototyping, the fine-grain
parameterization of the simulator’s different models and com-
ponents can result in an unwieldy configuration space. Such
space is particularly overwhelming for research focused on
novel network topologies, as a configuration that accurately
represents the performance of the hardware/software stack is
essential to guarantee correct performance attribution for all
message regimes under novel technologies.

Finding an optimal target configuration for simulation can
be challenging, even with expert knowledge. Specifically,
practitioners face this challenge in two ways. First, finding
the correct parameters for existing hardware is difficult. This
challenge is partly due to a mismatch in the fine-grain level
of a simulator’s configuration and the potentially incomplete
(or unavailable) hardware specification. Second, understanding

*A preliminary version of this work, titled ”Automatic Extraction of Net-
work Configurations for Realistic Simulation and Validation”, was presented
as a poster at 2024 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS) [1].

how to meaningfully adjust the multiple performance models
within a simulator is challenging, even with the hardware
specifications.
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Fig. 1: SST/macro simulated versus real hardware latency
and bandwidth between two adjacent nodes. RMSPE is re-
ported for the nearest simulated configuration.

For example, consider Figure 1, which shows, for differ-
ent message sizes, the performance reported for the Ohio
State University Microbenchmark suite (OSU) point-to-point
latency and bandwidth benchmarks [5] for two adjacent nodes
communicating through a single switch for four representative
HPC systems (namely Bluesky, dl, Junction and Short). Using
the manufacturer’s hardware description for each system,
we populate the SST/macro parameters and simulate both
benchmarks. We report the simulation’s Root Mean Squared
Percent Error (RMSPE) relative to the actual run on the system
for the benchmarks individually and together. Our simulation
demonstrated combined errors ranging from 560% to 650%
for our best-effort configurations. Notice that even similar
hardware can exhibit very different performance profiles (e.g.,
Figures 1c and 1d). This behavior can explain the omission
of a single one-size-fits-all configuration in SST/macro and
highlights the tuning challenge.

From our example, we also see that reducing simulation
error extends beyond correctly transcribing hardware environ-
ment, as a workflow can fall into different message regimes



that affect the simulation accuracy, especially when dealing
with novel technologies. Figure 1 shows that simulation en-
vironments may treat message regimes with different predic-
tive models, further expanding the parametric search space'.
Traditionally, HPC network simulators have concentrated on
sizeable bandwidth-bound message regimes (e.g., in [6] val-
idation starts at 8K message sizes), which are common in
traditional scientific workflows. Simulation of small messages
is usually relegated to analytical models, which are faster but
less accurate (c.f. Section V for empirical confirmation.) This
decision might arise from the prevalence of bulk synchronous
processing paradigm in scientific computing, which prefers
large messages at specific computational boundaries [7].

However, the recent trend towards applying HPC resources
to workflows like machine learning and graph analytics, which
are more latency-bound, increases the need to tune simulations
for accuracy across different message regimes. For instance,
fine-grained small messages (2kB-4KB) can be found as part
of distributed coordination protocols and data-driven dynamic
applications, among many others. Hence, to explore hardware
capabilities and protocols [8] for supporting fine-grained data
sharing in contemporary applications, it is imperative to con-
sider different message regimes for faithful simulation.

In this paper, to address the modern simulator’s parametric
explosion, we propose an auto-tuning framework based on
Bayesian optimization to find message regime-aware simu-
lation configurations without the need for extensive knowl-
edge in both the hardware/software stack and the simulator.
We demonstrate the effectiveness of our tuning method for
multiple models within SST/macro and show how they can
be used together to reduce errors across messaging regimes.
Lastly, while Bayesian optimization has been applied to
hardware simulation [6], critical details of the process have
been omitted (such as validation for smaller size message
operation), which this work attempts to rectify.

The contributions of this paper are as follows:

e We propose a framework to automatically tune the
simulation configuration and the multiple models found
within SST/macro providing a complete model (i.e.,
appropriate across message regimes) that achieves a 5x
improvement in accuracy over best-effort configurations.

o We explore how fitting benchmarks with multiple metrics
can provide a configuration appropriate for both latency
and bandwidth-bound applications.

o We analyze the effects of various loss functions for
Bayesian optimization in the context and their appropri-
ateness in this application.

