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Abstract—In clinical MRI, the management of image noise
remains a challenge, particularly in Periodically Rotated Over-
lapping ParallEL Lines with Enhanced Reconstruction (PRO-
PELLER) MRI, where the effects of Gaussian noise on image
quality have not been extensively explored. To address this gap,
this study investigates the impact of Gaussian noise on the quality
of PROPELLER MRI images, a technique pivotal for reducing
motion artifacts. Systematic introduction of Gaussian noise into
the k-space data of PROPELLER blades, varying in number
and intensity, allowed for the simulation of realistic clinical
scenarios. The study quantified the effects on image quality
using peak signal-to-noise ratio (PSNR) and visual inspections.
Results demonstrated a significant decline in image quality as the
number and intensity of noisy blades increased. Furthermore,
it was observed that removing noisy blades from the recon-
struction process could partially ameliorate image quality. These
findings emphasize the need for enhanced noise management
in PROPELLER MRI and suggest directions for algorithmic
improvements to optimize clinical MRI imaging.

Index Terms—PROPELLER MRI, Noise Reduction, Image
Reconstruction, Magnetic Resonance Imaging

I. INTRODUCTION

Periodically Rotated Overlapping ParallEL Lines with En-
hanced Reconstruction (PROPELLER) MRI [1] represents a
significant advancement in clinical imaging, particularly due
to its robustness against motion artifacts. Since its inception,
PROPELLER MRI has been widely implemented in various
clinical settings, leveraging its unique acquisition technique of
collecting data in rotating blade-like segments [2, 5, 6, 11-16].
These segments, or blades, consist of parallel phase-encoded
lines acquired through either fast spin echo or gradient echo
sequences [10]. The technique’s inherent ability to correct for
patient motion and flow artifacts has rendered it indispens-
able in scenarios where patient movement is unavoidable or
unpredictable [3].

One of the key aspects of PROPELLER MRI is its method
of handling motion-corrupted blades. Conventionally, these
blades are identified and excluded prior to the blade com-
bination phase, a process crucial for enhancing the resulting
image quality. This exclusion is based on the premise that
motion-corrupted blades detrimentally affect the overall image
clarity and integrity. However, while this approach effectively
addresses motion artifacts, it brings forth another aspect that

has been less explored in the literature: the impact of inher-
ently noisy blades on the resultant image quality.

In standard clinical practice and existing research, the focus
has predominantly been on motion artifacts [9], with less
attention given to the influence of noise within individual
blades. Noise in MRI can arise from various sources, including
patient-induced electrical activity, scanner-related electronic
noise, and environmental factors [4]. In the context of PRO-
PELLER MRI, the presence of noise within blades may
introduce unique artifacts or degrade image quality, an aspect
that has not been thoroughly investigated.

This study aims to fill this gap by systematically evaluating
the effects of noisy blades on PROPELLER MRI image
quality. We introduce controlled Gaussian noise into individual
blades during the image reconstruction process and observe the
resultant changes in image quality. This approach allows for
a quantitative and qualitative assessment of how noise levels
within blades influence the final MRI output. We hypothesize
that noisy blades, much like motion-corrupted ones, have a
detrimental impact on image quality, potentially leading to the
introduction of artifacts or a reduction in the overall signal-
to-noise ratio (SNR).

The implications of this research are manifold. Under-
standing the impact of noisy blades could lead to improved
PROPELLER MRI protocols, where noise correction strategies
could be implemented alongside motion correction. This might
involve the development of new algorithms for noise detection
and blade exclusion or adjustment, thereby enhancing the
overall image quality. Additionally, insights from this study
could inform clinical practices, guiding radiologists in optimiz-
ing PROPELLER MRI settings for specific clinical scenarios,
particularly those where noise is a significant concern.

In summary, this study aims to provide a comprehensive
evaluation of the noisy blade effects in PROPELLER MRI,
thus contributing to the optimization of this imaging technique
for enhanced clinical outcomes.

