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Abstract—The task of infrared small-object segmentation has
a wide range of applications. One such application is in mili-
tary early-warning systems where overhead persistent infrared
(OPIR) sensors are leveraged for target detection. Although tar-
gets of interest often manifest as dim point-source targets, making
them difficult to detect, recent machine-learning algorithms have
enabled significant advances in detection capability. However,
these more complex algorithms and increasing sensor resolution
have made high-throughput, on-orbit processing challenging.
This research explores FPGA acceleration of the Multiscale
Local Contrast Learning Network (MLCLNet) target-detection
model. MLCLNet was selected for its combination of high
detection performance and architectural simplicity. Effects of
model quantization required for acceleration were evaluated and
shown to be minimal and, in some cases, positive. Additionally,
the Xilinx Deep Learning Processor Unit (DPU) performance for
the inference task is evaluated on the Xilinx UltraScale+ and
Versal AI Core device architectures. Six DPU configurations and
six MLCLNet model sizes were used to parameterize inference
with 128×128 subframes. This research demonstrates that the
Versal DPU can perform subframe inference at up to 1626 FPS
with up to 6.7× speedup over the older UltraScale+ architecture.
Informed by these findings, the Versal architecture’s hetero-
geneous nature is leveraged to implement an accelerated end-
to-end target-detection pipeline. This pipeline enables inference
on large OPIR frames by batching them into appropriately
overlapped subframes, preprocessing, performing inference, and
postprocessing into detections. Throughput ranging from 0.96
FPS to 75.79 FPS is achieved for frame sizes ranging from
4k×4k down to 500×500. The proposed architecture’s resource
utilization, latency, and power consumption are also analyzed.

Index Terms—FPGA acceleration, machine learning, overhead
persistent infrared, remote sensing, target detection, Versal

I. INTRODUCTION

Missile early-warning systems rely on space-based overhead
persistent infrared (OPIR) sensors to detect and monitor for
potential threats [1]. These threats often appear as small point-
source targets with low signal-to-noise (SNR) ratios. The com-
bination of low SNR, small size, and complex backgrounds
make these targets challenging to detect. Increasingly sophis-
ticated algorithms have been developed in response to these
challenges, with machine learning (ML) being a dominant
area of algorithm advancement [2]. Due to the time-sensitive
nature of the target-detection task and potential limitations to
downlink bandwidth, the ability to perform low-latency on-
orbit computation is highly desirable. Successfully enabling
the on-orbit deployment of ML-based detection networks

requires embedded acceleration. Additionally, optimizations
to reduce compute complexity, such as quantization, cannot
adversely impact detection performance.

Existing evaluations of ML methods have identified various
models capable of a high probability of detection for OPIR tar-
gets. In this research, we select the Multiscale Local Contrast
Learning Network (MLCLNet) architecture for acceleration
due to its comparatively small size and computational com-
plexity, architecture simplicity, and overall detection capability
[3]. Various size MLCLNet models are trained and evaluated
using a custom multi-target OPIR dataset. The Xilinx Vitis and
Vitis-AI development tools are used for model quantization,
deployment, and hardware development. After analyzing the
effects of quantization on MLCLNet, we evaluate the ca-
pability of the Xilinx Deep Learning Processor Unit (DPU)
for inference acceleration. This evaluation directly compares
the Xilinx Versal Adaptive Compute Acceleration Platform
(ACAP) and the older UltraScale+ family of Xilinx devices.
After benchmarking the model configurations and devices of
interest, the results inform the development of an end-to-
end pipeline designed to perform preprocessing, inference,
and postprocessing. This proposed architecture leverages the
heterogeneous nature of the Versal device to enable high-
throughput OPIR target detection. The pipeline is developed
and evaluated for arbitrarily large input frames by processing
inputs using a batched subframe approach. This research,
therefore, serves as both a presentation of an application-
specific acceleration architecture and a case study in the ac-
celeration of ML for high-resolution remote-sensing imagery
using the Xilinx Versal ACAP.