« Within the optimization context, we provide an in-depth
analysis of the simulation error for SST/macro.

II. BACKGROUND

a) Eager vs Rendezvous MPI Protocols: The most
widely used communication libraries (MPICH, MVAPICH,
IBM Spectrum, Intel MPI etc.) in HPC applications are based
on the Message Passing Interface (MPI) [9] specification.

'The model change is evident at the knees in the simulation curve. For
example, in Figure 1a, the evidence of three packet-size base models is visible
between message sizes 1B to 512B, 512B to 8K, and 8K to 4MB

According to the MPI specification, the unit of communication
is the message which transfers information between a sender
and a receiver. The way that both actors prepare to receive or to
send the message is usually divided into eager and rendezvous
protocols [10]. In eager protocols, the sender assumes that the
receiver can handle the incoming data. The protocol implies
that the sender is “pushing” its message to the receiver without
waiting for a signal that it is ready. This protocol reduces
synchronization delays, but additional copies and buffers might
be needed. On the other hand, in the rendezvous protocols,
there is a signaling phase (in which header data is exchanged)
to ensure that the destination can handle the message before
the sender begins transmitting the payload. Although this
method introduces the signaling phase, the savings of not
having to delete extra copies and to allocate buffer space might
amortize these extra costs. Usually, MPI implementations will
switch between these protocols based on the message regimes
that the application uses.
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b) SST/macro Network Simulator: SST/macro ([2],

[6]) is a coarse-grained, open-source, discrete event simulator
for the communication and computation taking place in HPC
systems. Recently, SST/macro has been extensively used
to evaluate hardware trade-offs for the design of exascale
systems [11] as well as next-generation HPC topologies [12],
[13], [14]. In order to simulate the communication behavior
of hypothetical systems, SST/macro provides coarse-grained
simulation models that intercept a standard library of MPI calls
and simulate message flow through NICs, switches, and links.
To control all the hardware’s parameters (such as buffer size
and minimum transmission units, among others), SST/macro
provides an extensive interface through its configuration files.
Among the network traffic simulation models available in
SST/macro, two of them are most relevant for our present
study: an analytical model based on the LogP [15] model and a
packet-based model that implements Quality-of-Service called



the Simulator Network for Adaptive Priority Packet Routing
(SNAPPR) model [16]. During a simulation, based on the
message regime (i.e., the size of a message), SST/macro
switches between these two network models. The LogP-
based analytical model calculates the latency of a message
by considering latency per byte, overhead, gap or delay, and
the number of parallel processors. Although this model is
fast, it might not accurately capture the contention profile of
the underlying network (SST/macro only applies a simple
contention factor by adding random noise). On the other hand,
the packet-based SNAPPR network model simulates the packet
flow across each network component such as routers, network
controllers, and links. This detailed simulation model can
more accurately simulate the message propagation, resource
allocation, and contention (i.e., in terms of message queue
length) at the cost of more computational / simulation time.

c) Autotuning Technologies: Optuna [17] is an open-
source [18], hyper-parameter tuning software which im-
plements both independent variable Bayesian optimiza-
tion approaches (such as Tree-structured Parzen Estimators
(TPE) [19], [20]) and other Bayesian optimization approaches
which attempt to leverage the relationship between variables
(such as covariance matrix adaption evolutionary strategy [21])
to improve optimization performance. These Bayesian op-
timization approaches are combined with advanced prun-
ing heuristics, such as Asynchronous Successive Halving, to
provide a lightweight, distributed framework for optimizing
complex parameter spaces. We use this framework to automate
and manage the distributed fitting of SST/macro parameters
to the observed performance of our chosen HPC systems
using a variety of loss functions, see Table I. We apply
the Tree-structured Parzen Estimators as the surrogate model
for exploring the hyperparameter search space, as it has a
proven track record of achieving award-winning accuracy in
competitions such as Kaggle and AutoML. Moreover, it also
has several additional settings that are helpful for our training
task (e.g., support for multiobjective optimization).

