
Evaluating One-Sided Communication on Graph500
with MPI-RMA and OpenSHMEM

Jefferson Boothe, Alan D. George
Department of Electrical and Computer Engineering, University of Pittsburgh
NSF Center for Space, High-Performance, and Resilient Computing (SHREC)

Pittsburgh, PA, USA
{j.boothe, alan.george}@pitt.edu

Abstract—While traditionally utilized for two-sided and col-
lective communication, the latest MPI standards support remote
memory access (RMA) between processes to enable one-sided
communication. This paradigm is typically associated with fine-
grained communication and irregular memory accesses. Many
graph analysis problems feature such irregular memory and
communication patterns, making them a good choice for per-
formance evaluation. Graph500 is a popular benchmark built
upon breadth-first search (BFS) on an undirected graph, which
is well known for its sparse data accesses and fine-grained
communication. In this research, we analyze and compare the
scalability of multiple implementations of BFS using MPI-RMA
against previously developed OpenSHMEM-based implementa-
tions optimized to maximize the benefits of one-sided communica-
tion. Additionally, we evaluate these implementations against the
state-of-the-art MPI reference code using different numbers of
processing elements and various problem sizes. Our experimental
evaluation shows consistently improved performance with MPI-
RMA over the best OpenSHMEM implementation on Graph500’s
BFS kernel with scales up to 32 nodes on the Pittsburgh
Supercomputing Center Bridges-2 Regular Memory partition
and University of Pittsburgh Center for Research Computing
(Pitt CRC) MPI Cluster. Due to the nature of graph processing
having a higher ratio of communication to computation, the com-
munication latency hiding aspects of one-sided communication
could not be fully exploited. While we demonstrate MPI-RMA
to achieve ∼1.8× better performance over the MPI reference
implementation on 32 nodes when only using 4 cores per node,
the reference version was more performant in the majority
of configurations tested. It is concluded that while one-sided
communication has shown promising performance on some large-
scale computing tasks, it remains difficult from a development
standpoint to leverage the one-sided benefits on more complex
kernels.

Index Terms—Distributed processing, high performance com-
puting, message passing, synchronization

I. INTRODUCTION

Distributed-memory computing clusters continue to grow
larger in pursuit of increased performance, but this does not
come without challenges. One such challenge is the com-
plexity of communication at scale, which, when performed
inefficiently, can become a significant performance bottleneck.
As such, developing and exploring efficient parallel communi-
cation libraries remains a key interest of the high-performance

This research was supported by SHREC industry and agency members and
by the IUCRC Program of the National Science Foundation under Grant No.
CNS-1738783.

computing (HPC) community. Two-sided communication is a
popular approach to sharing data in distributed computing, in
which the sending and receiving processes engage in a syn-
chronized handshake. Conversely, one-sided communication
permits the sharing of data with minimal to no synchronization
between processes, allowing the freedom for more fine-grained
communication.

First introduced in [1], the Graph500 benchmark aimed to
direct the attention of the HPC community towards improving
performance on emerging large-data informatics problems.
These problems differed greatly from existing benchmarks due
to the larger data requirements and low spatial and temporal
locality of the data. The first kernel of Graph500 and the
main interest of this research is BFS. The Graph500 standard
provides several predefined graph sizes to test against and
requires the number of edges to be 16× the number of vertices.
This research investigates the performance of state-of-the-
art one-sided communication libraries when applied to graph
analytics.

II. BACKGROUND

Two commonly used paradigms for communicating between
processing elements (PEs) at scale are one-sided and two-sided
communication patterns. Two-sided communication requires
synchronization between the two processes, as an explicit
handshake procedure must be completed. When one process
is not available to communicate, the other must typically
stall. This process is known as a blocking operation. Some
libraries offer asynchronous two-sided communication, which
eliminates the deadlock possibility of blocking calls. With
asynchronous two-sided communication, some handshake syn-
chronization is still required between PEs to share the data,
only there is more flexibility in the timings of the procedure.
One-sided communication, however, is non-blocking in nature
while also not requiring any formal synchronization or hand-
shake between processes. It can be beneficial to analyze the
computation-communication overlap of parallel programs, as
it is an important technique for latency hiding and overhead
reduction [2]. By allowing data transfers to occur without in-
terrupting the receiving PE’s computations, one-sided commu-
nication grants the programmer new opportunities to overlap
computation and communication and improve performance.

