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Abstract—This paper presents a novel approach for generating
synthetic PROPELLER MRI blades using the GPT-4 large
multimodal model (LMM). The approach addresses the challenge
of data scarcity in PROPELLER MRI. Our method simplifies
the process of data synthesis. It makes the process accessible
to researchers without extensive knowledge of complex MRI
algorithms. The approach involves transforming Cartesian MRI
data into PROPELLER blades. We utilize a Chain-of-Thought
(CoT) prompting technique to guide the model in understanding
the specific requirements of PROPELLER MRI. We compare this
method with traditional algorithmic approaches. The comparison
demonstrates that the GPT-4 based method can produce synthetic
MRI data of comparable quality but with greater efficiency and
ease of use. Crucially, this study shows that LMMs have the
potential to generate synthetic data without requiring extensive
computational resources. This capability could greatly assist
researchers in training deep learning models more easily.

Index Terms—Magnetic Resonance Imaging, Large Multi-
modal Models, PROPELLER MRI, GPT-4, Chain-of-thought

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) plays an integral role
in medical diagnostics, providing detailed internal images
crucial for patient care. However, a significant challenge in
the field of MRI is the scarcity of available data. Access to
diverse and high-quality MRI datasets is limited, which poses
a substantial obstacle for research and algorithm development.
This scarcity is particularly acute in the case of PROPELLER
(Periodically Rotated Overlapping ParallEL Lines with En-
hanced Reconstruction) [10] MRI data, a specialized technique
offering advantages in reducing motion artifacts. Unlike other
MRI data, PROPELLER MRI datasets are not readily available
on open-source platforms, making them a rare resource in
medical imaging research.

Deep learning (DL) models have proven to be a crucial
tool in accelerating MRI data acquisition. These models,
however, require large volumes of training data to achieve
effective generalization and avoid underfitting. To address this
need, data augmentation has emerged as a practical approach,
artificially expanding the training dataset through techniques
like image rotation, scaling, and flipping. Although beneficial,
data augmentation alone cannot fully resolve the data limi-
tations associated with specialized MRI techniques, such as
PROPELLER MRI.

For Cartesian MRI, there exist substantial public databases,
providing a robust platform for machine learning and deep
learning researchers to focus on Cartesian MRI reconstruc-
tion. Additionally, data augmentation techniques have been
effectively employed to increase the training data size for
deep learning-based Cartesian MRI reconstruction research.
However, a stark contrast exists for PROPELLER MRI. Un-
like Cartesian MRI, there are no significant public databases
available for machine learning or deep learning research in
the PROPELLER MRI domain. The unique challenge with
PROPELLER MRI lies in its complex motion patterns and
the difficulty in augmenting PROPELLER blades, which ex-
hibit various types of rotation and translation across different
patients. Therefore, generating synthetic PROPELLER data
demands substantial computational resources and a deep un-
derstanding of complex algorithms, which may not be readily
accessible to all researchers.

To address these challenges, our paper proposes an innova-
tive data augmentation technique utilizing a Large Multimodal
Model (LMM), specifically GPT-4 [1], along with a Chain-of-
Thought (CoT) [3] approach. The CoT approach, known for its
sequential reasoning that mimics human cognitive processes, is
applied to GPT-4’s multimodal functionalities [4, 20-25]. This
combination is aimed at simulating training data specifically
fitted for deep learning-based PROPELLER MRI reconstruc-
tion. GPT-4, with its advanced capabilities in data processing,
is particularly well-suited for this task. The model’s ability
to handle complex data synthesis tasks facilitates the gener-
ation of synthetic PROPELELR blades data. This approach
illustrates the feasibility of simulating large-scale training
datasets without necessitating in-depth knowledge of complex
algorithms typically required for synthetic data generation. By
simplifying the data creation process, it promises to conserve
both time and resources in clinical settings.