II. METHODS

A. PROPELLER MRI Technique Overview

Periodically Rotated Overlapping ParallEL Lines with En-
hanced Reconstruction (PROPELLER) MRI [1] is an advanced
imaging technique that significantly mitigates motion artifacts
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Fig. 1. Workflow Illustrating the Impact of Gaussian Noise on PROPELLER MRI Image Reconstruction

through a unique data acquisition strategy. The fundamental
principle of PROPELLER MRI involves acquiring data in a
non-conventional manner, where k-space is filled with rotat-
ing, rectangular blade-like segments, each comprising parallel
phase-encoded lines.

The data acquisition for each blade can be mathematically
described as follows: Let B;(f) represent the i-th blade
acquired at an angle 6 to the initial position. The blades are
rotated incrementally to cover the entire k-space. The angle
0 typically varies between 10° and 20°, depending on the
specific protocol and scanner parameters.

For a blade B;, the k-space data can be represented as:

Bi(0) = {k(2',y') | 2’ = xcos(0) + ysin(),

y' = —xsin(0) + ycos(6)} W

where k(z',y’) denotes the k-space data at coordinates
(2',y’'), transformed by the rotation angle 6. This transfor-
mation effectively captures data along different orientations,
aiding in comprehensive k-space coverage.

Each blade’s central region is oversampled, providing a
higher signal-to-noise ratio (SNR) at the k-space center. This
oversampling is crucial for enabling effective motion cor-
rection and for ensuring data consistency across successive
blades. The oversampling factor, typically denoted as O, is
a critical parameter that influences the quality of the recon-
structed image.

The blade combination and image reconstruction process
in PROPELLER MRI involves aggregating the data from
all acquired blades. This combination takes into account

the rotation and position of each blade within k-space. An
essential aspect of this process is phase correction and in-
plane motion adjustments, which are crucial for compensating
for any patient movement during the scan.

B. Dataset Details and Experimental Setup

The dataset for this study comprises fully sampled k-
space PROPELLER blades, obtained from a volunteer using
a Philips Ingenia 3T scanner, which features a 13-channel
head phased-array coil [5]. The data was acquired employing a
T2-weighted Turbo Spin Echo (TSE) PROPELLER sequence,
characterized by a repetition time (TR) and echo time (TE)
of 4000/109 ms respectively, an echo train length (ETL) of
30, a matrix dimension of 436x436, slice thickness set at
4 mm, encompassing 24 slices, and a field of view (FOV)
measuring 25x25 cm. In compliance with the guidelines of
the institutional review board, informed consent was obtained
from all participating volunteers for the in vivo experiments.

The proposed method was executed on a system equipped
with a Windows 10 operating system, NVIDIA Quadro P2200
GPU, Intel Core i7 processor, and 64 GB of RAM. The noise
injection process was carried out using MATLAB, version
R2023a, and PROPELLER reconstruction was conducted via
GPILAB [8].

C. Gaussian Noise Injection Process

Gaussian noise was artificially introduced into the imaging
data to simulate the presence of noisy blades in PROPELLER
MRI. This noise is characterized by a Gaussian distribution,



typically denoted as A/(0, o%), where o represents the standard
deviation of the noise. The choice of Gaussian noise is due
to its prevalence in MRI as a model for random noise arising
from thermal fluctuations and scanner electronics [7].

The mathematical representation of the noise injection for a
single blade is as follows: Let B; be the original k-space data
of the i-th blade. The noise-injected blade B; is given by:

Bi:Bi+N(O,0'2) (2)

where V(0 02) is the Gaussian noise added to the blade. This
process involves extracting the k-space data B; for a selected
blade and then augmenting it with the calculated Gaussian
noise. The variance o2 of the noise was tailored to reflect
realistic noise levels encountered in clinical MRI settings.

D. Quantifying the Impact of Noise on Image Quality

This experiment was designed to assess the impact of vary-
ing levels of Gaussian noise on image quality in PROPELLER
MRI. Our focus was to analyze both the individual and
cumulative effects of noisy blades on the reconstructed images.
Each brain slice in our study comprised 24 PROPELLER
blades, with each blade having a dimension of 30x436 and
encompassing 13 coils. Each blade’s coils are amalgamated
through the square-root of their squared sums, formulated as:

3)

where xy[n| signifies the signal from the k-th coil in the n-th
blade.