The MPI standard continues to be the most popular and
widely used parallel-programming library across the HPC
community [3], [4]. Traditional MPI programs utilize blocking
two-sided communication in conjunction with collective com-
munication calls. MPI also offers support for asynchronous,
non-blocking two-sided communication calls via probing and
waiting [5]. Newer MPI standards introduced Remote Memory
Access (RMA) functionality, allowing complete one-sided
communication between processes.

OpenSHMEM is a community effort to standardize an API
for parallel programming in the PGAS model with portability
across machines and environments [6], [7]. OpenSHMEM
innately supports one-sided communication as symmetrical
memory blocks are created across all PEs with asynchronous
access capabilities. Data objects stored in these symmetric
memory heaps are shared, and any data stored in traditional
local memory are private. Communication can only occur on
shared data.

III. RELATED RESEARCH

This research builds on an array of existing research de-
scribed in this section. Relevant studies can be categorized into
MPI-based research and OpenSHMEM-based research. This
section concludes with a discussion of related comparisons
and benchmarks previously completed.

A. MPI-Based Research

Graph500 offers a selection of BFS reference implementa-
tions using both traditional MPI and MPI-RMA. While most
results on the Graph500 utilize custom implementations, these
references can still serve as tools for performance evaluation
of novel algorithms. A small summary of relevant references
follows:

1) Replicated: The Replicated-MPI reference implementa-
tion features exclusively collective communication calls such
as MPI_AllGather. It is still a wavefront-based BFS algo-
rithm but is unique due to its lack of traditional, point-to-point
MPI messaging between nodes, instead opting for collective
communication. As the best-performing reference implemen-
tation used in [8], this research utilizes the Replicated-MPI
version as a baseline for comparison throughout.

2) One-Sided: The One-Sided MPI version of BFS utilizes
MPI-RMA for one-sided communication calls to perform a
wavefront traversal. It is the only reference code to leverage
MPI-RMA, however, prior research has shown it to perform
poorly [8], [9]. This implementation will be used in this
research to compare new MPI-RMA versions to the only one-
sided baseline.

B. OpenSHMEM-Based BFS Research

Previous research has been foundational to this research by
exploring and developing novel BFS algorithms specifically
for the one-sided communication offered by OpenSHMEM.
[10] aimed to perform the Graph500 benchmark using Open-
SHMEM by directly translating the One-Sided MPI reference
version from [11] into SHMEM API calls. The authors mainly

compared against the One-Sided MPI reference implementa-
tion, but since it failed to run at larger scales, they could
not fully compare the two. There is limited research into
developing novel BFS implementations for OpenSHMEM, as
opposed to translating existing ones from MPI. In [8], there
are five BFS implementations developed from scratch for
OpenSHMEM. This research features the Concurrent-Fence
and Concurrent-Hash algorithms, that feature preallocated
buffers to facilitate data sharing. The reader is referred to [8]
for more details on the algorithms themselves.

C. Previous Comparisons

There have been numerous investigations into the perfor-
mance of SHMEM on different machines, often compared to
traditional MPI or MPI-RMA. In [12], the authors compared
basic CraySHMEM communication calls to the corresponding
MPI-RMA counterparts using simple kernels with varying
message sizes on a Cray XC30. They found the CraySHMEM
communication calls to outperform their MPI-RMA counter-
parts in nearly every case. In [13], various PGAS runtime
models were compared using the Parallel Research Kernels
[14]. On the Cray XC30 system Edison, they found MPI-
RMA and SHMEM performance to consistently lag behind
traditional two-sided MPI on the specific kernels tested.

Other research has been presented that demonstrates the
potential of MPI-RMA in improving application performance
over traditional MPI on graph applications such as graph
matching [15]. MPI-RMA and OpenSHMEM are compared
on multiple kernels at comparatively low node counts in [16].
This research aims to compare the performance and scalability
of each library using a well-established benchmark (Graph500)
along with multiple BFS implementations to highlight some
advantages and shortcomings of each.

IV. APPROACH

The main focus of this research is to develop new Graph500
BFS algorithms utilizing MPI-RMA and to benchmark their
performance relative to existing standards as well as the
original OpenSHMEM implementations found in [8]. For
fairness of comparison as well as ease of development, all BFS
implementations were built into the Graph500 benchmarking
suite developed in [17]. The suite serves as a consistent
wrapper for collecting performance metrics and performing
validation. This computation is a key component of calculating
traversed edges per second (TEPS), the standard comparison
metric amongst Graph500 benchmarks discussed further in
Section V.