II. RELATED WORK
A. PROPELLER MRI
The PROPELLER (Periodically Rotated Overlapping Paral-
IEL Lines with Enhanced Reconstruction) [10] MRI technique
represents a significant advancement in magnetic resonance
imaging, specifically designed to mitigate motion artifacts.
This method is characterized by its unique data acquisition
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Fig. 1. Architecture demonstrating the generation of synthetic PROPELLER blades using GPT-4.

geometry, where radially oriented blades rotate around the k-
space center. Each blade scans a narrow rectangular region
in k-space, and their periodic rotation ensures comprehensive
k-space coverage.

Mathematically, the rotation of PROPELLER blades is
cosf —sinb

sinf  cosf )’
where R represents the rotation matrix and 6 the angle of

rotation. This matrix formulation is critical in capturing the
rotational dynamics of the blades within k-space.

Recently, deep learning approaches have been employed
to further improve PROPELLER MRI reconstruction [7, 9,
15]. Deep learning models, known for their ability to extract
intricate patterns from large datasets, offer potential advance-
ments in image quality and processing speed [11]. Recent deep
learning (DL) based approaches in PROPELLER MRI have
aimed to address the issue of data scarcity in this domain. One
such approach implemented an untrained neural network for
PROPELLER MRI reconstruction, which eliminates the need
for training data [9]. Another study proposed a method for data
augmentation in deep PROPELLER MRI [7]. This method
introduced a novel process for generating synthetic PRO-
PELLER blades, augmenting these with real PROPELLER
blades for reconstruction using a DL framework.

depicted by the rotation matrix R(6) =

B. Large Multimodal Model Based Data Augmentation

The Large Language Model (LLM) signifies a major ad-
vancement in the field of artificial intelligence [12]. Following
progress in text processing, these models have evolved to
become capable of performing a variety of tasks, including
image and data processing. This evolution is exemplified by
the introduction of Large Multimodal Models (LMMs) like
GPT-4. The architecture of GPT-4 enables it to process and
synthesize information across multiple modalities [14]. Recent
advancements in LMMs have shown promising applications in
the medical imaging sector [5, 12, 13, 16-19, 25].

Our inspiration to employ GPT-4 in generating synthetic
PROPELLER MRI data stems from the study by Anders et al.
[6]. The study showed that synthetic data generated by GPT-

4 could effectively supplement training datasets, enhancing
model performance. The innovative use of GPT-4 in this paper,
particularly in generating diverse and informative synthetic
examples through careful prompt crafting, provided a crucial
insight into its applicability in other domains. Drawing from
this research, we recognized the potential of GPT-4 in over-
coming the limitations posed by the scarcity of training data in
PROPELLER MRI. This led to the novel approach presented
in our work.

C. Traditional Approach for Synthetic PROPELLER Blade
Generation

The traditional approach for generating synthetic PRO-
PELLER blades from Cartesian MRI data involves several
key steps as described by Saju et al. [7]. Initially, an original
MRI brain image of dimensions 256 x 256 is used, and
the number of phase-encoding lines is reduced to match the
requirements of PROPELLER blades. Complex-valued sensi-
tivity maps are generated for different coils, simulating the
sensitivity of each coil element. Each of the 24 PROPELLER
blades is generated by rotating the original image at specific
angles using an affine transformation matrix 7°(#). The rotated
images are then transformed to k-space using the Fourier
transform F. The k-space data is subsequently reduced to align
with the PROPELLER blade requirements, and the reduced
k-space data Kj(u',v) is transformed back to the spatial
domain via the inverse Fourier transform F~! to obtain the
blade images By(2',y’). The final blade images are combined
with the sensitivity maps to generate multi-coil blade images
By r(2',y') = By(2',y") x S; j k. This entire process can be
summarized by the following key transformations:

Ky (u,v) = F{I(z,y)}
By(a',y) = F~H{EKG (v v)}

Byi(x',y') = By(a',y") x S jr



Finally, a total of 24 synthetic blades are integrated into
the PROPELLER reconstruction pipeline. This traditional ap-
proach, while robust, requires significant computational re-
sources and a detailed understanding of MR physics. Our
proposed method using GPT-4 simplifies this process by
generating high-quality synthetic PROPELLER blades without
extensive computational demands or specialized expertise.

