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Abstract—Subgraph Isomorphism involves using a small graph
as a pattern to identify within a larger graph a set of vertices
that have edges that match, and is becoming of increasing
importance in many application areas. Such problems exhibit
the potential for very significant fine-grain parallelism, with
individual threads having short lifetimes while touching po-
tentially “distant” memory objects in very unpredictable and
irregular fashion. This is difficult for conventional distributed
memory systems to achieve efficiently, but an alternative that
combines cheap multi-threading with threads that can migrate
freely through a large memory is a more natural fit. This
paper demonstrates the potential of such an architecture by
comparing its execution characteristics for a large graph to that
of several conventional parallel implementations on modern but
conventional architectures. The gains exhibited by the migrating
threads are significant.

I. INTRODUCTION

Computing over graphs is perhaps the most wide-spread
non-numerical class of problems studied today, and one for
which relatively few novel architectural developments have
been targeted (one exception [1]). One of the most difficult
of such problems is subgraph isomorphism - finding within
a larger graph a set of vertices and edges that match a
given “pattern.” Such problems exhibit significant amounts
of parallelism that occurs dynamically, with computational
thread lifetimes that are short and with unpredictable locality.
This makes it tough to get efficient execution on conventional
systems.

The specific problem studied here originated with the U.S.’s
IARPA AGILE program [2], with a government-provided ref-
erence implementation, dataset generator, data set, and timing.
Unlike many graph isomorphism problems, in this case there
is notionally very few, or just one, instance of the subgraph
(the “needle”) in a much larger “haystack” graph.

Multiple parallel implementations are compared, with a
key conclusion that the cost of managing the parallelism in
conventional systems far outweighs the actual computations
needed to solve the problem. For conventional distributed
memory systems this cost seems to stem from the cost of
“moving” a computation from one node to another, to support
“edge-traversing” where the target vertex is “somewhere else.”

In addition to conventional implementations, a multi-node
shared memory implementation is also reported using a system

where hardware, not software, manages the migration of
computation from one physical node to another. The particular
feature studied here involves relentless multi-threading where
threads are free to migrate anywhere in the system without
any explicit software involvement. When coupled with cheap
spawns (to support the dynamic parallelism) and very cheap
operations to update “at a distance”, these features appear
extraordinarily effective, with a prototype platform built out of
FPGAs for the cores (and running at a mere 225MHz) more
than competitive with a more modern system with 8 times as
many cores running at a clock rate 11 times faster.

In organization, Section II addresses the specific problem
and data set used for evaluation. Section III discusses mul-
tiple implementations of this problem on several different
conventional parallel platforms. Section IV addresses both
the architecture of the migrating thread system used in the
experiments and the code written for the given problem.
Section V performs a high level comparison of the various
codes when run on real hardware. Section VI uses these results
to extract information as to the real cost of “crossing node
boundaries” in conventional architectures, and the savings
possible by adopting alternative architectures. Section VII
concludes.

II. THE GRAPH PROBLEM

Subgraph isomorphism has long been recognized as an
important kernel for many applications. The MIT HPEC Graph
Challenges, for example, host yearly competitions for graph-
intensive problems, and one of the five current challenges
is Subgraph Isomorphism [3], [4]. In this case the graphs
are often unweighted, undirected, and without vertex or edge
properties. The kinds of subgraphs searched for typically
include triangles and k-trusses1, both of which may have
very many instances in a given graph. There are quite a
few algorithms explicitly designed for these kinds of pattern
searches [5], [6], [7], [8], [9], [10], [11].

In contrast the specific problem studied here originated with
the U.S.’s IARPA AGILE program [2]2, with a government-
provided reference implementation, data set generator, refer-

1A k-truss is a graph where each edge in it is part of k-2 triangles.
2In particular see the slides in this presentation related to “Workflow 2”

Exact Match.
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Fig. 1. Subgraph Pattern.

ence data set, and timing on a modern multi-node parallel
system. In contrast to triangle or k-truss counting, the pattern
for this subgraph is much more complex, and is a variant of a
subgraph isomorphism problem where the target graph is built
from multiple (five) types of vertices and multiple (six) types
of directed edges, all of which have one or more properties
associated with them.

Fig. 1 diagrams a simplified version of the subgraph pattern
of interest [12]. Vertices of the same type are shown by circles
of the same color, with a type label “1” through ”5”. Edges
are also color-coded, with type labels “A” through “F”, where
for simplicity edges of type “A” are all actually edge type “F”
turned around. An asterisk on a vertex or edge means that, to
satisfy the pattern, some property of the vertex or edge must
have a specific value. The dotted green lines represent that a
separate relationship must hold between a property of a type
A edge and that of a type 4 vertex. The red dotted line also
indicates a specific relationship must hold between the two
vertices of type 2.