A. Platforms

BFS was evaluated on the the University of Pittsburgh
Center for Research Computing (Pitt CRC) as well as the
Pittsburgh Supercomputing Center (PSC) Bridges-2 Regular
Memory partition [18], [19]. Hardware for both clusters is
summarized in Table I. Code on the Pitt CRC was compiled
with GCC 8.2.0 and OpenMPI version 4.0.3. Code on PSC
was compiled using GCC 10.2.0 and OpenMPI version 4.0.5.

On both Pitt CRC and PSC, OpenSHMEM implementations
were run with a symmetric heap size of 3 GB.

TABLE I
PLATFORM SPECIFICATIONS OF [20] [21] ARE PROVIDED.

Platform Processor Nodes Cores per Frequency
Node (GHz)

Pitt CRC Dual Intel Xeon Gold 6342 136 48 2.80-3.50
PSC RM Dual AMD EPYC 7742 488 128 2.25-3.40

Memory L1 Cache L2 Cache L3 Cache
(GB) (KB) (KB) (MB)

Pitt CRC 512 DDR4 64 1024 36
PSC RM 256 DDR4 96 512 256

Interconnect Topology Speed
(Gb/s)

Pitt CRC InfiniBand HDR - 200
PSC RM Mellanox InfiniBand HDR Fat Tree 200

B. OpenSHMEM Implementations

The OpenSHMEM implementations tested in this research
are directly derived from those developed in [8] using the code
available at [22]. The Concurrent-Fence and Concurrent-Hash
versions were re-implemented inside of the OSB wrapper
[17] to ensure fairness of comparison to all other versions as
the OSB handles timing and performance metric calculations.
These versions had to be altered slightly to run inside the
OSB wrapper. Specifically, much of the code was simply
removed as it was made obsolete by the OSB wrapper, such
as timing and graph generation. Other portions, such as the
buffer preallocation and memory cleanup, were rearranged or
extended to ensure proper functionality. The fundamental BFS
algorithms remain identical to those in [8].

C. MPI and MPI-RMA Implementations

The baseline MPI implementations of Replicated and One-
Sided were ran as-is from the OSB as references. The
novel MPI-RMA implementations were developed based on
the algorithms used for Concurrent-Fence and Concurrent-
Hash in [8]. The Concurrent-Fence OpenSHMEM imple-
mentation begins with preallocating as many buffers as
possible inside the symmetric memory heap. Since MPI-
RMA does not have an explicitly defined region for shared
data to exist, instead opting for windows, a custom limit
had to be placed on the maximum buffer count to pre-
vent the application from expending all of the proces-
sor’s available memory on buffers. The Concurrent-Fence
MPI-RMA implementation utilizes MPI_Get_accumulate
as a replacement for shmem_int_fadd and MPI_Put
for shmem_char_put_nbi. The MPI-RMA windows en-
sured enough ordering between puts that no translation for
shmem_fence was required to synchronize further. The
Concurrent-Hash MPI-RMA implementation is similar to the
Concurrent-Fence version, differing mainly in the buffer struc-
ture and use of CRC32 to reduce the required number of
MPI_Put calls to send a buffer packet from two to one. For
more information on the algorithms themselves, the reader is
referred to [8].

V. RESULTS

The main metric of the BFS study is traversed edges
per second (TEPS), as defined in the Graph500 standard
[1]. TEPS can be obtained by dividing the total number of
graph edges traversed by the execution time of that traversal.
Execution time itself is not emphasized, as BFS execution can
vary due to the randomness of graph generation in addition
to the randomness of starting point selection in each trial.
TEPS serves to normalize the performance results across all
trials, problem sizes, and hardware architectures, representing
a computing rate similar to those in other common benchmarks
(e.g. floating-point operations per second). This section is
divided into three different tests of scalability: varying the
number of nodes, varying the number of cores per node, and
varying the graph size. All graphs feature 16× as many edges
as nodes, per the Graph500 standard [11].