D. Chain-of-Thought (CoT)

Chain-of-Thought (CoT) is an advanced prompting tech-
nique designed to enhance the reasoning capabilities of large
language models (LLMs) [3], [4], [20], [21]. It guides the
model through a sequential reasoning process that mirrors
human cognitive patterns. CoT breaks down complex problems
into smaller, manageable sub-tasks, allowing the model to
address each step methodically.

The CoT approach begins with an initial prompt that sets
the context and outlines the problem. Subsequent prompts
build on this foundation, introducing intermediate steps and
decisions that guide the model towards the solution. This
iterative process ensures that the model maintains context and
produces coherent and logical outputs.

The strength of CoT lies in its ability to decompose tasks
into logical sequences. Each prompt serves as a step in
the chain, directing the model’s focus and ensuring that it
considers all necessary aspects of the problem. This structured
approach enhances the model’s performance on tasks requiring
multi-step reasoning and logical deduction.

In CoT, the model processes each step independently but
within the context of the overall task. This helps in maintaining
the coherence of the final output. CoT is particularly effective
for tasks involving complex data transformations and intricate
decision-making processes.

Additionally, CoT minimizes the computational resources
required for problem-solving. By breaking down the task into
simpler steps, the model can process and generate outputs
more efficiently. This makes CoT a valuable technique for
improving the reasoning capabilities of LLMs in various
applications.

III. PROPOSED METHOD
A. Dataset and Implementation Details

An axial brain image dataset was utilized in this study. The
data was acquired on a GE 3T scanner, using an 8-channel
head coil. This data was saved in the MATLAB data format.
This particular dataset was obtained through a 2D spin echo
sequence. Key parameters of this imaging sequence include
a repetition time (TR) of 700 milliseconds and an echo time
(TE) of 11 milliseconds. The matrix size for the image was
set at 256x256, and the field of view (FOV) was established
at 220 square millimeters.

In the study, GPT-4, a Large Multimodal Model by OpenAl,
was utilized for synthesizing data. Concurrently, MATLAB
was employed for conducting comparative analyses. This
approach provided a balanced framework for assessing the
generated synthetic data against the traditional methodology.

B. Generation of PROPELLER Blades Utilizing GPT-4

The process begins with the provision of MRI data to the
GPT-4 model. The data employed is Cartesian MRI data,
characterized by its square format. To facilitate the generation
of PROPELLER blades, GPT-4 is engaged using a Chain-of-
Thought (CoT) approach. CoT prompts are designed to guide
the model towards an understanding of PROPELLER MRI’s
unique blade format. Specifically, GPT-4 is queried about the
nature and geometric characteristics of PROPELLER MRI
blades. This step is crucial in aligning the model’s synthetic
data generation capabilities with the specific requirements of
PROPELLER MRI

Model Input

The task is to generate a narrow PROPELLER blade with dimensions 30x256. To
transform the provided Cartesian MRI data into a PROPELLER blade, you need
to focus on a specific narrow region of the k-space. A PROPELLER blade, unlike
the full Cartesian data, scans a limited rectangular region in £-space. It captures a
specific set of frequencies. Ensure that during the transformation, the spatial
integrity of the frequencies is maintained. The final output should be a realistic,
non-rotated PROPELLER blade. It should represent a narrow but significant
portion of the k-space. The blade should be similar to what would be acquired in a
real PROPELLER MRI scan.

Model Output

< 32 >

Generated synthetic blade

Fig. 2. Prompt for Non-Rotated Blade Generation and Resulting Output.
This figure displays a portion of CoT prompting used to guide the AI model
in generating a non-rotated 30x256 PROPELLER blade from Cartesian MRI
data.