For each subgraph found in the graph that matches the
subgraph pattern, the discovered type 1 vertex labelled “Root”
is to be returned. In all graphs used here there is exactly one
matching root vertex.

A graph generator was available to create graphs of different
sizes. The key on the lower right of Fig. 1 gives the number of
vertices for the reference data set used in the rest of this paper
that is about 2GB in size. For this graph there were about 10
million vertices and 38 million edges.

The standard approach to finding the matching vertices used
by all implementations is to break the pattern into subpatterns
1 through 6, and identify matching parts of the overall graph
sequentially one subpattern at a time. Parallelism is invoked
within each subpattern.

III. CONVENTIONAL PARALLEL IMPLEMENTATIONS

TABLE I
IMPLEMENTATION PLATFORM CHARACTERISTICS

Programming Avail. Cores/ Core
Model Processor Nodes Node Clock

SHAD-1 AMD EPYC 7763 16 128 2.45GHz
SHAD-2 E5-2680 v2 16 20 2.8GHz

Cilk Xeon Silver 4208 1 16 2.1GHz
Mig. Thread FPGA Custom 16 16 225MHz

This problem was solved on several different conventional
systems using a variety of programming models. Table I
summarizes these pairings3. Column 1 correlates to the pro-
gramming and execution models described below. The other
columns give the high-level hardware features.

A. SHAD

SHAD: (Scalable High-Performance Algorithms and Data
Structures [13] is a C++ library that provides a common
shared-memory, task-based, programming model for a variety
of hardware architectures ranging from multi-core shared
memory systems to multi-node distributed memory systems.
It includes a library of logically shared-memory data structure
templates designed to offer APIs for common parallel access
and data updates regardless of the underlying system architec-
ture. There is also an Abstract Runtime Interface that can set
up and manage parallel execution of both functions and loops
on different physical nodes.

SHAD uses one of two underlying multi-threading pack-
ages: GMT (Global Memory and Threading) [14] or Intel’s
TBB (Thread Building Blocks) [15].

3The architecture of the system used in the last row is discussed in the next
section.
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Fig. 2. A generic migrating thread architecture.

B. Cilk

Cilk is an extension of C [16], [17] designed to provide dy-
namic multi-threading in a multi-core shared memory system.
Its main extensions are two keywords:
• A cilk_spawn prefix to a normal function call that indicates

to the run-time that, if resources allow, the function call can
be computed independently of the calling thread.

• A cilk_sync statement (no arguments needed) indicates that
execution cannot proceed beyond this point until all child
threads spawned in this block have completed.
A common addition is a parallel for loop that tries to spawn

a new thread for each loop iteration.
A Cilk runtime manages the relationship between available

hardware threads and program threads, similar to that of GMT
or TBB from SHAD.

C. Use in Implementations

The SHAD-1 implementation was on a very modern hard-
ware platform, but with SHAD software that was still im-
mature and not tuned. The SHAD-2 system was on an older
system that had a well-tuned SHAD implementation using the
GMT package.

In both cases software was responsible for determining
when an object being referenced was not local, generate
network traffic to tell the physical node where that object
resided that a particular computation should be run against it,
and maintain any required synchronism with other activities.

The Cilk implementation was on a single dual socket server
blade using the OpenCilk package [18]. While no software was
needed to communicate between different physical nodes (as
only one multi-core node was used), Cilk run-time software
was needed to manage the mapping between logical and
physical threads, and the synchronization of thread activities
as around a cilk_sync.

IV. A MIGRATING THREAD IMPLEMENTATION

As will be shown, there is strong evidence that the ineffi-
ciency with executing such problems on conventional archi-
tectures is handling the instances where transiting an an edge
requires "crossing" a physical node boundary, and software
must get in the middle. One possible architectural technique
that may help simplify this is based on avoiding having to
create messages and data by software, and send them between
nodes to manage threads “over there”. Instead, threads are
allowed to migrate without direct software involvement from
any place in the system to any other place, thus avoiding much
of the endlessly multiplying software stacks.

A. Migrating Thread Hardware Architecture

Fig. 2 diagrams one such architecture [19], [20]. Here each
“node” has multiple cores as in a conventional processor
module, but all cores (termed here “GC cores”) are far more
heavily multi-threaded (cf. [21]) than conventional designs,
with each having the capability of interleaving dozens of
thread states. Each GC core executes an instruction for each
of its threads in an interleaved round-robin like manner.