A. Variable Node Count

The results in this section consist of data from both Pitt
CRC and PSC platforms. The Pitt CRC results were obtained
with all 48 cores per node running each application, at various
node counts. Data was collected with 2, 4, 8, 16, and 32
nodes or 96, 192, 384, 768, and 1536 PEs, respectively. Fig. 1
plots the median TEPS versus total PEs when tested with
a graph of 226 vertices. Replicated-MPI achieves the best
performance at all node counts on this graph size, with the
best performance of 2.67 GTEPS achieved using 768 PEs
(16 nodes). The Concurrent-Fence MPI-RMA implementation
performs nearly as well as the Replicated-MPI implementation
at lower node counts but is quickly eclipsed with a peak
performance of 0.86 GTEPS with 8 nodes. The One-Sided
MPI reference implementation was also tested at this scale
but performed poorly and the results were omitted from the
graph. For example, with 8 nodes, the Concurrent-Fence MPI-
RMA performed over 800× faster than the peak performance
of the One-Sided MPI reference.

Fig. 1 also shows the Pitt CRC results from the same test
on a 4× larger graph with 228 vertices. At this problem size,
some configurations fail for various reasons, most typically
through running out of traditional or symmetrical memory.
The cause of this breakdown can generally be explained by
fully exhausting available system resources due to the storage
demands of the graph, traversal, and/or message buffers. The
One-Sided MPI reference was unable to complete any trials
at this scale. Despite the gaps, data from larger graph tests
can still present interesting results and are included. The
same trends are present at this scale that can be seen on the
smaller graphs. Notably, Replicated-MPI continued to be the
top performer at higher node counts. However, the Concurrent-
Fence MPI-RMA implementation was even more competitive
at lower node counts and succeeded in running with 4 and 8
nodes, which Replicated-MPI failed to do.

Fig. 2 shows the PSC results across varying node counts
on the same problem sizes. Notably, these tests were per-
formed using only 64 cores per node of the 128 available.
All implementations other than Replicated-MPI exhausted

0

19
2

3
84

57
6

76
8

96
0

1
,1
52

1,
34
4

1,
5
36

0

1

2

3

4

5
·109

Number of PEs

T
E

PS

226 Vertices

Fence-MPI-RMA
Hash-MPI-RMA
Replicated-MPI
Fence-SHMEM
Hash-SHMEM

0

19
2

38
4

57
6

76
8

96
0

1,
1
52

1,
34
4

1
,5
36

0

1

2

3

4

5
·109

Number of PEs

T
E

PS

228 Vertices

Fig. 1. Median TEPS performance on Pitt CRC with varying node count and
all 48 cores utilized on different graph sizes.

available memory when using all available cores. Replicated-
MPI achieves the best performance similar to the Pitt CRC
results, reaching 2.88 GTEPS with 2048 PEs (32 nodes).
The Concurrent-Hash MPI-RMA implementation is the best
performer utilizing one-sided communication, but still falls
behind the Replicated-MPI baseline, achieving 0.77 GTEPS
under the same conditions. Both OpenSHMEM and the
Concurrent-Fence MPI-RMA implementations remain signif-
icantly slower at all scales tested.

B. Variable Cores per Node

Fig. 3 plots the performance of each implementation versus
total PEs similar to previous figures. However, instead of
utilizing all 48 cores per node available on Pitt CRC, a variable
number were utilized and the node count is fixed at 32. Results
were obtained with 4, 8, 16, 32, and 48 active cores per
node while remaining cores idled, or 128, 256, 512, 1024,
and 1536 PEs, respectively. The Concurrent-Fence MPI-RMA
implementation outperforms Replicated-MPI at the smallest

0

25
6

51
2

76
8

1,
0
2
4

1
,2
8
0

1,
5
36

1,
7
9
2

2,
0
4
8

0

2

4

·109

Number of PEs

T
E

PS

226 Vertices

Fence-MPI-RMA
Hash-MPI-RMA
Replicated-MPI
Fence-SHMEM
Hash-SHMEM

0

25
6

51
2

76
8

1,
02
4

1,
28
0

1,
53
6

1
,7
9
2

2
,0
4
8

0

2

4

·109

Number of PEs

T
E

PS

228 Vertices

Fig. 2. Median TEPS performance on PSC with varying node count and 64
cores utilized on different graph sizes.

core-per-node ratios but actually decreases in performance
with more than 16 cores per node. Comparatively, Replicated-
MPI improves significantly in performance up through 32
cores per node, where it achieves the best performance across
all tests at 3.92 GTEPS. Fig. 3 also shows the same experiment
on a graph with 228 vertices. Concurrent-Hash MPI-RMA is
shown to improve with increased cores per node for both graph
sizes, and most trends match across both tests. Replicated-
MPI again failed to run at low PE counts, but was the lead
performer for all successfully completed trials.

