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Abstract—This paper introduces a framework for automati-
cally generating hardware cores for Artificial Neural Network
(ANN)-based chaotic oscillators. The framework starts with
training a model to approximate a chaotic system and subse-
quently conducts design space exploration to identify potential
hardware architectures for implementation. From the selected
solution, the framework generates synthesizable High-Level Syn-
thesis (HLS) code and a validation testbench tailored for Field-
Programmable Gate Arrays (FPGAs). The proposed framework
enables a rapid hardware design process for candidate architec-
tures, offering superior hardware cost efficiency and throughput
compared to manually designed solutions. The source code is
available on GitHub1.

Index Terms—Chaotic Systems, High-Level Synthesis, Field-
programmable Gate Arrays, Artificial Neural Networks.

I. INTRODUCTION

Chaotic systems have found applications across various
fields, including cryptography and secure communications [1].
These systems are particularly effective in image encryption,
where their inherent unpredictability ensures robust security
against cyber-attacks by scrambling pixels in a highly unpre-
dictable manner [2]. For these applications, a high-throughput
Pseudo-Random Number Generator (PRNG) is required for
real-time operation [3]. Chaotic oscillators are an appealing
choice for PRNGs because of their complex dynamics, ergod-
icity, and sensitivity to initial conditions. Related studies have
shown that, compared to traditional PRNGs such as Linear
Feedback Shift Registers (LFSRs), chaotic oscillators offer
significantly higher resilience against attacks [4], [5]. While
numerical methods such as Forward Euler (FE), Runge-Kutta
(RK) [6]–[8], and Heun [9] can produce accurate solutions
for even highly complex chaotic systems, their hardware
implementation is typically resource-intensive [7].

Previous research has demonstrated the feasibility of using
Artificial Neural Networks (ANNs) to approximate chaotic
systems [10]–[13]. Alcin et al. [11] proposed an ANN for a
chaotic system on Field Programmable Gate Arrays (FPGAs).
However, the costly implementation of the sigmoid function
can significantly impair system performance. Sunny et al.
[12] applied Nonlinear Auto-Regressive (NAR) and Nonlinear

1https://github.com/INRS-ECCoLe/HENNC

Auto-Regressive with Exogenous Inputs (NARX) ANNs to
model chaotic systems. Nonetheless, NAR and NARX ANNs
tend to accumulate feedback errors, which can affect the gen-
erated sequences. Al-Musawi et al. [13] introduced an ANN
model with fewer hidden neurons; however, this approach
resulted in high hardware resource consumption.

This paper presents a comprehensive computer-aided frame-
work for the automated design of efficient hardware ar-
chitectures for ANN-based chaotic oscillators. By inputting
ANN hyperparameters, users receive a list of Pareto-optimal
candidate microarchitectures generated by the framework.
The framework then produces the corresponding High-Level
Synthesis (HLS) model for the selected candidate. The main
contributions of the paper are:

• A framework for the automated generation of efficient
hardware architectures for chaotic oscillators through a
rapid design space exploration process. It provides a list
of Pareto-optimal candidate architectures, each offering a
distinct trade-off between cost and performance.

• Acceleration of the hardware design process through HLS
modeling. HLS directives are employed to define the
trade-offs between hardware cost and latency.

• Introduction of novel latency and hardware cost estima-
tion functions to speed up the design space exploration.

The remainder of the paper is structured as follows: Section
II provides an overview of chaotic systems and their imple-
mentation methods. Section III details our proposed frame-
work, covering its phases and estimation functions. Section IV
discusses and compares our experimental results with related
studies. Finally, Section V concludes the paper.

II. BACKGROUND

Fig. 1 illustrates a chaotic oscillator incorporating a mul-
tiplexer (MUX) and a chaotic unit. Solving chaotic systems
often involves discretization through methods like the RK
algorithm. While RK is a robust analytical method for solving
differential equations, it can be computationally expensive
[7], [8]. ANNs offer a cost-effective alternative for comput-
ing non-linear equations, making them suitable for modeling
chaotic systems [11]. The performance of such systems largely
depends on the implementation approach within the chaotic



Fig. 1. Architecture of chaotic oscillators.

unit. Key parameters include the number of input and output
neurons, which correspond to the dimensionality of the chaotic
system, and the number of hidden neurons, which impacts the
model’s accuracy. Zhang [10] investigated the optimal number
of hidden neurons based on the resulting Mean-Square Error
(MSE). Their findings indicated that increasing the number
of hidden neurons beyond eight did not result in significant
improvements in accuracy. This study highlighted the feasi-
bility of using ANNs to effectively model chaotic systems.
Further evidence from Yu et al. [14] demonstrated that ANN-
based chaotic systems could generate random sequences that
successfully pass the stringent randomness tests outlined in
the NIST SP 800-22 test suite [15].

