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Abstract—Real-time supercomputing performance analysis is
a critical aspect of evaluating and optimizing computational
systems in a dynamic user environment. The operation of
supercomputers produce vast quantities of analytic data from
multiple sources and of varying types so compiling this data
in an efficient matter is critical to the process. MIT Lincoln
Laboratory Supercomputing Center has been utilizing the Unity
3D game engine to create a Digital Twin of our supercomputing
systems for several years to perform system monitoring. Unity
offers robust visualization capabilities making it ideal for creating
a sophisticated representation of the computational processes. As
we scale the systems to include a diversity of resources such
as accelerators and the addition of more users, we need to
implement new analysis tools for the monitoring system. The
workloads in research continuously change, as does the capability
of Unity, and this allows us to adapt our monitoring tools to scale
and incorporate features enabling efficient replay of system wide
events, user isolation, and machine level granularity. Our system
fully takes advantage of the modern capabilities of the Unity
Engine in a way that intuitively represents the real time workload
performed on a supercomputer. It allows HPC system engineers
to quickly diagnose usage related errors with its responsive user
interface which scales efficiently with large data sets.
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I. INTRODUCTION

The ability to monitor High Performance Computing (HPC)
systems in real time and having the ability to forensically
diagnose system performance are critical functions for HPC
administrators and HPC user support personal [1]. MIT Lin-
coln Laboratory Supercomputing Center (LLSC) has success-
fully been using the Unity game engine [2]-[5] for many
years to create a Digital Twin [6] of our HPC systems which
aggregate and display the large amount of data generated by
the various components of the system. These include node
hardware, system logs, storage systems, network switches, job
schedulers, environmental controls, and accelerators. Utilizing
the 3D environment to generate a system view that is rep-
resentative of the real environment, intuitive to humans, and
scalable with the ever growing size and complexity of our
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HPC systems. With the onset of Artificial Intelligence(Al) [7]
and Big Data [8]-[10] systems, it is expected that this trend
will continue into the conceivable future.

With the growth of system size and complexity, the need
to provide additional ways of analyzing system information
has become increasingly clear [11]. Incorporating new tools
and perspectives on the data increases the ability to solve
issues in real time and to identify factors that cause system
performance degradation. The LLSC HPC systems are con-
figured for interactive supercomputing which allows multiple,
often hundreds, of users to be running on the system hardware
simultaneously [12]. The traditional method of viewing these
systems focuses on individual hardware components and sets
thresholds for alerts. While effective in identifying system
bottlenecks, it tends to be less effective in identifying the
root cause of the problem or providing a means of mitigating
future performance issues. The need to monitor how individual
users interact with the HPC system, and affect other users,
in real time, and throughout the duration of their job cycles
is a necessity for effective management of an interactive
supercomputing environment. Recent work at the LLSC has
focused on enhancing the Digital Twin monitoring system to
include a user-centric view of system performance, adding
accelerator data and visualization, and adding the ability to
look through the system history to see how users, or other
system issues, impact the individual system components and
affect the system as a whole.

II. HPC SYSTEM MONITORING

System monitoring of large supercomputing environments
tends to focus on data collection and rely on enterprisc moni-
toring tools and expert analysts to interpret the data. This often
leads to an unproductive work flow as hardware or system
configuration errors and inefficient user system usage are not
realized in real time, if at all. Problem resolution then requires
engaging experts, typically with root level system access, to
interpret the data and logs to troubleshoot the system. Solving
this workflow issue is a point of focus for the LLSC since
the irregular resource consumption of one user can adversely
impact the work of everyone on the LLSC systems. This makes
proper monitoring and visualization of the system status and
user resource consumption critical [5].
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Fig. 1: Data Collection Growth over time for LLSC Accumulo
Database

The focus of many infrastructure management systems
is collection and aggregation of system and sensor time-
series data. Operating systems, system firmware, HPC stor-
age devices, networking hardware, HPC job schedulers, and
environmental systems all generate data continuously and in
a variety of formats. The data alone does not unnecessarily
equate to increased real time situational awareness as there is
a difference between having the data available and having the
data in a useful form. Effective visualization tools are nceded
to interpret the data and give the system support team the
ability to analyze and mitigate system issues as they arise.
This is where many enterprise tools fall short as they were
not designed for the scale of the data collected, and the burden
still often falls on human expertise to read and decipher the
data with more basic tools and often only after a system issue
has become critical.