C. Variable Problem Size

The final test performed featured a fixed processing count
of 32 nodes utilizing all 48 cores each, evaluated at different
graph sizes from 222 to 230 vertices. Fig. 4 shows that
performance improves for all implementations as problem
size increases. This performance improvement is expected, as
larger problems allow higher computation to communication
ratios. It is again shown that Replicated-MPI significantly

0 8 16 24 32 40 48
0

2

4

·109

Cores per Node

T
E

PS
226 Vertices

Fence-MPI-RMA
Hash-MPI-RMA
Replicated-MPI
Fence-SHMEM
Hash-SHMEM

0 8 16 24 32 40 48
0

2

4

·109

Cores per Node

T
E

PS

228 Vertices

Fig. 3. Median TEPS performance on Pitt CRC with fixed 32 node count
and variable cores per node utilized on different graph sizes.

22 24 26 28 30
0

2

4

·109

Graph Size (2x Vertices)

T
E

PS

Fence-MPI-RMA
Hash-MPI-RMA
Replicated-MPI
Fence-SHMEM
Hash-SHMEM

Fig. 4. Median TEPS performance on Pitt CRC across different graph sizes
with 32 nodes, 48 cores per node (1536 PEs).

outperformed all one-sided implementations. These results
were found to be consistent with all node counts tested. The
only implementations to successfully run at scale 230 were the
MPI-RMA and OpenSHMEM Concurrent-Fence implemen-
tations. The successful completion of both Concurrent-Fence
versions may suggest a smaller memory footprint than those
which failed to execute. Concurrent-Fence MPI-RMA saw a
2.82× performance increase from size 228 to size 230, and the
SHMEM counterpart saw a 3.95× increase in performance
between the same points. On average, the Concurrent-Fence
MPI-RMA implementation saw a 3.61× increase in TEPS
per graph size increase. Comparatively, the Replicated-MPI
implementation averaged a 1.21× gain in TEPS per graph size
increase.

VI. DISCUSSION

All BFS implementations featuring one-sided communi-
cation demonstrated relatively poor performance against the
two-sided baseline. Notably, the Replicated-MPI implemen-
tation built upon collective communication calls consistently
performs as well as or better than all other versions tested.
Collective communication is common in application develop-
ment and the relative optimizations of such calls are consis-
tent performance concerns of the OpenMPI designers [23].
While the fine-grain control one-sided communication aligns
with the behavioral patterns of BFS, the results indicate
that at most scales tested, the overhead of facilitating such
communication outweighs potential gains. Despite the trans-
fers themselves benefiting from the one-sided communication
paradigm, the larger quantity of communication calls required
remains a significant contributor to the worsened computation-
communication overlap exhibited by all one-sided implemen-
tations. Replicated-MPI, on the other hand, does not attempt
to overlap the computation and communication at all, instead
benefiting solely from the minimal overhead of its collective
communication calls.

The performance implications of the increased overhead are
clearly shown in the variable core-per-node results in V-B. The
performance worsens at higher core-per-node counts due to the
increased communication requirements, while the computation
is too small to provide ample opportunity to hide the commu-
nication latency. The reverse effect can be seen as performance
increases for all implementations as the problem size grows. A
larger problem directly increases the amount of computation
per wave of traversal, granting more opportunity to overlap
said computation with the necessary communication calls and
yield increased performance. This trend coincides with the
current Graph500 rankings, which show the majority of top
performers executing on massive graphs with 240 or more
vertices [11]. For maximum performance, one should aim
for the largest problem size possible. Interestingly, this study
found that both the MPI-RMA and OpenSHMEM Concurrent-
Fence applications were capable of working with a larger
problem size than the other versions with the given hardware
constraints. The cause of Replicated-MPI’s failure to execute
at lower node counts on the Pitt CRC is uncertain due to

inconsistent behavior. The performance of Replicated-MPI on
CRC also shows a significant drop when transitioning from 32
to 48 cores per node for both graph sizes. Since Replicated-
MPI relies heavily on collective communication calls, these
findings suggest that optimal performance may be achieved
when communicating with a PE count that is a power of two.