Consider a system of N differential equations:

dXi

dt
= fi(X1, X2, ..., XN ), (1)

where Xi are system variables, and t denotes time. The RK
4th-order (RK-4) method is calculated two steps: state variable
coefficients (2) and variable update (3).

k1i = fi(X1, X2, ..., XN )

k2i = fi

(
X1 +

dt

2
· k11, ...., XN +

dt

2
· k1N

)
k3i = fi

(
X1 +

dt

2
· k21, ...., XN +

dt

2
· k2N

)
k4i = fi (X1 + dt · k31, ..., XN + dt · k3N )

(2)

Xi+1 = Xi +
1

6
× (k1i + 2× k2i + 2× k3i + k4i) (3)

The multiplications and additions for RK-4 in (2) and (3)
can be divided into static and dynamic terms. Static terms
encompass operations that calculate the input arguments in
(2). Dynamic terms refer to operations present in the selected
chaotic system, fi. The total number of operations is:

nmul = n(mulstatic) + n(muldynamic)

= (3 ·N2 + 3 ·N) + 4 · n(muldynamic)

nadd = n(addstatic) + n(adddynamic)

= (3 ·N2 + 4 ·N) + 4 · n(adddynamic).

(4)

The dynamic terms depend on the selected chaotic system.
For instance, for the low-complexity Chen chaotic system [6]:

dX1

dt = a · (X2 −X1),

dX2

dt = (c− a) ·X1 − (X1 ·X3) + c ·X2,

dX3

dt = X1 ·X2 − b ·X3

(5)

six multiplications and five additions are needed. On the other
hand, ANN computation in the layer l and ith neuron is given
by:

Y
(l)
i = ϕ

nl−1∑
j=1

W
(l)
ij Xj + b

(l)
i

 (6)

where ϕ is the activation function, n is the number of neurons
in the layer, and w and b are the weights and biases of the
model, respectively. The number of operations in a general
ANN is obtained by:

nmul =

L∑
i=2

ni × ni−1

nadd =

L∑
i=2

ni × (ni−1 + 1).

(7)

Table I compares the number of operations to implement
a minimal chaotic system using the RK-4 method and an
ANN proposed by Zhang [10]. ANNs execute a predetermined
number of operations based on their structure. However, the
computational complexity of the RK-4 method depends on the
specific chaotic system it employs. These chaotic systems rely
on trigonometric or other non-linear functions, which are com-
putationally expensive. As a result, while achieving minimal
error (as shown in Table II) compared to numerical methods,
ANNs can provide more stable and efficient solutions.

TABLE I
NUMBER OF OPERATIONS IN AN ANN WITH 8 NEURONS IN THE HIDDEN

LAYER, AND IN RK-4 WITH CHEN CHAOTIC SYSTEM

Method # Multiplications # Additions
ANN (3 – 8 – 3) [10] 48 59

RK-4 60 59

III. PROPOSED FRAMEWORK

This section describes the two phases of the HENNC
framework, illustrated in Fig. 2.

A. Software Phase

The software phase of the HENNC framework begins with
generating a chaotic sequence dataset by numerically solving
the defined chaotic system using the Odeint function from
Python’s SciPy library. We generate 100 k sequences and use
80% for training and 20% for testing. To create the training
dataset, we sample the output of the numeric chaotic system at
each time step. Since the output at time step t is the input to the



Fig. 2. HENNC framework design flow

TABLE II
HYPERPARAMETERS AND PERFORMANCE OF ANN-BASED MODEL

Hyperparameters

Loss Function Optimizer Learning Rate

MSE Adam 1 × 10-4

Performance Metrics

Activation Function MSE MAE RMSE R2

ReLU 0.000308 0.011653 0.017547 0.999990

Tanh 0.006976 0.44344 0.083520 0.999819

Sigmoid 0.044117 0.109703 0.210040 0.998751

system at time step t+1, each labeled data point consists of the
output samples from two consecutive time steps. The dataset
in the initial phase is used to train the ANN model, which
is built with the Keras library, and approximates the chaotic
system’s function through regression. Users specify model
hyperparameters, and the model’s performance is evaluated
with the Mean Absolute Error (MAE), Mean Square Error
(MSE), Root Mean Square Error (RMSE), and R-squared
(R2). Table II presents a hyperparameter set for training
the model for Chen’s chaotic system. The training process
terminates when the model achieves the desired accuracy, and
the network parameters are extracted for the hardware phase.