d) Benchmarks considered: The OSU microbenchmark
suite [5] is a popular communication benchmark suite for
standard programming models focused on distributed com-
puting (e.g., MPI, SHMEM, and UPC). The benchmarks are
designed to test the readiness of HPC systems for inter-node
communication and for comparing different distributed pro-
gramming models. From the suite, we use the point-to-point
MPI latency and bandwidth benchmarks. Each benchmark
sends messages between two ranks for messages sizes 1B
to 4MB (222B). The latency benchmark performs a ping-
pong between the ranks and reports the one-way time in
microseconds. The bandwidth benchmark launches concurrent
asynchronous messages and reports the observed bandwidth
in MB/s. These benchmarks provide a way to measure some
of the network’s most important performance characteristics.

III. OUR AUTOTUNING FRAMEWORK FOR SIMULATION

As our first step to construct an accurate network model
across different message regimes, we focus on configuring the
minimal simulation unit, two nodes communicating through
a single switch. We collect data on real HPC systems with

the same setup for validation. The hardware simulated by
SST/macro includes two nodes, NICs, and links connected
by a single switch. We assume symmetric performance be-
tween the two nodes and define the best configuration of the
simulator to be one that accurately models the performance
of the OSU point-to-point microbenchmarks for the latency
and bandwidth between two MPI ranks (one per node) for an
existing system. Combining these two benchmarks covers mul-
tiple operational regimes, including small and large messages
bound by latency and bandwidth.

Although we acknowledge the shortcomings of using these
basic two nodes with a single switch setup for experiments
(i.e., not factoring in the complex dynamics that may arise
from multiple interacting units), understanding the implica-
tions of autotuning hardware parameters and network models
for different message regimes for this setup is a significant
step towards extending the methodology beyond two-node
setup. Moreover, these initial results showcase the advantages
and pitfalls of using these autotuning techniques for network
simulations. Specifically, we empirically analyze different
metrics and optimizers to guide the users in choosing the
best combinations of simulation configurations in terms of
accuracy.

Name (Sim. Model) Range Description
switch.mtu (S) 128B - 16MB  Packet size, units each
message is broken
into
switch.link.latency (S) Ins - 1ms The latency to tra-
verse the link
switch.link.bandwidth (S) 1-50 GB/s Arbitrator’s BW
switch.link.credits (S) 128B - 16MB  Switch buffer size
node.nic.injection.mtu (S) 128B - 16MB  NIC injection unit
size
node.nic.injection.latency (S) Ins - 1ms NIC injection latency
node.nic.injection.bw (S) 1 - 50 GB/s NIC injection BW
node.nic.injection.credits (S) 1KB - 16MB NIC injection buffer
size
node.nic.ejection.latency (S) Ins - 1ms NIC ejection latency
switch.logp.hop_latency (L) Ins - 1ms Per hop latency for
LogP-based switch
switch.logp.out_in_latency (L) Ins - 1ms Latency for process-
ing (delay)
switch.logp.bandwidth (L) 1 - 50 GB/s LogP-based switch’s
BW

TABLE II: SST/macro parameters used as the hyperparam-
eters for the TPE-based Bayesian optimizer. (S) is defined as
the SNAPPR simulator model and (L) is the LogP model.

A. Formulation of the Objective Function

For our current study, for a fixed loss function f with latency
(Lp) and bandwidth (B}) values from the OSU benchmark, we

construct the following optimization problem:
22
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m=0
where P represents the SST/macro parameter settings,

b is the total number of bytes sent, and SST(P,b) and
SST (P, b) are the results from the SST/macro simulation
of OSU micro-benchmarks for latency and bandwidth, respec-
tively.
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Fig. 2: A heatmap showing the correlation between latency/bandwidth and different hyperparameters for various message sizes.

B. The Role of Optuna’s TPE

To solve the multi-objective optimization problem presented
in Section III-A, our framework leverages the Tree-structured
Parzen estimators (TPE)-based Bayesian Optimization, avail-
able in Optuna, to find the best possible configurations for the
simulation parameters (i.e., the hyperparameters). TPE takes
its name from its tree-structured search space expansion and
Parzen-based Kernel Density Estimator. At a high level, the
algorithm for TPE works as follows. In the first step, the
algorithm initializes the hyperparameters with random values.
Next, with the help of SST/macro , it calculates the scores
(i.e., simulated time) for each of these configurations.