All PSC data was gathered using half the available cores
per node as every implementation other than Replicated-MPI
was found to experience runtime errors when utilizing full
resources. A notable explanation is that the available memory
remains constant with a fixed node count. As in, each node
has a set amount of memory available, and increasing the node
count increases the total memory of the system. When the
number of nodes is held constant and cores per node increases,
the total memory remains the same, and the proportional mem-
ory per PE actually decreases. The reverse effect of decreasing
the cores per node doubled the available memory per PE on
PSC, allowing it to run successfully. Introducing better local
memory sharing and less duplicate data storage across cores on
each node could improve the hardware limitations and allow
more resources to be fully utilized. It was also found that all
one-sided versions grew in performance relative to problem
size at a much faster rate than Replicated-MPI. Since the
one-sided implementations seek performance gains through
overlapping computation and communication, it is also ex-
pected that performance grows faster than the Replicated-MPI
baseline, which utilizes collective calls with no latency hiding.
This difference in latency hiding ultimately suggests that with
a sufficiently large problem, it is expected that all one-sided
implementations will outperform the Replicated-MPI baseline
due to their computation-communication overlapping. The
remaining issue, then, is at what size would this occur, and is
it feasible to execute on the given hardware resources.

Another significant factor in communication library perfor-
mance is the machine itself. While the results found do not
necessarily match those found in [8], all of their findings
were conducted at node counts beyond the scope of this
research, using different SHMEM and MPI libraries with
different hardware and interconnects. Additionally, they do
not report TEPS, so any direct comparisons are difficult to
make. While this study utilized open standards portable to
any machine, [8] specifically targets the CraySHMEM library
on the Edison supercomputer, a Cray XC30 machine. This
library is likely well optimized for Cray specific devices in
ways that a portable standard such as OpenSHMEM cannot
match. It can be observed, however, that the MPI-RMA ver-
sions of Concurrent-Fence and Concurrent-Hash consistently
outperform their OpenSHMEM counterparts in the previous
study. Previous studies have found one-sided communication
with the MPI-2 standard to be exceptionally poor [24], but
there is limited research comparing SHMEM routines with
MPI-RMA calls from the newer MPI-3 standard. The results
in [12] demonstrate a significant improvement with MPI-3
over MPI-2, but were still outperformed by CraySHMEM
when performing different one-sided communication calls. It is
worth noting that such a benchmark study does not exist with

the specific libraries or hardware utilized in this research. One
difference between the algorithms is that the OpenSHMEM
implementations require an additional fence call to guarantee
ordering when compared to their MPI-RMA counterparts.
Since computation-communication overlap is so important to
realizing performance gains with one-sided communication
on BFS, this additional synchronization requirement of the
OpenSHMEM implementations may be a strong contributor
to the poor performance. More likely, however, is that the
system architecture and libraries featured are not optimized to
the same degree as the full-Cray hardware and software stack
featured in other studies.

VII. CONCLUSIONS

This study investigated one-sided communication for the
Graph500 benchmark by expanding on existing OpenSHMEM
research to compare with novel MPI-RMA implementations.
While one-sided communication offers fine-grain control suit-
able for BFS, the results showed that the added overhead of
facilitating such communication outweighed the benefits at
most scales tested across two different computing clusters.

The performance of the one-sided implementations was best
when there was ample opportunity to overlap computation and
communication. We demonstrated that the Concurrent-Fence
MPI-RMA implementation achieved ∼1.8× better perfor-
mance over the Replicated-MPI baseline on 32 nodes utilizing
four cores per node on Pitt CRC. As cores per node increased,
the performance of all MPI-RMA and OpenSHMEM versions
declined with increased overhead and decreased computa-
tion time per PE, restricting opportunities for communication
overlap. We also demonstrated that the performance of all
one-sided implementations scaled better with problem size
compared to the Replicated-MPI baseline. However, the prob-
lem sizes feasible to test were not sufficiently large for the
one-sided communication to outperform the Replicated-MPI
baseline. Expanding this research to even larger scales, such as
tens of thousands of PEs, could potentially illuminate differing
scalability at extreme node counts. Similarly, evaluating the
performance of each implementation with larger problem sizes
may demonstrate an interesting breaking point at which one-
sided communication consistently outperforms two-sided.