A. Data Ingestion and Scaling

The volume of data collected during the operation of
an HPC system can overwhelm data aggregation methods,
especially as systems continue to scale in size which naturally
increases the data collection correspondingly. The LLSC has
incorporated our internally developed Dynamic Distributed
Dimensional Data Model (D4M) Database [13], [14] utilizing
Accumulo [15], [16] for the back-end insertion. This system
has proved to be effective and scalable, has grown with the
LLSC Monitoring and Management (MandM) Digital Twin,
and is still performing effectively after ingesting over seven
billion structured data sets from a magnitude higher of ingested
raw data across three supporting databases as seen in Figure 1.

Apache Accumulo, combined with D4M, provides a stable,
performance-optimized sparse database to store the persistent
raw data from the system collectors. Accumulo enables the
LLSC to have access to all historical data points collected
across the system in a single database and is capable of
allowing the LLSC to analyze billions of records for pattern
recognition or critical system events and profile them for future
early detection.
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Fig. 2: Grafana Dashboard of a single HPC System Node
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B. System Focused Analytics

A major limitation of the most analytic tools, including
previous version of the LLSC MandM system, is they focus on
the individual hardware components and indicate the "health”
of and load on each component. While this is the most obvious
way to interpret system performance it often misses the root
cause of problematic system issue. Similar to how medical
diagnosis often focuses on the outward symptoms of a problem
and not the reason for the symptoms. The system approach is
most effective when the cause of a problem is failed hardware,
but it is far more common for the issue to be related to
system usage which is not often obvious when looking at
individual system nodes which only indicate symptoms such
as load. While the Grafana Dashboard [17] in Figure 2 shows a
significant amount of detail about one system component, and
Figure 3 shows a detailed view of the condition of multiple
system components on the MandM Digital Twin, neither give
the bigger picture of how the system is currently performing
as a whole. New techniques need to be employed to create a
full picture of system usage.

C. Digital Twinning

In 2011 when the LLSC was exploring new ways to
visualize our HPC systems with the volumes of data they
produced, we took inspiration from the large scale visual
simulations the users were running on our HPC system, TX-
Green. The goal was to simulate a complex system of events
and derive a visualization that accurately represented how this



complex system was interconnected. The goal was to detect
faults in the physical system, to provide a better experience
for the end user, and enhance the administration of the system.
The term for what the LLSC was leveraging was codified in
Materials, Structures, Mechanical Systems, and Manufacturing
Road Map from the Office of Chief Technologies a year
earlier, a Digital Twin. Digital Twin is still loosely defined
and continues to evolve; however, it is generally accepted
as having “three components; a physical product, a virtual
representation of that product, and the bi-directional data
connections that feed data from the physical to the virtual
representation and information and processes from the virtual
representation to the physical” [18], [19]. Over the past decade
since describing the practice of utilizing a Digital Twin to
enhance the understanding of complex systems, the rise in
the use of Digital Twins has become a strategic initiative
of organizations and institutions to enhance manufacturing,
product development, health care, organizational efficiencies,
and general competitive advantage. The market for Digital
Twins has even become a cornerstone for nVidia and their
creation of the Digital Twin Omniverse [20]. According to
McKinsey, the rapid adoption of a Digital Twins approach has
created a $48 billion dollar opportunity [21]. Alternatively,
the rise in Digital Twins is not just in the commercial space
but has also led to an growing body of research on best
practices, different methodologies, and novel approaches to
using and developing Digital Twins. This is evident from the
creation of an annual IEEE conference on Digital Twins with
the first proceeding in 2021 [22]. The LLSC is encouraged by
the continued development and advances made in the Digital
Twin industry and continues to incorporate new features and
strategies enhance our own Digital Twin model of our HPC
systems using the Unity 3D Engine.