II. RELATED RESEARCH

There has been significant development of single-frame
infrared target detection methods in recent years. However,
little focus has been paid to their complexity and performance
on embedded platforms. Most included complexity evaluations
use desktop- or datacenter-grade devices; however, there are
some exceptions for older methods. The research in [4] focuses
on GPU acceleration of the IPI (Infrared Patch Image) method
for single-frame infrared target detection. They achieve a
20× speedup over the CPU implementation when using an
NVIDIA Jetson AGX Xavier. In [5] an FPGA implemen-
tation of a filter-based infrared target-detection method is



introduced. This simple algorithm can easily achieve real-time
performance. However, the detection performance is much
worse than the current state-of-the-art. Another similar design
implements a TopHat-filtering approach on an FPGA [6].
The implemented TopHat design reduces computation time by
25.9% compared to a CPU implementation. GPU- and FPGA-
accelerated background-suppression algorithms for infrared
target detection were introduced in [7] and [8], respectively.
However, they used desktop-grade devices and the current
state-of-the-art has far exceeded their detection performance.

The research in [9] explores the acceleration of a convo-
lutional layer for infrared target detection. However, the net-
work is simple and not representative of the challenges faced
when accelerating existing state-of-the-art models. Although
no research has been found where full ML methods specific
to infrared target detection were accelerated on embedded
platforms, there is research on more general ML acceleration.
For instance, the research in [10] leverages Xilinx Vitis-AI to
accelerate generic object-detection models, such as YOLOv3.
However, it cannot provide the required insight into the ac-
celeration of application-specific networks such as MLCLNet
that formulate the task as a small-object segmentation problem.
Such previous research also lacks insight into the need for an
end-to-end solution for embedded processing of large input
frames.

III. BACKGROUND

This section provides a brief background relevant to this
research. First, the task of OPIR target detection and existing
methods are discussed. A more detailed discussion of ML-
CLNet and the Xilinx Versal ACAP then follows.

A. OPIR Target Detection

The dynamic and unpredictable nature of OPIR scene
backgrounds has led to the increasing use of single-frame
detection methods. A variety of different algorithms including
filter-based methods [11]–[14], local contrast methods [15]–
[20], and ML methods [3], [21]–[26], among others, have been
proposed for the task of infrared small-object segmentation.
The evaluations in [27] demonstrated that many of these ML
methods can be successfully trained for the specific task of
OPIR target detection. The existing methods were evaluated
for this research and MLCLNet [3] was chosen due to its small
size, detection performance, and Xilinx DPU compatibility.

B. Multiscale Local Contrast Learning Network

The MLCLNet architecture for small target detection is
shown in Fig. 1. The encoder-decoder structure of the model
is built upon ResNet-20 [28] for feature extraction and FPN
[29] for feature fusion. Multiscale Local Contrast Learning
(MLCL) modules reside on the skip connections and help
extract dim, small targets of interest. The model output is a
binary segmentation mask that indicates the predicted label of
each pixel in the frame—either target or background. When
performing the proposed experiments, the model architecture
remains the same but the number of channels in each of the

Fig. 1. MLCLNet architecture derived from [3] with layer output sizes for
128×128 subframe input.

three main ResNet-20 stages, denoted by x1, x2, and x3, is
varied to evaluate the effects of model size.

The MLCL layers of the network enable the segmentation
of small, often unresolved, targets that traditional methods
struggle with. The MLCL layer is inspired by traditional local-
contrast detection methods. The ALCNet architecture [22]
was the first to introduce a local-contrast prior. However,
MLCLNet takes the prior one step further by architecting
the model to learn local contrast using neural network layers.
Specifically, the convolutional and dilated-convolutional layers
are used. Using dilated convolution within the MLCL layers
allows the local contrast to be computed across multiple scales.