Then, it uses these scores to create an observation space,
sorts the scores, and applies a kernel density estimator to
obtain two density functions (one representing the “weighted
distance” line to all the scores [(x) and the ones with the best
scores g(Tpest)). After, the estimator samples values for the
hyperparameters from the all-score density I(x) and find the
set that minimizes the objective function when evaluated under
the two density functions (g(i(ilt)). These scores are then
added to the observation space. The procedure is repeated for
a predetermined number of trials. At the end of the trials, the
hyperparameter values are assumed to be the best configuration
for the simulation involving a specific message size.

For evaluating the TPE’s loss function, we use the ones
described in Table I to empirically test which gives the best
accuracy. For each loss function on each system, we explore
three different fits based on latency, bandwidth, and a combi-
nation of both. The simulated performance loss is computed
for each message size and averaged according to the metric.
When fitting on both latency and bandwidth benchmarks,
the metric’s average is performed across the loss for each
message size for each benchmark. We evaluate 2K trials/fit
to ensure convergence. Invalid configurations (as determined
by SST/macro) are penalized with an excessive score.

We evaluate the final configuration of each fit using the
RMSPE method. This method normalizes the error for large
and small message sizes across metrics (i.e., time and through-
put) and presents the result as a percentage. We present the
combined and individual RMSPE per fit to demonstrate the
error attribution.

C. SST/macro Configuration

Our study focuses on the SNAPPR (Simulator Network for
Adaptive Priority Packet Routing) and LogP packet models
in SST/macro v11.1.0. By default, both models are used
simultaneously, the LogP model [15] for small messages and
SNAPPR for large messages. The switchover point between
models is set to 512B by default but is configurable.

System Net. Switch Network Card CPU

Bluesky MX SB7800 IB HDR-100 Intel(R) Xeon(R) Gold
6126 CPU @ 2.60GHz

Junction MX QM8790 1B HDR-100 AMD EPYC 7543 32-
Core Processor

Short MX QM8790 IB HDR-100 AMD EPYC 7502 32-
Core Processor

DL MX QM8790 IB FDR-56 Intel(R) Xeon(R) CPU

E5-2620 v4 @ 2.10GHz

TABLE III: Hardware testbeds for our experiments. MX =
Mellanox and IB = InfiniBand

Additionally, the SNAPPR model also considers the MPI’s
Eager and Rendezvous protocols [10]. We turned off the
SNAPPR small message eager protocol to reduce hidden
variables in our simulation and to be more representative of an
OpenMPI implementation. Through trial and error, we found
it most effective to fit a single model at a time for a fixed
region of message sizes.

We use a fully connected switch for the topology with
geometry (i.e., the topology shape as a list of dimensions)
and concentration (i.e., number of computational nodes per
switch) parameters set to one and two, respectively. We use the
standard configuration given by the examples for the remaining
parameters, such as a node’s memory and processor. This setup
is reasonable since our benchmarks are network-bound.

D. Feature Selection

Table II presents the configurable SST/macro parameters
for the switch models and the node’s NIC used as the
hyperparameters for our TPE-based Bayesian optimizer. The
parameters roughly fall into three categories: latency, band-
width, and credit (indicating the capacity of a component).
Figure 2 shows a heat map of the correlation matrix indicating
the strength of the effect observed when changing a given
parameter for the SNAPPR and LogP models, respectively.
We run each model alone to demonstrate the impact of the
configuration for message sizes from 1B to 4MB. The NIC
injection and ejection latencies for the SNAPPR model are
the most significant factors in determining the overall latency
across all message sizes. Conversely, the switch’s bandwidth
and NIC effect are most prominent for messages greater than
8K (where the rendezvous protocol takes over). In the LogP
model, the latency parameters have the most prevalent effect,
which wanes as the message size increases. Further, in the
bandwidth benchmark, we see the effect of the bandwidth
parameter after message sizes of 8K.