To evaluate the effects of noise, we introduced Gaus-
sian noise selectively into one or more blades. The noise-
corrupted blade(s) were then processed through the standard
PROPELLER MRI reconstruction pipeline. This allowed us
to contrast the image quality between the original, noise-free
blades and the noise-injected ones. Subsequently, we discarded
the noisy blade(s) from the reconstruction process. This step
was crucial in determining the extent to which the exclusion
of noisy blades could improve image quality.

Figure 1 outlines the entire workflow of this study. It
illustrates the comparative analysis of PROPELLER MRI
reconstruction under three scenarios: without any noisy blades
(using all 24 blades), with the inclusion of noisy blades, and
following the exclusion of these noisy blades. This workflow
facilitates a comprehensive understanding of how Gaussian
noise, both in single and multiple blades, influences the overall
image quality in PROPELLER MRI.

E. PROPELLER Network Setup

The PROPELLER reconstruction process was implemented
in GPILAB by building a network. The network structure is
shown in Figure 2. It outlines the workflow used in this study.
The network uses several key modules, including FFTW for
Fourier transforms, SDC for density compensation, and the
Grid module for data gridding. The PROPELLOR_Crds and

PROPELLOR_ShiftCorrect modules perform the PRO-
PELLER reconstruction and correct any motion that exists in
the blades.
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Fig. 2. PROPELLER network setup showing the sequential processing steps
involved in the PROPELLER reconstruction pipeline.

III. RESULTS

This section presents the findings from our comprehensive
analysis of the impact of Gaussian noise on PROPELLER MRI
image quality. Through a series of experiments, we systemati-
cally introduced varying levels of noise into the PROPELLER
blades and assessed the resultant changes in image clarity.
The following descriptions correspond to a set of figures that
visually and quantitatively illustrate these effects. The results
are crucial in understanding the relationship between noise
levels and image degradation in PROPELLER MRI, providing
key insights into how noise influences diagnostic imaging
quality.

Figure 3 displays four brain images to demonstrate the
impact of varying numbers of noisy blades on image quality.
A region of interest has been extracted from each brain slice to
more clearly illustrate the effect. The first image is the ground
truth (full brain slice with 24 PROPELLER blades and no
noise). The second image, with one noisy blade out of 24,
shows a slight degradation in image quality, with a PSNR of
40.0768 dB. The third image, with two noisy blades, exhibits
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Fig. 3. Sequential Impact of Noisy Blades on Brain MRI Quality. The images,
from top to bottom, depict the progressive decline in image quality: (1) ground
truth with 24 PROPELLER blades; (2) one noisy blade; (3) two noisy blades;
(4) three noisy blades, showcasing the escalating degradation with additional
noisy blades.

more pronounced artifacts, resulting in a further reduced PSNR
of 36.7682 dB. The fourth image, with three noisy blades,
demonstrates significant quality degradation, with a PSNR of
34.9534 dB.

Figure 4 presents a comparative analysis of image quality
with and without the inclusion of noisy blades, focusing on
a region of interest (ROI) for clearer demonstration. The first
row shows three brain images: the ground truth, one with a
single noisy blade, and one reconstructed after removing the
noisy blade. After the exclusion of the noisy blade the third
brain image is reconstructed with 23 PROPELLER blades. The
second row contains two images: one with two noisy blades
and one reconstructed after removing these two blades similar
like the first row. This comparison, by highlighting a specific
region of interest in each image, underscores the effectiveness
of excluding noisy blades in enhancing image quality.