Further all memory in all nodes is in a shared logical
address space whereby when a thread in any core makes a
memory reference, the node hardware knows if the address
is local or not. If not, the hardware in the core (not some
software runtime) suspends the requesting thread, packages
its state (i.e. register set), and sends the package to the node
with the targeted memory, where the thread state is unpacked
and restarted on a local GC core, again by hardware with
no software involvement. The thread then continues execution
with no knowledge that it moved, but the memory reference
is now local. No software was needed anywhere in the path.
Which GC core on the target node receives an incoming thread
is irrelevant, as all such cores on a node have equal access to
any local memory.

The heavy multi-threading also permits such architectures
to cheaply spawn new child threads that can go their own
way, again without much software involvement. This allows
inexpensive large-scale asynchronous parallelism.

In addition the current architecture also includes the be-
ginnings of memory-based accelerators in the form of smart
Memory Side Processors (MSP) where many latency sensitive
memory operations (especially atomics) can be performed
directly at the memory interface. Further the ability to perform
such operations from a distant node without even moving
the source thread state is provided by the introduction of
ultra-lightweight special purpose threads that are hardwired
to perform specific operations without need for program
intervention, but use the same migration mechanism as normal
threads. Once spawned, they become independent and perform
the designated operation against the designated memory loca-
tion, wherever it is, again without software involvement. A
simple acknowledgement system allows the spawning thread
to determine when all such child threads have completed.

Two such systems produced by Lucata Inc. can be found
in Georgia Tech’s CRNCH Center [22]. The system used for



these experiments is the most recent one called Pathfinder. This
system has 16 nodes, each with 16 cores and multiple memory
channels. A RapidIO network interconnects the nodes, and
carries the migrating thread states. All the logic for each node
(the 16 cores, memory controllers, MSP logic, and network
interfaces) are implemented in a single large FPGA, with a
core clock rate of 225MHz (limited by the FPGA). The cores
are all single-issue simple designs where the multi-threading
allows simple pipelining to provide very high utilization of the
core logic, and especially the memory interfaces. The design is
such that a re-implementation of a node should fit comfortably
into a modern ASIC, with more cores and a much higher clock
rate (comparable to a conventional microprocessor).

An introduction to the programming tools for this machine
can be found at [23].

B. Migrating Thread Programming Model

This architecture supports a very Cilk-like programming
model where the underlying hardware handles threads that
must move from one physical node to another without any
explicit software. While syntatically close to Cilk, the architec-
ture essentially removes the need for software support for both
a multi-threaded runtime on a single node, and any explicit
software needed to recognize that data is “not local”.

The implementation of the graph search on the Pathfinder
platform followed closely that of the conventional codes
discussed in Section II, but without the need for a special
thread management runtime, and with an intrinsic library that
allowed direct access to the unique hardware mechanisms.
Data layout is like that of the SHAD implementations in that
a hashmap for each vertex type and a multimap for each edge
type are partitioned over the multiple physical nodes in the
system, with graph objects stored on the node to which they
are hashed. However, with the Pathfinder system, the two-level
hash is only needed for map operations where a node must be
determined from the key, such as arbitrary lookup operations.
Local insertions and lookups need only a 1-step hash to a
bucket within the node; the migrating threads implementation
takes advantage of this locality to simplify most hashmap
operations.

In fact, the OpenCilk implementation discussed earlier was
actually a simple source modification from the migrating
thread code (with a linking in of the threading runtimes not
needed in the migrating thread architecture).

V. COMPARISON

Fig. 3 graphs the measured times for each of the implemen-
tations, all executing exactly the same dataset that contained
38 million edges. The x-axis is the number of nodes used in
the run (The Cilk implementation ran on just a single multi-
core node). For all runs the solid line represents the actual
time, and the dashed line an ”Amdahl strong scaling model”
fitted to the data4.

4This model was constructed by choosing two points and computing two
coefficients A and B where T ime(p) = A+B/p where p is the number of
nodes.
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As can be seen, the OpenCilk times were far outside any of
the other implementations. The SHAD-2 implementation (on
the older but mature platform) was the fastest but exhibited
essentially no parallel speedup. The SHAD-1 implementation
(on the faster and more modern platform but with an immature
SHAD implementation) did exhibit some parallelism but was
significantly slower than the SHAD-2. Both SHAD implemen-
tations also exhibited an uprise in execution time at 16 nodes
- something that signals a significant scalability issue.