We allow the optimizer to adjust all parameters for a given
model in Table II within the bounds listed. The physical
constraints of existing technology can more readily infer the
acceptable values for the lower bounds. For the upper bounds,



we do our best to provide sensible values based on existing
technology and leave a more in-depth study to future work.

1V. EVALUATION
A. Experimental Setup

To evaluate and validate our Bayesian optimization based
autotuning approach for finding the best-matching hardware
configurations and message regimes for simulation, we op-
timize the configurations of the four in-house representative
HPC systems listed in Table III. Notice that the DL, Short,
and Junction systems all use the same type of switch; however,
DL uses an older network card, limiting its overall bandwidth.
Figure 1 shows the achieved performance of the OSU bench-
marks for each system, which will serve as our ground truth.
When collecting the performance of each system, we ensured
that two nodes directly communicate through a single switch.

Moreover, to reduce the effects of the software stack, we set
the MPI eager thresholds of the actual and simulated systems
to match at 8KB. The variations in performance for a single
type of switch highlight the pitfalls of just plugging hardware
parameters into the SST/macro simulation configuration.

In the following discussion, we explore how to first optimize
the SNAPPR model alone for messages sizes 1B to 4MB. Once
we establish the best practices for optimization, we perform
the same procedure for the default SST/macro model for
different message regimes (LogP and SNAPPR models) and
demonstrate the results of bolting two tuned models together
in Section V.

B. Finding the Optimal Simulation Configuration for Repre-
sentative Systems with different Loss Functions

Figure 3 shows the convergence of the optimizer for the
various metrics across the individual systems. Each row and
column corresponds to a specific fit and loss function. Each
trial sweeps over the total number of messages for each case.
In the case of the joint fit, the two sets are put together and
swept accordingly. The loss plotted is the error used by the
optimizer. Most loss functions converge well before 2K trials,
indicating the optimizer has found a configuration to minimize
the loss function. The different scales per y-axis highlight the
effective range of each metric. RMSRE achieves the lowest
final values (smaller being better).

C. Evaluation of the Optimal Configurations for different Loss
Functions After Autotuning

Figures 4 and 5 present the error of the best configuration
found after optimization. The three fits (combined latency and
bandwidth, bandwidth only, and latency only, are given by a
row, while a column corresponds to a particular system (e.g.,
Bluesky).

Figure 4 presents the percent error for the latency bench-
mark. This figure highlights the error for small messages,
some of which are quite large. SNAPPR is not typically used
for small messages (by default, the LogP model is used for
messages less than 512B); however, messages close to 512B
remain inaccurate across systems for several metrics. Across
metrics, we see a similar shape (albeit at different magnitudes)
for a given system, indicating a consistent behavior in the

SNAPPR model (inaccurate modeling of small messages that
gets progressively better as messages get larger).

Figure 5 presents the percent error for the bandwidth bench-
mark. While the error shown in Figure 5 is significantly lower
than the latency benchmark, we still observe that the SNAPPR
model better predicts the bandwidth for larger message sizes.
In addition, note the change in the curve at 8KB corresponding
to the change in MPI protocols. Such discontinuities can be
used to infer the internal models being used.

Figure 6 shows the latency for each experiment. From the
performance profiles, we see that the final configurations for
each experiment result in different configurations. For the
combined and bandwidth fits, we observe that the latency of
small messages is noticeably higher than the ground truth.
For all systems other than Junction and the combined fit of
Huber for Short, the optimizer reasonably matches the latency
of larger message sizes. When comparing the ground truth of
Junction to short (a similar system) shown in Figure 1, we
see a steeper latency curve beginning sooner. The bandwidth
curve, however, remains similar to short. Moreover, when
fitting for latency alone, most loss functions can better model
the latency. This result is evidence of the competing trend in
tuning for latency and bandwidth together.

Figure 7 shows the bandwidth achieved for each experiment.
The achieved performance for the resulting configurations
for this benchmark mostly straddles the actual bandwidth.
The bandwidth fit performs the best prediction, highlighting
the competing nature of matching latency and bandwidth
performance.