C. Xilinx Versal ACAP

The primary device of interest in this research is the
AMD Xilinx Versal ACAP. Specifically, the VCK190 AI Core
development board because it contains dedicated hardware
for accelerating ML workloads [30]. The forthcoming AI
Edge series also includes dedicated ML hardware and is
designed for low-power systems. The AI Edge is discussed
when considering the results of this research but was not yet
available for direct comparison. The Versal AI Core is a highly
heterogeneous architecture including an application processing
unit (APU), FPGA programmable logic (PL), AI Engine (AIE)
vector processors, and a programmable network on chip (NoC)
[31]. The APU is a dual-core Arm Cortex-A72 and is accom-
panied by an Arm Cortex-R5F real-time processing unit. The
PL includes look-up tables (LUT), flip-flops (FF), block RAM
(BRAM), ultra RAM (URAM), and digital signal processors
(DSPs). The AIEs are high-performance vector processors
implemented in a 2D grid. These device regions and off-chip
DDR memory are tied together using the programmable NoC
[31]. While the AI Edge series is specifically targeted for edge
applications, the AI Core also has edge applicability and has
been explored for such applications [32], [33]. Therefore, the
Versal AI Core VCK190 is considered an appropriate target as
an embedded processing device in the context of this analysis.

IV. METHODS

The following sections present an overview of model con-
figuration, training, and quantization. Methods used for the



TABLE I
SUMMARY OF TRAINED MODEL CONFIGURATIONS FOR EVALUATION.

Metric Model Configuration

c2 c4 c8 c16 c32 c64

Params (M) 0.01 0.03 0.14 0.55 2.20 8.78
GOP 0.06 0.23 0.89 3.52 13.99 55.84
nIoU 0.51 0.67 0.69 0.70 0.70 0.69
AUC 0.88 0.93 0.93 0.94 0.93 0.94

Pd 0.69 0.82 0.83 0.84 0.84 0.85
Fa 0.02 0.10 0.11 0.22 0.18 0.38

DPU benchmarks are then discussed. Finally, the end-to-end
acceleration architecture is introduced.

A. Dataset, Training, and Quantization

A variety of different MLCLNet model configurations are
evaluated in this research. The number of filters in each
backbone layer is adjusted to scale the model. The number
of filters used for a given model is denoted [x1, x2, x3]. The
values are constrained so that x2 = 2x1 and x3 = 2x2 as
is the case in [3]. Model configurations are denoted by the
shorthand notation c(x1) and configurations c2, c4, c8, c16,
c32, and c64 are evaluated, where c16 is the default from [3].

The models are trained on a custom multi-target OPIR
dataset generated using the Air Force Institute of Technology
Sensor and Scene Emulation Tool (ASSET) [34], [35]. This
dataset generation follows the steps we introduced in [27],
except up to 10 targets are injected per frame. The frame
size is 128×128. Each model is trained for 20 epochs with
early stopping using a validation set to select the best model
weights. Table I reports model complexity and target-detection
performance for each model configuration before quantization.
Complexity is reported in terms of millions of parameters and
giga-operations (GOP) for inference. Four metrics are used
to quantify detection performance. Normalized intersection
over union (nIoU) and area under the curve (AUC) are pixel-
level metrics evaluating segmentation performance. Probability
of detection (Pd) and false alarm rate (Fa) are target-level
metrics specific to the target-detection task. Detectors with Pd
approaching one and Fa approaching zero are best. MLCLNet
outperformed other target detection methods evaluated in [27]
(e.g. DNANet [24] and ALCNet [22]), having equivalent
or better performance in all cases. This performance along
with the network’s relatively low computational complexity
motivated the choice of MLCLNet for acceleration.

Vitis-AI 3.0 is used to quantize the PyTorch floating-point
model into an 8-bit integer (INT8) representation [36]. The
quantization is performed using power-of-two scaling, the only
method supported on the DPUs due to the significant perfor-
mance benefits compared to floating-point scaling. Calibration
is performed using the MinMax method and 1,000 input frames
sampled from the validation set.