In Figure 5, we examine the impact of Gaussian noise with
varying Signal-to-Noise Ratio (SNR) levels on image quality
in PROPELLER MRI. The experiment involves the injection
of Gaussian noise in a single blade out of the 24 blades at
different SNR levels, specifically 5 dB, 10 dB, and 20 dB.
Consistent with standard MRI principles, the image with the
lowest SNR of 5 dB shows the most noise and poorest quality,
while the image with the highest SNR of 20 dB displays the
least noise and best quality. This is quantitatively supported by
the Peak Signal-to-Noise Ratio (PSNR) values. The 5 dB SNR

Reference Single noisy blade Removed noisy blade

Two noisy blades
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Fig. 4. Effectiveness of Excluding Noisy Blades in Brain MRI Quality
Enhancement. The first row displays three images: ground truth, one with
a single noisy blade, and one post removal of the noisy blade. The second
row shows two images: one with two noisy blades and one reconstructed after
their removal. This comparison emphasizes the improvement in image quality
achieved by excluding noisy blades.

image has a PSNR of 40.0768 dB, indicating high noise; the
10 dB SNR image has a moderately better PSNR of 44.7599
dB; and the 20 dB SNR image shows the best quality with
a PSNR of 52.7550 dB. This demonstrates the typical trend
in MRI where lower SNR results in higher noise and lower
PSNR, and vice versa.

In the evaluation of the computational performance, the ex-
ecution time and memory usage for PROPELLER reconstruc-
tion with different number of blades were measured. The data
included 24 blades, removing single noisy blade (23 blades),
and removing double noisy blades (22 blades) scenarios. The
results are summarized in Table I. The observations indicate
that removing blades reduces execution time and memory
usage of PROPELLER reconstruction.

The results indicate a clear trend of decreasing image quality
with the introduction of noisy blades and increasing noise
levels. Quantitatively, this trend is evident in the decreasing
PSNR values. The study also demonstrates the potential benefit
of removing noisy blades from the reconstruction process, as
indicated by the partial restoration of image quality and PSNR
values.

IV. DISCUSSION AND CONCLUSION

This study systematically investigated the effects of Gaus-
sian noise on image quality in PROPELLER MRI, a technique
widely recognized for its efficacy in reducing motion artifacts.
Through a series of controlled experiments, we demonstrated
how the introduction of noisy blades, varying in number and
noise intensity, impacts the overall image clarity and integrity.

Our findings reveal a clear correlation between the presence
of noisy blades in PROPELLER MRI and the degradation of
image quality, as quantitatively evidenced by the decrease in
peak signal-to-noise ratio (PSNR). Specifically, the inclusion



TABLE I
EXECUTION TIME AND MEMORY USAGE FOR PROPELLER RECONSTRUCTION WITH DIFFERENT NUMBER OF BLADES

Scenario Execution Time (s) | Memory Usage (MB)
PROPELLER Reconstruction 24 blades (Noise Free) 4.90 173.2
PROPELLER Reconstruction 23 blades (Discarding Single Noisy Blade) 4.85 174.0
PROPELLER Reconstruction 22 blades (Discarding Noisy Blades) 4.47 173.6

PSNR: 40.0768 dB

44.7599 dB

SNR:10dB SNR: 20dB

Fig. 5. Influence of Gaussian Noise Levels on PROPELLER MRI Quality.
Starting with the ground truth, subsequent images show increasing SNR levels
(5 dB, 10 dB, 20 dB).

of one, two, and three noisy blades progressively worsened the
image quality, introducing artifacts and reducing the PSNR
significantly. Moreover, the study highlighted that different
levels of Gaussian noise (5 dB, 10 dB, and 20 dB) injected
into a single blade resulted in a noticeable decline in image
quality, further underscoring the sensitivity of PROPELLER
MRI to noise interference.

Importantly, our results also showed that the removal of
noisy blades from the reconstruction process could partially
restore image quality, suggesting that identifying and exclud-
ing such blades could be a viable strategy for enhancing
PROPELLER MRI images in clinical practice. This finding
opens avenues for the development of advanced algorithms ca-
pable of detecting and compensating for noisy blades, thereby
optimizing the utility of PROPELLER MRI in scenarios where
noise is a significant concern.

In conclusion, this study provides critical insights into
the impact of noise on PROPELLER MRI and lays the
groundwork for future research aimed at refining this imaging
technique. The implications of our findings are significant

for clinical imaging, particularly in optimizing MRI protocols
to achieve higher-quality images in challenging scenarios
involving patient movement and environmental noise factors.
By enhancing our understanding of noise effects in PRO-
PELLER MRI, this research contributes to the ongoing efforts
to improve diagnostic accuracy and patient outcomes in the
field of medical imaging.
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