D. Identification of the Best Loss Function for Evaluating
Model Accuracy When Considering Multiple Competing Ob-
Jjectives

Figure 8 shows the RMSPE of predicted latency/bandwidth
for each of the loss functions used in the Bayesian optimizer
(cf. Table I) for each tested machine, as well as the combined
latency and bandwidth performance relative to the ground
truth for each fit. We also show the combined error for each
fit/metric across all systems in Figure 10.

Both figures show that the SNAPPR model can be tuned
to within 100% error despite its trouble with small latency-
bound messages. RMSRE stands out as the best metric
for tuning consistently, performing well across systems since
it normalizes the error relative to the ground truth. The
other metrics deal with the absolute error. In the case of
competing objectives (such as optimizing for small versus
large messages or latency versus bandwidth), the optimizer
will be biased to fix the more significant error. Normalization
significantly reduces this behavior and improves the autotuning
performance.

Figures 9, 11, 15 and 16 show the attribution of error. We
see RMSRE for the combined fit (Figures 15 and 16) balanced
modeling latency and bandwidth with errors of 110.7% and
109.3%, respectively. Conversely, the combined fits for MAE,
MSE, RMSE, and Huber have a much better fit for bandwidth,
with Huber reaching 33%, but are significantly inaccurate in
terms of latency (e.g., Huber at 973%). Further, tuning for
an individual benchmark highlights the inverse relationship
between latency and bandwidth in the SNAPPR model.



Latency and Bandwidth Fit

Bandwidth Fit

Latency Fit

— dl —— short —— bluesky

—— bluesky

—— junction

~— dl = junction == short —— bluesky = dl = junction == short

e~
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Trails Trails Trails
0 — bluesky —— di = junction = short — bluesky —— di = junction = short 106 — bluesky —— di = junction = short
107
814 —~—— 10¢
106
———
10° 107 —
0 250 500 750 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1250 1500 1750 2000

1000
Trails

1000
[

Trails Trails

— bluesky —— di —— junction —— short — bluesky —— di —— junction —— short i — bluesky —— di —— junction —— short
10
w
20 102
= 107 —
— 1o
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Trails Trails Trails
10° . 10f R
—— bluesky —— dI = junction =—— short —— junction = short 10° —— bluesky —— di = junction =—— short
w 6x107
& 4x107}
2100 3x107 10t

1000
Trails

1250 1500 1750 2000 750

1500 1750 2000

1000
Trails

1250 1500 1750 2000 1000

Trails

1250

— — short —— bluesky

) S

—— bluesky — junction

10?

—dl — short —— dl = junction = short

—— junction

|

1

0 250 500 750 1000 0 250 500 750

Trails

1250 1500 1750 2000

Trails

2000 [ 1000 1250 1500 1750 2000

Trails

1000 1250 1500 1750

Fig. 3: The convergence profile of the Bayesian optimizer for the various loss functions across various machines. The horizontal
axis represents the number of trials and the vertical axis represents error of the estimated model.

o bluesky dl junction short
&
5 ’ ——
Ee
2 5
3 E_
2 5 -1000
& =
Z —2000
2 e bluesky ~—— RMSE dl — RMSE junction —— RMSE
> 7§ _3000] — MAE —— RMSRE —— MAE —— RMSRE —— MAE —— RMSRE
H — MSE —— HUBER —— MSE  —— HUBER — MSE —— HUBER
2
0
. s 7__ %
£ £ -1000
3 X
S >-2000
e 2 bluesky ~—— RMSE junction —— RMSE
& §-3000{ — MaAE —— RMSRE —— MAE —— RMSRE
—— MSE —— HUBER —— MSE —— HUBER —— MSE  —— HUBER
~4000
)
e
£ &
> ® —200
c >
% 57400 bluesky =~ —— RMSE dl —— RMSE junction ~ —— RMSE short —— RMSE
-5 —— MAE —— RMSRE —— MAE —— RMSRE —— MAE —— RMSRE —— MAE —— RMSRE
—— MSE —— HUBER —— MSE —— HUBER — MSE —— HUBER —— MSE  —— HUBER
-600
VYD VRV VVIYIIL P LILIXY BV VD QD QVIPIIY JXYLIIIILY BV VD QD YV RIQIL QORI QIIXILY RV V2 V02DV ARIIR ORI OLIXD D
S SN NNCARAR AR IS SO NRACAB AL AKX N AN RSN AR sk s IO S SN RARATASAA RSO XS
VS SRS TEIYV S SNSTEIY P PSS VS PSS

Message Size

Fig. 4: Percent error of simulated OSU latency benchmark w.r.t the ground truth per loss function per system.