B. DPU Benchmark Configuration

A subset of available Xilinx DPU configurations are evalu-
ated for each device family used [36]. The ZCU104 [37] and

Fig. 2. End-to-end acceleration architecture targeting Versal AI Core.

ZCU102 [38] development boards are used as UltraScale+
reference devices. For the UltraScale+ DPU (DPUCDX8G),
we only evaluate the most performant configuration avail-
able for each device (B4096x2 for ZCU104 and B4096x3
for ZCU102). These DPU configurations include the largest
convolutional engine with two and three compute units (CUs),
respectively. We evaluate four different Versal AI Core DPU
(DPUCVDX8G) configurations for the VCK190. Configura-
tions are denoted as C#B#, where the number following C
indicates the number of AIE tiles used for each batch. The
number following B indicates the batch size used. Both single-
batch configurations and max-batch-size configurations are
evaluated. The configurations evaluated are C32B1, C64B1,
C32B6, and C64B5. All other parameters are fixed in their
most performant configuration. Multiple CU variants of the
Versal DPU are not evaluated because they do not enable batch
processing as preferred for subframe inference. Performance
is measured using the Vitis-AI Runtime (VART) xdputil
benchmark utility. The DPU is built and deployed using
Vitis 2022.2. The PL is clocked at 333 MHz and the AIEs use
a 1.25 GHz clock.

C. End-to-End Acceleration Architecture

The DPU benchmarking results are used to inform archi-
tecture decisions for an end-to-end target-detection pipeline.
In addition to model inference, this pipeline must include
required preprocessing and postprocessing. Because the pri-
mary application constraint is the need for high throughput
and low latency, preference is given to the most performant
DPU configuration. As shown in Section V-B, this is the
C32B6 DPU on Versal AI Core. The proposed end-to-end
architecture is built around this DPU and the heterogeneous
Versal AI Core architecture as shown in Fig. 2. The archi-
tecture leverages high-level pipelining at the subframe level
with multiple threads simultaneously running on the APU.



The PL is utilized for the preprocessing kernel and DPU and
the AIEs are used for the DPU. Each of these domains and
DDR memory are connected via the NoC. The pipeline enables
efficient processing of raw input frames to point detections.

The preprocessing thread is responsible for reading the raw
16-bit OPIR frames, converting each into a stack of 128×128
subframes, performing normalization, and then adding the
preprocessed subframes to the inference queue (Q1). Con-
version of large frames into a stack of subframes allows
for batched inference and processing of large remote-sensing
imagery. To prevent missed detections when the target falls
on the edge of a subframe, the subframes are overlapped
by δ on each side. Therefore, the total number of S × S
subframes for a square input frame size F × F is defined
as ⌈(F − S)/(S − δ) + 1⌉2. The value of δ is set to three
for the included experiments. The input frames are split into
batched subframes using pre-computed regions. The subframes
are then passed to a preprocessing PL kernel implemented with
Vitis high-level synthesis (HLS). The preprocessing kernel
subtracts the normalization mean from each element, multi-
plies by the inverse of the normalization standard deviation
and applies the DPU gain determined during the quantization
process to produce a normalized INT8 value for input to the
DPU. The kernel processes 32 elements simultaneously using
internal parallel streams and operates with a 333 MHz clock
frequency. Xilinx Runtime (XRT) is used to move data to and
from the preprocessing kernel using an AXI master interface.

The inference thread takes the preprocessed data from Q1
and launches inference using the VART DPU runner. When the
inference is complete, it adds the results to the postprocessing
queue (Q2) and moves on to the next batch. Two instances
of the inference thread are used to keep the DPU processing
pipeline full. In the final stage, the postprocessing thread takes
inference results from Q2 and thresholds the raw logit outputs
to create a binary segmentation mask for the associated input
subframe. OpenCV is then used to find the centroid of each
segmented detection cluster. These centroid coordinates are
then converted into the corresponding original coordinates
of the F × F frame and written as an output detection.
The software is deployed on the APU running at a clock
frequency of 1.2 GHz and is compiled using “-O3” compiler
optimization. The base device platform is stripped of all
unnecessary IP to ensure accurate resource and power results.