D. Gaming Engines

Gaming engines have proven that they can be effective
outside of the realm of just game development and can
effectively build virtual environments for visualization and
training purposes [23]-[25]. Humans are accustomed, and
biologically developed, to live in a 3D world and our eyes and
brain have evolved to process information in this manner. For
example images are processed 6x-600x faster than words [26],
subjects perform significantly better using 3D displays [27],
and the human brain can process entire images that the eye
sees in as little as 13 milliseconds [28], [29]. The 3D gaming
environment is uniquely adapted to display vast amounts of
information unlike other visual mediums. Studies on 2D vs 3D
interfaces indicate more natural ways to visualize hierarchical
data should be strongly considered during the interface design
process [27]. These observations have led the LLSC to develop
the MandM Digital Twin using a gaming engine.

There are two primary game development platforms com-
monly used in small to midsize projects: Unity 3D and
Unreal Engine. Each has a sizeable user base and years of
development. Several smaller engines exist such as Godot,
Blender Game Engine, GameMaker, Amazon lumberyard, and

CryEngine, but none of them are mature enough for our
purposes. There are also 3D simulation environments such as
nVidia Omniverse which is a suite of various 3D software to
tackle various areas of 3D development such as environment,
skeletal and facial animation. This software also has the
added capability of integrating with many of the previously
mentioned 3D apps so any assets can be rendered real-time in
Omniverse without needing to export files. A major upside to
this is the ability to have real time collaboration in one scene
through the Omniverse ecosystem. While this technology is
certainly promising for the future of 3D interactive media, it
is still quite new, and it is not quite mature enough for our
purposes so our decision was between the two major players.

1) Unreal: Unreal Engine(UE) is one of the big players in
terms of free game engines available for the average consumer
and has significant support. Unreal offers much of what is
expected from a free engine such as a diverse asset store
with everything from 3D assets to scripts, community and
official support, documentation, and a modern feature set.
Where Unreal has the edge is in graphical development. Unreal
is currently and has always been the industry leader in cutting
edge graphics technology with UE5 even being used to make
digital television and movie sets. The engine also has a proven
track record being used in Digital Twinning applications
such as prototyping for wind power [30]. It offers intuitive
networking and visual scripting solutions as well the ability to
assist designers in getting accustomed to the engine. Overall,
Unreal is a very powerful engine with widespread use across
multiple industries and has support for many applications.

2) Unity: Unity has a robust user community because
it has been the most popular independent game engine for
over a decade. The level of community support and user
generated documentation is currently unmatched in the game
development scene. Unity also allows for fast iteration, quickly
switching between the editor and play mode, making the quick
construction of demo versions a hassle-free process. Unity
makes porting code to various platforms easy, coming with
support for Windows, Mac, I0S, and Linux right out of the
box. This is extremely important at the LLSC where a variety
of operating systems are used. While Unity is not used for
digital movie sets it is still a contender in the Digital Twinning
sphere. It has been used for educational purposed such as
simulating an assembly line or warehouse stackers [31]. The
engine also comes with a diverse asset store that offers a range
of assets from scripts, 2D art, 3D models, audio, and multitude
of other tools to develop a project. These tools are already
integrated with the Unity Engine, and after acquisition they
can be easily imported with the built-in package manager. It
also has the option for more advanced features such as its HD
Render Pipeline and the Entity Component System , all while
being free for project development.

3) Selection: Unity was chosen for the MandM Digital
Twin because it provides an appreciable balance between case
of use for smaller projects and sophisticated tools when scaling
up a project’s complexity. The main downside with Unreal for
MandM is that the user experience for Unreal is not as easy



to learn for small teams making a modest project. Unreal has
a higher learning curve and it’s C++ integration is trickier to
learn than Unity’s C#. The main disadvantage to using Unreal
engine for smaller projects is the speed of iteration. It takes
the engine 10-20 seconds to hot-reload after making changes
to the code which starts to eat up development time with every
change made. For larger studios this is less of an issue because
they have more powerful computers, and the benefit of higher
graphical fidelity outweighs the downside of spending slightly
more on project load times. While Unreal offers better features
for high fidelity commercial games, Unity makes more sense
for a small project like MandM where graphical fidelity is not
the primary goal. Overall, the Unity game engine was the clear
best choice for this project with all the features it offers such
as being quick to use, having an endless amount of community
support, the option for more advanced features.