The migrating thread run falls in between the two SHAD
implementations, but is fit well by an Amdahl model. Besides
the smoothness of the match, what is remarkable about this
implementation is that, as shown in Table I, the cores in
the Pathfinder platform are considerably slower, by about
10X in clock rate and perhaps another 4X in the issue rate
in instructions per cycle. This is due to the implementation
technology: FPGAs for the Pathfinder and commercial full
custom chips for the others.

Graph benchmark results are often reported in equivalent
”Traversed Edges per Second”5. Some additional serial im-
plementations of this same problem indicate that the inherent
complexity of this particular pattern is nearly linear (i.e.
execution time on a single core grows approximately linear
in the number of edges - which might be expected from the

5See for example “Breadth First Search” (BFS) in the Graph500 bench-
marks, or the triangle counting in the MIT Graph Challenges.
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tree-like structure of the pattern). Consequently, we can recast
the time data into TEPS by dividing the number of edges in
the graph by execution time. Fig. 4 does this for the 38M
edges of the reference data set.

Trying to draw conclusions from the above two figures is a
bit of apples to oranges, because of the significant differences
in technology. To try to normalize the difference Fig. 5
converts the time measurements of Fig. 3 into clock units
rather than seconds, using the clock rate of each system’s core
clock. Now the story flips dramatically. The migrating thread
case is almost 8X faster than SHAD-2, and almost 100X faster
than the OpenCilk system. The migrating thread system takes
far fewer clock cycles than the others.

Fig. 6 goes one step further and converts Fig. 4 into
”Compute cycles per Edge,” where one “compute cycle” is
the amount of computation that one core can perform in one
clock cycle. Total compute cycles is the overall number of
clock cycles needed by the whole system to complete the
computation, times the number of cores per node, times the
number of nodes. This is a particularly useful metric in that it
gives insight into something relatable directly to the problem,
namely on average how much overall computing is needed to
handle the processing associated with an edge. The numbers
in color on this figure are the number of compute cycles when
16 nodes are employed.

VI. ANALYSIS

Fig. 6 allows developing some strong insight into the soft-
ware overhead suffered in the conventional implementations.
Let us assume reasonably that the 466 compute cycles per
TEP for the migrating thread case is a reasonable estimate6

of the minimal number of cycles needed by any 16-node
implementation (with migrating threads there is no software
overhead on handling inter-node issues). Consequently, it is
not unreasonable to allocate the difference between the cycles
per TEP for the other implementations to the software costs
they must take on to manage any inter-node process (or even
just checking if an object is local or not). For the fast SHAD-2
this difference is 3550− 466 = 3084 cycles, or 6.6 times the
cost of doing the computation.

One step deeper can be taken in this analysis by looking at
the number of migrations (or the equivalent) that must be taken
per edge. Instrumentation in the Pathfinder hardware allows a
direct measurement of this, with a result that for this problem
there were 0.42 migrations per edge. This means that the
3084 cycle overhead is per 0.42 migrations, which implies that
the actual cost of a single migration in conventional systems
is more like 3084/0.42 = 7342 cycles or 15.6X the cycles
needed for computation. The other systems are even worse.

VII. CONCLUSION

The above results are strong evidence that if we are to
significantly improve the performance of computers when
performing graph problems and the like where data often
straddles nodes, we absolutely must focus on getting software
totally out of the path of determining and handling locality
of data. The Pathfinder architecture is an indication that this
is indeed possible, with a potential savings of around 90% in
compute resources.

As additional evidence, other studies [24], [25], [26], [27],
[28], [29] have found that such combinations of migrating
thread architecture and Cilk-like programming models can
significantly improve scalability of parallel codes of all sorts,
from streaming to machine learning problems, with the highest
advantages again coming when the data sets are large and
sparse, where there is a lot of irregularity in access patterns,
and computation against individual datums is short. Problems
of the latter types, as exhibited here, are particularly good
targets for such architectures, as the ability to have huge
numbers of threads time-share the same physical cores greatly
increases the utilization of such cores, in addition to also
avoiding execution of code to “move” the computation.

A logical next step is to repeat this effort on even more
problems, or even just the subgraph isomorphism problem
but on more complex patterns where complexity is higher.
Assuming that such results hold true, then we ought consider
“right-sizing” our node designs to not over provision other
processing resources such as memory bandwidth or network

6The equivalent for the conventional systems may be lower becuase their
cores have higher IPC.



injection bandwidth.7 Such savings could then also greatly
improve the energy efficiency of such designs.
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