B. Hardware Phase

1) Design Space Exploration: Hardware design begins
with the search for Pareto-optimal microarchitectures for the
ANN model trained in the software phase. The HENNC
framework incorporates a highly-configurable template HLS
design with various model hyperparameters and a set of HLS
directives that trade off parallelism and resource utilization.
This flexibility allows the exploration of various ANN core
microarchitectures.

HENNC offers users three options: minimum latency, lowest
cost, and Pareto-optimal solutions with a parallelism level P.
In the lowest cost solution (P = 0), the hardware core contains
only one adder and one multiplier. Increasing parallelism
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Fig. 3. (a) Estimated cost and latency for the 3-16-3 ANN. (b) Normalized
actual latencies and the interpolation curve when utilizing DSP resources.

reduces latency but increases costs. When P ≥ 1, the number
of multipliers and adders is (2P × I), with I denoting the
number of neurons in the input and output layers. For faster
candidate solution characterization, HENNC incorporates a
cost and throughput estimation method, described in the next
subsection. Fig. 3a depicts the architectural design space, with
the estimated cost and latency for a 3-16-3 ANN.

The hardware cores support single-precision floating-point
computations and, by default, map these operations onto
FPGA Digital Signal Processing (DSP) resources. Users have
the option to utilize FPGA Look-Up Tables (LUTs) exclu-
sively. Once the user selects the preferred candidate solution,
the HENNC framework generates the corresponding chaotic
oscillator HLS model.

2) Estimation functions: Pre-synthesis cost and speed es-
timation with HLS tools is time-consuming with limited
accuracy. To tackle this issue, we developed cost and latency
estimation functions with an experimental approach. To esti-
mate latency, we began by measuring the post-synthesis actual
latency, in terms of the number of clock cycles, for a range of
selected solutions across various ANN sizes and parallelism
levels. After normalizing the latency results, we computed the
average latency for each parallelism level. By analyzing the
average latency values using MATLAB Curve Fitter toolbox,
we concluded that a third-degree polynomial approximation
provides satisfactory accuracy. Hence, the resulting latency
estimation function is as follows:

Latency = (I ·H) ·
(
b3P

3 + b2P
2 + b1P + b0

)
, (8)

where I is the number of neurons in the input/output layers,
H is the number of neurons in the hidden layer, b3 to
b0 are constant coefficients, and P is the parallelism level.
Due to substantial variations in latency with or without DSP
utilization, the measurements and interpolation calculations
described above are carried out separately for the two scenar-
ios, yielding distinct value sets for b3 to b0. Fig. 3b presents
the actual latency results when utilizing DSP resources, shown
in terms of the number of clock cycles normalized by dividing
them by I×H . The MATLAB Curve Fitter toolbox was used
to determine the interpolation function and the coefficients b3
to b0. This process was repeated separately for LUT-based
solutions.



TABLE III
HARDWARE COSTS FOR HENNC CANDIDATE DESIGNS AND EXISTING WORKS.

HENNC Estimations Post-Synthesis

LUTs DSPs Iteration Latency (Clock Cycles) LUTs FFs DSPs fmax (MHz) Iteration Latency (ns)

ANN P Solutions With DSP No DSP With DSP With DSP No DSP With DSP No DSP With DSP No DSP With DSP With DSP No DSP With DSP No DSP