V. EXPERIMENTS AND RESULTS

Experimentation focused on three main areas: quantization
effects analysis, MLCLNet benchmarking on DPUs, and char-
acterization of the proposed end-to-end acceleration archi-
tecture. All configuration and deployment parameters are as
specified in Section IV unless otherwise stated.

A. Quantization Effects

Model quantization was performed as described in Sec-
tion IV-A and the effects on model detection performance
were evaluated. Performance metrics were re-computed using
the INT8 quantized model. The effect of quantization on these

c2 c4 c8 c1
6

c3
2

c6
4

Model Configuration

-6%

-4%

-2%

0%

2%

"
 n

Io
U

c2 c4 c8 c1
6

c3
2

c6
4

Model Configuration

-1.0%

-0.5%

0.0%

0.5%

"
 A

U
C

c2 c4 c8 c1
6

c3
2

c6
4

Model Configuration

-6%

-4%

-2%

0%

"
 P

d

c2 c4 c8 c1
6

c3
2

c6
4

Model Configuration

-80%
-60%
-40%
-20%

0%
20%
40%

"
 F

a

Fig. 3. Effects of quantization on detection performance metrics reported
as a percentage change from original 32-bit floating-point model detection
performance. Shaded green indicates a positive impact on detection capability.

detection performance metrics is shown in Fig. 3. Apart from
Fa, all metrics change less than 6.0% from the floating-point
baselines. However, there is a substantial drop in false alarms
for all models except c2. Model configurations c16, c32, and
c64 all see a >50% reduction in Fa. This result points to
a regularization effect of the quantization that improves the
operating point of the detector by reversing the effects of
overfitting that were introduced to the larger models during
training. Overall, the negative effects of quantization are
limited, and in some cases, the positive effect of reduced Fa
is observed. Based on this result, using INT8 quantization
to leverage the reduced computational complexity and 4.0×
reduction in parameter memory is justified for the MLCLNet
architecture when applied to on-orbit OPIR target detection.

B. DPU Benchmark Results

The results of the DPU benchmark evaluation are shown
in Table II. Both 128×128-subframe FPS and accelerator
efficiency are presented. Accelerator efficiency is computed
by dividing the number of giga-operations per second (GOPS)
by the peak theoretical GOPS of the DPU configuration. For
all DPU configurations, the FPS decreases, and efficiency
increases as the model size increases. Efficiency is gener-
ally higher for the UltraScale+ DPU configurations due to
the lower theoretical GOPS. Overall the small model size
needed for this task keeps efficiency low, particularly for the
Versal DPU configurations, which achieve a max accelerator
efficiency of 39.4%. The size of the MLCLNet layers and the
DPU architecture drive these inefficiencies. For example, the
DPUCVDX8G implements 16-channel parallelization, mean-
ing convolutional layers with less than 16 channels cannot
fully utilize the available hardware.

Despite the observed DPU inefficiencies, the FPS perfor-
mance is strong, particularly for the Versal DPU. The perfor-
mance ranges from 317 FPS for c64 to 1626 FPS for c2. The
max-batch-size configurations of the Versal DPU outperform



TABLE II
SUBFRAME FPS (AND ACCELERATOR EFFICIENCY) FOR EACH DPU AND MODEL COMBINATION. BEST RESULTS IN BOLD.