III. PREVIOUS APPROACH

The MandM Digital Twin has effectively managed to collect
and display the vast quantity and variety of data gathered
by the operation of the HPC systems. Utilizing the visual
and intuitive advantage of an interactive 3D gaming envi-
ronment, overall system visualization in real time has been
achieved. System components with visual indications of load,
performance, and hardware status are displayed together as
a complete system with the ability to drill down into sub-
components to gather additional information and to trou-
bleshoot system activity. But the approach was still largely
relying on the system components to indicate status, and it
required significant time searching to find root causes for
displayed problem. While user activity was contained within
the different system nodes there was not an effective way
to look at overall user activity and the effects on the larger
system.

A. Interactive Supercomputing

One aspect of the LLSC HPC environment which heavily
influences our methodology is our focus on enabling Interac-
tive Supercomputing. This method of system use allows for
multiple users to be interactively utilizing the system simulta-
neously which results in a wide variation in usage workflows.
High utilization of different system components is common.
High CPU, GPU, storage I/O, Network I/O, and/or system
memory utilization can occur using these various workflows.
While user system limits are established it is common for users
to maximize their resources often by non-optimized usage, and
in combination with other users can affect the overall system
in negative ways. This method of operation requires that HPC
support personnel are aware of the various users activity on the
system. When the HPC systems and the active userbases were
smaller, this was a manageable human task, but as systems
have scaled for Al, Big Data, and Large Language Model
(LLM) usage along with a sizeable increase in the userbase,
other analytical methods are required to manage systems with
large userbases.

B. Data to Information and Analysis

Another significant piece of the MandM system is data
conditioning and ingestion. As mentioned previously, we have
used D4M and Accumulo to great effect to create a scalable
data gathering infrastructure, but it is equally important to
have relevant data to analyze, turning the raw information into
useful data. This is accomplished by deconstructing the manual
process performed by HPC system experts and mining the data
gathered that tends to relate to poor user or system perfor-
mance and job failures. Then continually track and record this
data to attempt to identify patterns or conditions that typically
lead to the performance degradation and system bottlenecks.
Figure 4 shows the flow from raw data to processed data
sets to visualization as a Digital Twin. The development of
a structured data set which can then be queried, displayed,
alerted against, and correlated to user jobs running on the
system is a vital part of the MandM process. The last crucial
feature of the collected data infrastructure is flexibility. The
ability to change and expand the data included and adjust the
alert threshold levels and methods of observation is an integral
part of the architecture used in developing the LLSC data set.
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Fig. 4: Data Flow from raw data gathering, to ordered data
set, to processed data, and to Digital Twin

IV. RESULTS
A. Enhanced Situational Awareness

The overall goal of the MandM Digital Twin is to create
greater situational awareness for the LLSC support team and
to provide a stable, reliable, and robust system for the end
users. The backend data gathering techniques to generate
useful information from the raw data, the D4M/Accumulo
data storage and retrieval infrastructure, and the use of the
Unity Game Engine to create a Digital Twin environment have
all helped accomplish this task. The goal going forward was
to build upon these same techniques with tools to enhance
our awareness further. Two possibilities were identified to
accomplish this: the use of a user-centric view of the data
and adding in a way to access data history from the 3D
environment, both seen in Figure 5. The 3D Virtual User
system creates another level of awareness for the operator of
this system because they can see “problematic” users standing
out from the other users on the system, making for quicker
identification of system issues. The History Loading System
enables the operator to leave the real-time view of the system
and to queuc up diagnostic data on the entire cluster going
back for several hours or more and parse through and visualize
it. It allows the operator to get a better picture of the resources
used over time for any user on the cluster, see the full job



Fig. 5: Full System View including Virtual User Avatars and
Data History

cycle of each individual user’s job, and that job’s impact on
the overall HPC performance for the duration of its runtime.
These two techniques we believe have markedly increased the
overall situational awareness of the LLSC utilizing MandM.

B. Performance

Performance has been one of the biggest challenges in the
development of the 3D monitoring environment. The number
of objects associated with the HPC systems and the amount of
data being process in real time for each object is a major factor
in system performance. If the gaming environment becomes
“glitchy” or there is prolonged buffering during use, the tool
quickly becomes unusable for system troubleshooting. So to
allow the MandM system to add new features such as the
User View and especially a performance heavy feature like
the History System required some extra headroom to run
properly. The first significant change made was to make all the
GameObijects static in the scene. Static GameObjects require
fewer batching calls on the GPU and since there are well
over one thousand objects being tracked this is significant.
Secondly, we found code issues that caused the GameObjects
to duplicate spawning, which led to not only doubling the
GameObijects in the scene, but caused the colliders on those
nodes to force a virtual physics collision every frame. The
obvious solution was to stop the double nodes spawning,
but also to switch all colliders to being triggers which pre-
vented physics calculations on the GameObjects. This way
the GameObjects would only register by being clicked by the
mouse and therefore greatly reduce the processing being done
by MandM which greatly improved performance.