We also demonstrate that the Concurrent-Fence MPI-RMA
implementation outperformed the best one-sided reference
implementation by nearly three orders of magnitude. While
other studies show promising results with one-sided com-
munication, we find that the system architecture and library
pairing may play a significant role in expected performance.
Evaluating further with different architectures and libraries,
such as CraySHMEM utilized in [12], [24], could also result
in interesting conclusions about the impact of architecture on
the performance of one-sided communication, as many have
found SHMEM performance to excel on such architectures.
Ultimately, as interest in one-sided communication libraries
continues to grow, this research will enable informed design
decisions based on performance analysis on well-established
benchmarks.

ACKNOWLEDGMENT

This research was supported by SHREC industry and agency
members and by the IUCRC Program of the National Science
Foundation under Grant No. CNS-1738783. This research was
supported in part by the University of Pittsburgh Center for Re-
search Computing, RRID:SCR 022735, through the resources
provided. Specifically, this work used the H2P cluster, which
is supported by NSF award number OAC-2117681. This
work used Bridges-2 at Pittsburgh Supercomputing Center
through allocation ELE200001 from the Advanced Cyber-
infrastructure Coordination Ecosystem: Services & Support
(ACCESS) program, which is supported by National Science
Foundation grants #2138259, #2138286, #2138307, #2137603,
and #2138296.

REFERENCES

[1] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500,” Cray Users Group (CUG), vol. 19, pp. 45–74, 2010.

[2] V. Kumar and A. Grama, Introduction to parallel computing, 2nd ed.
Harlow, England: Addison-Wesley, 2003, oCLC: 1156877846. [Online].
Available: https://openlibrary.org/books/OL18188624M

[3] H. Yu, Z. Chen, X. Fu, J. Wang, Z. Su, J. Sun, C. Huang,
and W. Dong, “Symbolic verification of message passing interface
programs,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE ’20. New York, NY,
USA: Association for Computing Machinery, Oct. 2020, pp. 1248–1260.
[Online]. Available: https://dl.acm.org/doi/10.1145/3377811.3380419

[4] D. E. Bernholdt, J. Nieplocha, P. Sadayappan, A. G. Shet, and
V. Tipparaju, “Characterizing Computation-Communication Overlap
in Message-Passing Systems,” Jan. 2008. [Online]. Available: https:
//www.osti.gov/biblio/948730

[5] “MPI: A Message-Passing Interface Standard.”
[6] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel,

and L. Smith, “Introducing OpenSHMEM: SHMEM for the PGAS
community,” in Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model. New York New
York USA: ACM, Oct. 2010, pp. 1–3. [Online]. Available: https:
//dl.acm.org/doi/10.1145/2020373.2020375

[7] M. Baker, B. Chapman, T. Curtis, E. D’Azevedo, and J. Dinan, “Open-
SHMEM Application Programming Interface.”

[8] M. Grossman, H. Pritchard, Z. Budimlić, and V. Sarkar, “Graph500
on OpenSHMEM: Using A Practical Survey of Past Work to
Motivate Novel Algorithmic Developments,” in Proceedings of
the Second Annual PGAS Applications Workshop. Denver CO
USA: ACM, Nov. 2017, pp. 1–8. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3144779.3144781

[9] T. Naughton, F. Aderholdt, M. Baker, S. Pophale, M. Gorentla Venkata,
and N. Imam, “Oak Ridge OpenSHMEM Benchmark Suite,” in
OpenSHMEM and Related Technologies. OpenSHMEM in the Era
of Extreme Heterogeneity, S. Pophale, N. Imam, F. Aderholdt, and
M. Gorentla Venkata, Eds. Cham: Springer International Publishing,
2019, vol. 11283, pp. 202–216, series Title: Lecture Notes in
Computer Science. [Online]. Available: http://link.springer.com/10.
1007/978-3-030-04918-8 13

[10] E. F. D’Azevedo and N. Imam, “Graph 500 in OpenSHMEM,” in
OpenSHMEM and Related Technologies. Experiences, Implementations,
and Technologies, M. Gorentla Venkata, P. Shamis, N. Imam, and M. G.
Lopez, Eds. Cham: Springer International Publishing, 2015, vol. 9397,
pp. 154–163, series Title: Lecture Notes in Computer Science. [Online].
Available: http://link.springer.com/10.1007/978-3-319-26428-8 10

[11] “Graph 500 | large-scale benchmarks.” [Online]. Available: https:
//graph500.org/

[12] G. A. Negoita, G. R. Luecke, M. Kraeva, G. Prabhu, and J. P. Vary, “The
Performance and Scalability of the SHMEM and Corresponding MPI-3
Routines on a Cray XC30,” in 2017 16th International Symposium on
Parallel and Distributed Computing (ISPDC), Jul. 2017, pp. 62–69.