From the perspective of metric selection, it is easy to
(over)fit the simulation when only one benchmark is used. For
example, when tuned for bandwidth on Bluesky, all metrics
reach between 11.2 to 19.7% error. While scale can be an
issue for MAE, metrics such as MSE, RMSE, and Huber
attempt to mitigate the bias against small changes. In the
context of a single benchmark fit, we still see issues of scale
in the small message errors (Figures 4 and 5), but overall the
model performs well for the fitted benchmarks. The inability
of MAE, MSE, RMSE, and Huber to achieve such good results
when fitting for multiple benchmarks highlights the need for
normalization.

From these results, we see that the SNAPPR model can
be configured to achieve an accurate simulation ( 30%) for
either latency or bandwidth messaging regimes with a bias in
accuracy toward large messages. For applications with latency

and bandwidth-bound phases, we have achieved an accuracy
of approximately 100% with and bias toward large messages.
The bias toward large messages gives rise to the need for an
additional small message model.

V. COMBINING MODELS

To model small messages, SST/macro uses the LogP
model with the SNAPPR model used after a specific threshold.
In this section, we take the default SST/macro model (LogP
for small messages, SNAPPR for large ones), a tuned SNAPPR
model for all message regimes (no separate training for small
and large messages), and two SNAPPR models bolted together,
one trained on small message regime only, and one trained on
large message regime, being switched according to message
size. Moreover, we specified the threshold between large and
small messages at 512 bytes.
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our optimized SNAPPR model (for both message regimes) as
a reference. The tuned SNAPPR model outperforms the SST
default model for all systems except for the Short system. We
individually compare the error for small and large messages
to shed light on this result. SNAPPR tuned for large messages
is marginally better than our baseline. Conversely, the LogP
model performs worse than our baseline SNAPPR model for
small messages.

In contrast to the default SST model, we present the error
if we bolt two tuned SNAPPR models together, trained for
small and large messages, respectively. Listed as SNAPPR
Low/SNAPPR High in Figure 17, we see it outperforms the
baseline (the default SST model) on the Bluesky system
(86.8% to 117.1%) and Short (161.3% to 151%). Note that
we calculate this error from the relative error per message
size. Unlike the SST default model, SST/macro does not
currently support concurrent SNAPPR models.

VI. RELATED WORK

The original paper introducing the preliminary implemen-
tation of the SST/macro [6] simulator applied uncertainty
quantification (UQ) techniques to compare the predicted per-
formance of various workloads running within the simulator
and the actual execution time on a HPC system, Hopper. In
particular, the authors employed Bayesian inference to quan-
tify the simulation model error distribution for different MPI

collective operations. Our work differs by exploring Bayesian
optimization for multiple benchmarks at the same time. In
addition, we provide an in-depth analysis of loss functions and
benchmark selection. Another well-known HPC interconnect
and storage simulator is the Co-Design of Multi-layer Exascale
Storage Architecture (CODES) simulator [3]. Compared to the
Booksim simulator [4], flit-level CODES delivers significantly
faster simulation time while achieving comparable fidelity. To
test and validate the simulation results for network intercon-
nects, several guidelines have been suggested in [22], includ-
ing a selection of different communication patterns (latency
vs. bandwidth bound, adversarial), taking into consideration
the effect of job placement, network interference, MPI eager
and rendezvous protocols, MPI overheads etc..

In a preliminary work by Najafi et al. [23], the authors
recently proposed to train a transformer-based model [24] with
simulation input parameters and to use the trained model to
predict the simulation time of computer systems, to avoid
requiring full-fledged simulations during parameter sweeps. To
improve the network traffic forecasting capability of Parallel
Discrete Event Simulator (PDES), authors in [25] proposed
two surrogate time series methods: the Auto-regressive In-
tegrated Moving Average (ARIMA) and the Adaptive Long
Short-Term Memory (ADP-LSTM).