C. User Focused Analysis and Visualization

When the MandM Digital Twin was originally developed,
its focus was to identify system bottlenecks on the individual
compute nodes and other hardware components. While this
proved to be useful information it often fell short in identifying
the root cause of overall system performance slowdowns,
which was typically system users running in non-optimal
configurations. Creating a 3D Virtual User Avatar (VUA) for
each user and consolidating all data related to the individual
system users was our solution to this problem. The VUAs
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Fig. 6: Virtual User Avatars Indicating Workload and System
Error Correlation

display is game adjacent to the supercomputing cluster that
they are running on. The VUA, by default, is small and green
when running withing the normal parameters of the system,
but as they increase the number of nodes and files they access,
the VUA appearance changes correspondingly. The appearance
parameter is determined by our algorithm of “Usage” which
is calculated using 80% of the number of nodes and 20%
of the number of files in use with the Usage range from
0-100 as seen in Figure 6. When the usage is higher, the
3D VUA size will increase and it will also change color.
The colors are green for normal usage, cyan to indicate a
user utilizing significant resources, then red for users who are
adversely affecting system performance. This gives a single
overall system view where both high load systems and high
load users are viewable and allows for drilling down into either
(or both) to obtain more information and to see how the users
and system component usage correspond. For example, When
clicking on a VUA it will highlight the user and all nodes that
they are currently running on. The opposite is also true, when
clicking on a node it will highlight the node and the users
running jobs on it. When a user is selected all their relevant
information is displayed as well, that being their name, ID,
rank, number of nodes in use, files in use, number of jobs
running, alerts, and Usage.

This VUA addition makes it significantly easier to locate
root issues of poor user performance or a system slowdown
on the HPC system. When a user is using resources in a non
optimal way, the VUA appears large and bright red, instantly
standing out from the other users running on the system. This
allows the operator the ability to see where the system is
being affected with one click on the problem VUA to see all
the resources they are currently using. The VUA also works
seamlessly with the History system as described in the next
section.

D. Incorporating Data History

One aspect missing from previous iterations of the MandM
Digital Twin was a way to see the system usage over time.
While the priority is seeing the system in real time, it is often
useful to see how a system node, user, or some combination
was affected during the near history of the system and see how



a problem developed. The challenge was how to do this is a
way that enhanced the ability to troubleshoot a problem and
not be cumbersome to perform. The solution was to load into
the game memory recently collected data and to be able to step
through each data segment that corresponded to a moment in
time. Currently data segment files are generated roughly every
5 minutes. When loading the node data history, the thought
process started with how to approach loading all the data files
generated by the cluster in a way that would be both fast and
easy to parse through. One option would be to store the files
on the cluster then load each file in a case-by-case basis where
the user would have to request a specific file, then load that
file off the network to see it in the simulation. That system
would be fast to switch the view mode, but slow to load each
individual file. The second option would be to store the files
on the cluster, load all the files corresponding to a certain time
interval, and store the data locally into one array. From there
it would be extremely fast to parse from file to file. There
would be a lengthy initial load time, but once loaded it would
be quick to use. Another option would be to store the data
history files locally on the machine running the simulation
which would allow for an almost instantaneous loading of all
the data files. The downside here is that a significant portion
of storage space would have to be dedicated to storing these
files locally which would also be more difficult to scale up
if we were to increase the amount of data being stored to a
week, or a month, or more.