[13] R. F. Van Der Wijngaart, S. Sridharan, A. Kayi, G. Jost, J. R. Hammond,
T. G. Mattson, and J. E. Nelson, “Using the Parallel Research Kernels
to Study PGAS Models,” in 2015 9th International Conference on
Partitioned Global Address Space Programming Models, Sep. 2015, pp.
76–81.

[14] R. F. Van Der Wijngaart and T. G. Mattson, “The Parallel Research
Kernels,” in 2014 IEEE High Performance Extreme Computing
Conference (HPEC). Waltham, MA, USA: IEEE, Sep. 2014, pp. 1–6.
[Online]. Available: http://ieeexplore.ieee.org/document/7040972/

[15] S. Ghosh, M. Halappanavar, A. Kalyanaraman, A. Khan, and A. H.
Gebremedhin, “Exploring MPI Communication Models for Graph
Applications Using Graph Matching as a Case Study,” in 2019 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
May 2019, pp. 761–770, iSSN: 1530-2075. [Online]. Available:
https://ieeexplore.ieee.org/document/8820975

[16] C. Abidi, “Maintaining Communication at Scale with OpenSHMEM,”
Master’s thesis, University of Pittsburgh, Sep. 2022, num Pages:
50 Publisher: University of Pittsburgh. [Online]. Available: http:
//d-scholarship.pitt.edu/43291/

[17] “OSB: Oak Ridge OpenSHMEM Benchmarks,” Sep. 2022, original-
date: 2018-03-29T18:24:57Z. [Online]. Available: https://github.com/
ornl-languages/osb

[18] T. J. Boerner, S. Deems, T. R. Furlani, S. L. Knuth, and J. Towns,
“ACCESS: Advancing Innovation: NSF’s Advanced Cyberinfrastructure
Coordination Ecosystem: Services & Support,” in Practice and
Experience in Advanced Research Computing, ser. PEARC ’23. New
York, NY, USA: Association for Computing Machinery, Sep. 2023, pp.
173–176. [Online]. Available: https://dl.acm.org/doi/10.1145/3569951.
3597559

[19] S. T. Brown, P. Buitrago, E. Hanna, S. Sanielevici, R. Scibek, and
N. A. Nystrom, “Bridges-2: A Platform for Rapidly-Evolving and Data
Intensive Research,” in Practice and Experience in Advanced Research
Computing, ser. PEARC ’21. New York, NY, USA: Association
for Computing Machinery, Jul. 2021, pp. 1–4. [Online]. Available:
https://doi.org/10.1145/3437359.3465593

[20] “Computing Hardware | crc.pitt.edu | University of Pittsburgh.”
[Online]. Available: https://crc.pitt.edu/resources/computing-hardware

[21] “Bridges-2 System Configuration | PSC.” [Online]. Available: https:
//www.psc.edu/bridges-2-system-configuration/

[22] “Openshmem graph500 implementations.” [Online]. Avail-
able: https://github.com/habanero-rice/hclib/tree/resource workers/test/
performance-regression/full-apps/graph500-2.1.4/oshmem

[23] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra,
J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine,
R. H. Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall,
“Open MPI: Goals, Concept, and Design of a Next Generation MPI
Implementation,” in Recent Advances in Parallel Virtual Machine
and Message Passing Interface, D. Hutchison, T. Kanade, J. Kittler,
J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar,
M. Y. Vardi, G. Weikum, D. Kranzlmüller, P. Kacsuk, and J. Dongarra,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, vol. 3241,
pp. 97–104, series Title: Lecture Notes in Computer Science. [Online].
Available: http://link.springer.com/10.1007/978-3-540-30218-6 19

[24] C. M. Maynard, “Comparing One-Sided Communication With MPI,
UPC and SHMEM,” Proceedings of the Cray User Group (CUG), vol.
2012, 2012.