Device (DPU) ZCU104 (DPUCZDX8G) ZCU102 (DPUCZDX8G) VCK190 (DPUCVDX8G)
DPU Configuration B4096x2 B4096x3 C32B1 C64B1 C32B6 C64B5

M
od

el
C

on
fig

c2 402 (0.9%) 538 (0.8%) 413 (0.2%) 396 (0.1%) 1626 (0.2%) 1461 (0.1%)
c4 391 (3.3%) 509 (2.8%) 409 (0.9%) 392 (0.4%) 1484 (0.5%) 1361 (0.3%)
c8 343 (11.3%) 422 (9.1%) 389 (3.4%) 368 (1.6%) 1362 (2.0%) 1261 (1.1%)

c16 242 (31.5%) 296 (25.4%) 313 (10.7%) 304 (5.2%) 1033 (5.9%) 994 (3.4%)
c32 109 (56.3%) 141 (48.1%) 192 (26.2%) 195 (13.3%) 621 (14.1%) 619 (8.5%)
c64 35 (72.8%) 48 (64.8%) 72 (39.4%) 97 (26.3%) 258 (23.4%) 317 (17.3%)

their unbatched counterparts by up to 3.9× and 3.7× for the
C32B6 and C64B5 configurations, respectively. Comparing the
C32B6 and C64B5 configurations directly shows the C32B6
configuration outperforming on all but the c64 model, despite
the C64B5 configuration having 1.67× higher peak theoretical
performance due to its use of more AIE tiles. Again, the
small model size contributes to this result as only the largest
model can sufficiently utilize the additional AIE tiles to
compensate for having one less frame per batch. These results
are promising for performance on the forthcoming Versal AI
Edge series of devices, as the max-batch-size DPU for those
devices uses a C20B14 configuration with specialized AIE-
ML tiles [39]. The focus on larger batch-size ML processing
will benefit inference for these smaller models and batched
subframe processing of large remote-sensing imagery.

Compared to the UltraScale+ architecture, the Versal AI
Core outperforms by up to 6.7×. This advantage is particularly
significant with increasing model size. Using AIEs as the main
computational leaves additional resources in the PL for other
kernels, such as the preprocessing kernel proposed, and has
been previously found to enable more energy-efficient infer-
ence [33]. Based on the benchmark results, the C32B6 DPU
configuration is selected for use in the end-to-end acceleration
architecture.

C. End-to-End Architecture Performance

The end-to-end acceleration architecture is evaluated based
on resource utilization, throughput, latency, and power con-
sumption. Input frame sizes ranging from 500×500 to 4k×4k
are used. Only model configurations c4, c8, and c16 are
evaluated based on the target-detection results from Table I and
analysis of quantization effects. The c2 configuration does not
achieve satisfactory detection performance and the marginal
benefits of models larger than c16 are reduced by quantization
and do not justify the reduction in throughput performance.

1) Resource Utilization: Fig. 4 shows the resource uti-
lization for the end-to-end architecture, split between the
platform, preprocessing kernel, and the DPU as a percentage
of the total available resources on the VCK190. The DPU
dominates resource utilization, with all other contributions
nearly negligible except the preprocessing kernel’s use of 96
DSPs. All resources are <50% utilized except for BRAM and
URAM, which are heavily utilized by the DPU’s batch handler.
AIE utilization by the DPU remains under 50% due to the use
of C32B6 instead of C64B5.
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2) Throughput: Throughput was measured for an input
stack of 100 OPIR frames of each selected size. The results are
shown in Fig. 5 with respect to the model network complexity
in GOP. FPS performance ranges from 0.96 for c16 with
4k×4k input frames to 75.79 for c4 with 500×500 input
frames. For this range of network complexity, the relationship
with throughput is roughly linear, however, if larger model
sizes were to be used, the rate of decrease in throughput
would slow as the accelerator efficiency increases. The end-
to-end architecture is pipelined, meaning that most non-
inference processing should be hidden and the throughput
should approach that inferred from the subframe inference
benchmark. A 4k×4k input frame, for example, is split into
1024 subframes for processing meaning the theoretical max
inference of the end-to-end pipeline is 1 FPS based on the
benchmarking results in Table II. The end-to-end pipeline
achieves 96% of this theoretical max, indicating successful
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pipelining of computation. The following unbatched latency
results further confirm this conclusion.