The approach that was taken was the second, which is
storing the files on the HPC system being monitored, caching
its data locally as an array of strings, and parsing through the
array to display the data. The data is stored in text comma
separated value (CSV) files similar to the approach taken to
load the spatiotemporal data of cities into Unity by Helbig,
et al. [32]. The reason why this approach was chosen over
the others is because it provides the best balance of user
experience and offloads the intensive resource usage onto the
cluster, allowing the system to scale up better. It’s fast enough
to load all the data at once and then cache it locally. Much
of the initial load time comes from the network speed, not
the front-end processing. The loading takes about 0.13 sec/file
so for 24 hours of data which involves 288 files, the load
time was 37.44s. When the files are stored locally, loading is
almost instantaneous, but it is only when the files are loaded
from the cluster that the loading slows, with remote access
through a Virtual Private Network (VPN) being the slowest;
see Figure 7. When loading the data onto the nodes from the
array the framework was already set up to load when it updates
every few minutes. What was needed was a system to call the
functions which loads the data onto the nodes and to find an
intuitive way for the user to parse through the data array.

If the loading were to happen on a single thread, it would
lock up the game for the duration of loading which would not
be ideal for the user experience. It would be more convenient
if the loading happened on a different thread. Unfortunately,
Unity’s engine code does not support threading but we were
able to get around that. The data can not be loaded directly
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Fig. 7: History File Load Time on local network and through
VPN

into any Unity related resources, but it can be loaded into a
C# array that Unity is able to access. So, using the C# Task
system we were able to put the loading process on a different
thread allowing the users to still interact with the system while
the loading was ongoing. It also allowed for visual feedback
on the percentage of files being loaded so the user is aware
of how much loading time is left.

The History system is a novel approach to presenting system
operators with enhanced awareness to quickly identify areas
of system performance degradation on the cluster over time. It
accomplishes this by allowing the user to quickly load cluster
history data locally and parse through it with ease which
allows the operator to easily monitor how specific users and
the jobs they run affect the cluster in real time and throughout
their job cycles. This approach to monitoring a user’s impact
on the cluster is also scalable with the ever-growing size and
complexity of the systems with minimal performance impact
on the monitoring software.

E. Accelerators View

As accelerators become increasingly common and important
in modern HPC systems, it’s important to shift the focus of
MandM to prioritizing hardware accelerated nodes. We have
implemented a simple indicator for GPU units on these nodes,
as shown in Figure 8, indicated by two small cubes that vary in
color based on the load on each GPU component: black when
not in use, then increasingly brighter shades of red as the
load increases. This is a useful indicator of which nodes have
accelerators and how much those are in use without having to
click on the detail view; however, there is certainly room for
expansion in the future. Nodes with accelerators could have
more weight in the User’s usage or there could be a focus
view specifically for accelerated nodes.

F. Conclusion and Future Work

1) Future work: This latest iteration of the LLSC MandM
Digital Twin with the added features of VUAs, History, and



Fig. 8: Nodes with GPU load indication

accelerators has increased situational awareness while main-
taining performance as the data scale has increased but there
is still plenty of opportunity for improvements. A significant
increase in performance to MandM could be achieved in the
future by incorporating Unity’s Entity Component System
(ECS) [33]. In typical game engine design, the approach is
to have multiple instances of a type of object with its own
unique copy of its data and behavior. ECS takes a different
approach to this which separates the Entity (the object), the
Components (the data), and the system (what that data does).
The main benefit of this approach to object instancing is that
instead of many data heavy copies of objects all with their own
unique copies of behavior systems, there is only one instance
of a system that parses through and operates on every entity.
An example would be a collection of car entities all with a
unique “speed” component which only contains the speed data.
In every frame, the singular speed system would parse through
cvery entity with a speed component and move it forward
according to it’s current speed. This lightweight approach to
object instancing would be ideal for MandM’s situation with
thousands of objects in the scene at once.

The History system could also be expanded to other related
systems being monitored including the environmental systems
of the “EcoPod” enclosures used as data centers for the
LLSC systems. It would echo a similar process to the nodes
themselves with the data files being stored on the cluster and
then being loaded into Unity when entering History mode.
Similar to the detail node view, the same slider would be used
to parse through the data array, but a different user interface
(UD) would be used that fits the EcoPods more effectively.

Another method of increased efficiency could be accom-
plished in the real-time and historical data loading process
by replacing CSV files with a serialized file type, especially
with the expectation of future growth of the HPC systems.
These serialized files could contain structs and other simple
data types which would allow the loading process to be
faster and simpler than parsing through strings. It would
also be compatible with the Unity Job system [34] which is
significantly lighter weight than the C# Task system.
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