3 – 4 – 3

2 1 4100 10708 44 169 128 4255 11358 8754 14909 44 510 548 224.25 167.44

1 2 2288 5592 22 302 253 3683 7089 7383 10334 22 510 548 661.05 516.88

0 3 2215 2896 5 544 500 2853 3314 5633 5735 5 510 548 1123.20 953.68

3 – 8 – 3

3 1 7988 21204 88 203 165 8051 22310 15020 27439 88 510 548 312.01 227.50

2 2 5744 12352 44 339 256 5885 12279 9981 14210 44 494 387 816.08 717.24

1 3 5180 8484 22 605 506 5089 8307 7944 10001 22 494 387 1087.83 1017.70

0 4 4067 4721 5 1089 1001 3962 4440 6388 6485 5 494 386 1848.10 1880.34

3 – 16 – 3

4 1 15764 42196 176 223 290 15671 43604 28723 53538 176 510 548 483.60 343.98

3 2 12656 25872 88 407 330 11868 24181 19592 27516 88 494 370 1308.96 1144.80

2 3 10524 17132 44 678 513 10271 16511 14688 18338 44 494 387 1571.56 1377.72

1 4 9841 13145 22 1211 1013 9846 12844 16818 19396 22 510 548 2427.75 1914.64

0 5 7771 8425 5 2178 2003 7726 7795 15051 14759 5 510 548 4212.10 3618.16

3 – 4 – 3 [13] - 1 - - - - - 21172 - 96 - 162 7 - - -

3 – 8 – 3 [11] - 1 - - - - - 87207 - 86329 - 8 266 - 543.75 -

For the cost estimation, we generated and synthesized a
range of solutions to gain insights into how LUT utilization
varies with hyperparameter values and parallelism. LUT usage
was measured as we incremented the H and the I while using
two levels of parallelism. There is a semi-linear relationship
between LUT utilization and both H and I. However, in-
creasing the level of parallelism exerts a non-linear influence
on the hardware core control circuit. we opted to express
the estimation of LUT usage as a linear function of I and
H for each parallelism level (P), employing the following
formulation:

#LUT = (c1 · I ·H) + (c2 · I) + (c3 ·H) + β, (9)

where c1, c2, c3, and β are coefficients determined experimen-
tally for each parallelism level.

These coefficients were established through experimentation
for each unique parallelism level, with a curve fitting tool.
For every potential parallelism level, we conducted linear
interpolation of LUT vs. H and LUT vs. I results from actual
result curves, such as those depicted in Fig. 4. Subsequently,
we determined the coefficient values by equating Eq. 9 with
the linear interpolation results. The obtained coefficient values
for various parallelism levels were then compiled to create
a constant coefficient table. When assessing the LUT cost
for a specific candidate architecture, the HENNC framework
retrieves the c1, c2, c3, and β values associated with the
requested parallelism level from this table. These values are
then incorporated into Eq. 9 to derive the estimation function
with two variables, I and H.

3) Hardware core generation: In the final step, the HENNC
framework generates the HLS design and verification codes
for the user-selected solution. Two distinct C++ code files
are generated: one for the synthesizable hardware design and
another for the testbench to aid in design validation in AMD-
Vitis HLS.


  ��
�������������������

�

��

��

��

��

��
��

��

×��	

���

���������

�������

	�������	

	 
 �
������������������

�

��

��

��

��

��
��

��

×��	

���

����������
��������
����
����

Fig. 4. Post-synthesis number of LUTs as a function of the number of neurons
in the (a) hidden layer, (b) input and output layers.

IV. RESULTS

We used AMD-Xilinx Vitis for HLS synthesis, AMD-Xilinx
Vivado ML 2023.1 for RTL synthesis, targeting a xcku035
Kintex Ultrascale FPGA with a speed grade of -3. Table III
lists the hardware costs for the three most commonly used
ANN models for approximating 3-D chaotic systems. It shows
that all HENNC solutions require significantly fewer LUTs
and operate at considerably higher clock frequencies compared
to [11], [13]. In contrast to the architecture proposed by Alcin
et al. [11], HENNC’s fastest architecture offers reduced latency
while consuming nearly 20× fewer LUTs. The other two
HENNC solutions have increased latency but lower hardware
costs. A primary reason for the substantial decrease in LUT
utilization is the adoption of ReLU as an activation function. In
contrast, prior works such as [13] employed the exponential
function, and [11] utilized numerous floating-point dividers
and CORDIC cores to approximate the activation function.
For a 3-8-3 ANN, an Intel 12th Gen Intel(R) Core(TM) i7-
12700 CPU generates 100 output samples in approximately
3.5 seconds, while the FPGA-based design accomplishes the
same task in 31 microseconds.
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Fig. 5. Post-synthesis hardware cost and latency of the design space explored
by HENNC for different ANN sizes in two modes: (a) with DSP utilization,
and (b) without DSP utilization.

Fig. 5 represents the HENNC design space for different
ANN sizes with and without DSPs. The figure illustrates
the trade-offs between post-synthesis LUT utilization and the
latency offered by each candidate solution. For each ANN
size, the smallest and largest solutions in terms of LUT usage
represent the top-speed and cost-optimized solutions, respec-
tively. The top-speed hardware leverages maximum parallelism
by employing the maximum number of MAC operators. In
contrast, the cost-optimized mode typically deploys only a
single MAC unit to calculate all neurons.

V. CONCLUSION

This paper introduced a framework for the rapid and auto-
mated generation of hardware cores for ANN-based chaotic
oscillators, with a specific focus on FPGA implementation.
The framework explores the hardware design space and offers
a range of candidate hardware solutions that trade off hardware
costs and throughput. The paper also proposed novel cost
and latency estimation functions. The results demonstrate that
the proposed framework not only accelerates the hardware
design process but also delivers candidate architectures that
outperform previous works in terms of efficiency.
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