3) Latency: The latency of each stage in the pipeline and
the total end-to-end latency are reported in Fig. 6 for the
c16 model configuration run on each input frame size. The
inference latency is the dominant component for every frame
size, taking 4.3× to 8.0× longer than the preprocessing latency
for the 4k×4k and 500×500 frame sizes, respectively. In all
cases, the end-to-end latency is less than the sum of individual
stage latencies enabled by the pipelined architecture. The
overhead beyond the inference latency is as low as 1.2%
for the 4k input frames. The latency of the postprocessing
stage can vary depending on the number of detections, but
it is consistently far below the other contributing latencies.
Additionally, because the architecture is pipelined at the sub-
frame level, the latency for detections in any given subframe
may be considerably lower. By selectively ordering subframes
based on past detections or predefined regions of interest, the
effective latency to detection for the most critical targets can
be reduced to a small fraction of the reported results.

4) Power: Power consumption of the architecture on the
VCK190 was measured using the Board Evaluation and Man-
agement (BEAM) tool provided by Xilinx [40]. The results
are reported in Fig. 7. Idle power is collected without running
tasks and is independent of model configuration. The average
dynamic power is measured for each model configuration
and frame size combination. There is no dependence on the
size of the input frame, therefore the average of all frame

sizes is provided for each model configuration. Idle power
is the dominant draw for the architecture, constituting >80%
of the total power. The PL and AIE, where the resource-
intensive DPU is located, constitute the vast majority of
idle and dynamic power for all configurations, followed by
the APU and some additional power consumption by other
device components. Accounting for the FPS in Fig. 5, the
accelerator achieves an FPS/Watt performance ranging from
2.0 for c4 with a frame size of 500×500 to 0.02 for c16 and a
4k×4k input frame. Normalizing the results by the number of
subframes, we observe 25.3, 33.2, and 36.1 subframe FPS/Watt
for the c4, c8, and c16 configurations, respectively. With the
Versal AI Edge being designed with power efficiency in mind
and the anticipated benefits of its corresponding DPU, it may
yield further improvements in throughput-per-Watt.

VI. CONCLUSION

This research has leveraged the Xilinx Versal AI Core
device architecture to accelerate ML-based OPIR target de-
tection. The MLCLNet model was selected and six model
configurations were trained and evaluated using a custom
dataset. The effects of model quantization on Pd were minimal
and quantization reduced the Fa for most model configurations.
All model configurations were benchmarked using six DPU
configurations across three test devices. The Versal AI Core
was shown to outperform the UltraScale+ devices by up to
6.7× and achieved up to 1626 FPS for 128×128 subframes.
The higher batch-size configurations outperformed unbatched
configurations by up to 3.9×, suggesting possible future
benefits from the AI Edge DPU tailored for larger batch sizes.

Benchmark results motivated the selection of the C32B6
DPU configuration for the end-to-end acceleration architec-
ture. The architecture enables arbitrary-sized input frames
to be processed using batched inference on appropriately
overlapped subframes. The model preprocessing is accelerated
using a PL accelerator developed with HLS. The architec-
ture is pipelined at the subframe level by running multiple
simultaneous threads on the APU, enabling the majority of
preprocessing and postprocessing latency to be hidden during
model inference. The end-to-end pipeline was evaluated on
OPIR input frames ranging from 500×500 to 4k×4k in
size. Performance ranged from 0.96 to 75.79 FPS for the
various model and size combinations. Latency for the most
complex model configuration (c16) ranged from 23.1 ms to
1.10 sec. However, the latency-to-detection for regions of
interest can be significantly reduced by selectively prioritizing
the corresponding subframes. Although the size and required
processing rate of remote-sensing systems vary and are of-
ten unavailable (in the case of OPIR), the provided results
effectively characterize current capability and are within the
range of expected requirements. The architecture presented
demonstrates a case study in embedded, high-throughput,
low-latency ML processing of high-resolution remote-sensing
imagery leveraging the Versal AI Core device. This research
demonstrates up the possibility of on-orbit processing for the
OPIR target-detection task and others like it.
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