Machine learning models have been also applied to an-
alyze [26] and predict the performance of an application.
For example, authors of [27] used supervised algorithms,
specifically forests of randomized trees and gradient boosted
regression trees to predict workload execution time under net-
work congestion. In addition, machine learning based anomaly
detection has been applied to diagnose performance variabil-
ity [28].

VII. CONCLUSION AND FUTURE WORK

This paper presented an auto-tuning framework for selecting
the best matching configurations for complex network simula-
tors modeling existing hardware and explored the construction



Bandwidth Error

104{ m=m osu e osu_bw

mmm MAE s MSE s RMSE Emm RMSRE s HUBER

wee osu_latency

bluesky
Fig. 11: Observed bandwidth RMSPE for the tested loss functions per system. The error is relative to the bandwidth benchmark.

Combined Error WEm Oosu & osu_bw WA osu_latency W MAE WEM MSE WEN RMSE WM RMSRE  WEM HUBER

XX

2
o

S o
PO

R
&K

%
“ —

%

bluesky junction short

Fig. 12: Combined observed latency and bandwidth RMSRE for tested loss functions across systems. The error is relative to
both the latency and bandwidth benchmarks.

Latency Error ava osubw MM osulatency WEN MAE mem MSE WEN RMSE MEM RMSRE N HUBER

2,
2
%8,

92
os
2
2
2,
Uolts
0,
25,8
25g
>

X
65
s,
"%

e
3
3%

95, %3
e .
2
o

S

3
35

<]
B s
% %%,

—
K

SE
:‘ ‘8,
QR

%
o

%
2

2R
4

X

0207058 KRS 1S
RS (XER! ]
098028 KRS 05
10° 0000202 KRS 15

o
X

%%
.
&L

RS
%%
XS
0‘0
3%
5
3

o35
o
.
2
X

<4

bluesky junction Combined

Fig. 13: Observed latency RMSPE for tested loss functions across systems. The error is relative to the latency benchmark.

Bandwidth Error mm osu  &vA 0subw MM osulatency N MAE W MSE WEN RMSE EEE RMSRE MmN HUBER

RMSPE
SRR

R

100

junction

Fig. 14: Observed bandwidth RMSPE for tested loss functions across systems. The error is relative to the bandwidth benchmark.

s Messages <512 s Messages == 512 = SNAPPR = Log? LoWSNAPPR High M SNAPPR LowSNAPPR High M LogP Low _ mmm SNAPPR Low M SNAPPR High

s osu mEE osu_bw E## osu_latency

Latency Error

@mm MSE  mmE RMSE  EEE RMSRE ~ mmm HUBER

) © * ~
o i ~ S
o s ~ =} I 3

3 o ) o ©

3 3 n
— —

Cobned

Fig. 15: Observed latency RMSPE for tested loss functions
combined across multiple systems. The error is relative to the
latency benchmark.

= osu

osu_bw  EEE osu_latency

Bandwidth Error

. MAE B MSE B RMSE B RMSRE B HUBER

Fig. 16: Observed bandwidth RMSPE for tested loss functions
combined across multiple systems. The error is relative to the
bandwidth benchmark.

of hybrid models. We demonstrate our approach’s efficacy by
improving the simulation’s overall accuracy by more than five
times based on RSMPE.

Our characterization of simulation error for multiple mes-

ASPE

7
.
ncton

Fig. 17: The RMSPE for models bolted together.

sage regimes has highlighted the challenge of modeling both
bandwidth and latency together. Traditionally, the community
has relied on tools including SST/macro to explore large-
message, bandwidth-bound applications where they have ex-
celled in producing accurate simulations. However, the emer-
gence of new domains and use cases pushes us to refine these
models to include a broad spectrum of message regimes and
adopt an automated framework to explore design spaces for
the next generation of applications.

In the future, we envision the following next steps for this
research: (1) providing better upper bounds for tuning current
and experimental hardware, (2) exploring the propagation of
error post-tuning from the minimal simulation unit to an
entire topology, and (3) evaluating tuning for contention-based
messaging regimes.
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