Following the establishment of an understanding of PRO-
PELLER MRI blades, GPT-4 is instructed to generate syn-
thetic blades from the provided Cartesian MRI data. The
query is framed to leverage GPT-4’s advanced data processing
capabilities, directing it to transform the square Cartesian data
into narrow, radially oriented PROPELLER blades. The model
is prompted to consider the essential aspects of PROPELLER
MRI, including the blade’s dimensions and their arrangement
in k-space.

GPT-4 processes the input Cartesian MRI data, applying
a series of transformations to create synthetic PROPELLER
blades. GPT-4 employs advanced algorithms to ensure that
these synthetic blades are representative of real MRI scans,
both in terms of their geometric properties and their ability
to reduce motion artifacts. The transformation process is
anchored in the model’s understanding of MR physics and the
specific requirements of PROPELLER MRI data acquisition.

C. Generation of Rotated PROPELLER Blades

In PROPELLER MRI, a single slice may comprise various
configurations of rotated blades, typically 8, 12, or 24. These
rotated blades are crucial for comprehensive k-space coverage.
This subsection elaborates on employing GPT-4 to generate a



set of 24 rotated blades, simulating a full 360-degree rotation,
a common configuration in PROPELLER MRI.

Again, GPT-4 is engaged with Chain-of-Thought (CoT)
prompts to facilitate the generation of rotated blades. These
prompts guide the model in understanding and implement-
ing rotational transformations to the synthetic PROPELLER
blades, focusing on the MRI blade geometry.

Model Input

Create a series of 24 rotated PROPELLER blades similar like the previously
generated non-rotated blade. Each blade should represent a unique 15-degree
rotation to cover the full 360-degree span. Apply a rotation centered on the blade
while preserving spatial relationships. The aim is to simulate realistic
PROPELLER MRI scanning by producing a complete set of blades that
collectively span the entire k-space frequency spectrum.

Generated synthetic
rotated blades

Fig. 3. Prompt for Rotated Blade Generation and Corresponding Outputs. This
figure illustrates a part of the CoT prompting for creating rotated PROPELLER
blades, with an incremental 15-degree rotation.

The rotation of each PROPELLER blade is mathematically
represented by the rotation matrix R(6) as described in equa-
tion (1) of the related work section. Given that a complete
360-degree rotation is evenly divided among n blades, the
rotation angle for each blade is 6 = %. For the generation
of 24 blades, each blade is rotated by 6§ = % = 15°.

The application of the rotation matrix by GPT-4 involves
recalculating the position of each point in the blade’s dataset

post-rotation. For a point (z,y) in a blade, its new position

(2',y') is determined by:
a’ x cosf) —siné x
<y’) = R(0)- (y) - <sin9 cosf > ' (y> M)
This computational process yields 24 uniquely rotated
blades, each contributing a distinct view of the k-space. The
rotated blades are critically evaluated for their geometric
accuracy, fidelity to PROPELLER MRI specifications, and the
maintenance of image integrity. The entire process of generat-
ing rotated PROPELLER blades is demonstrated in Figure 1,
which provides a visual representation of the architecture and
workflow used in this study.

~—

IV. RESULTS

This section presents the outcomes of our study, focusing
on the comparison between the synthetic PROPELLER blade
generation using the GPT-4 based method and a traditional
algorithmic approach proposed by Saju et al. [7]. This method

involves several intricate steps such as Fourier transformations,
generation of sensitivity maps, and complex mathematical
manipulations for blade rotation and k-space data reduction.
This approach, while robust, requires a comprehensive under-
standing of MR physics, signal processing, and mathematical
algorithms, making it less accessible to researchers without a
specialized background. In contrast, our GPT-4 based method
simplifies the generation of synthetic MRI data.

Figure 4 in the results section visually illustrates the com-
parative analysis between the traditional method of generating
PROPELLER MRI blades, as described by Saju et al. [7],
and our novel GPT-4 based approach. The figure is organized
into three columns, each highlighting a different aspect of
the generated MRI data. First columns presents the original
Cartesian MRI data that serves as the reference point for
both methods. The image provides a baseline for assessing
the quality and accuracy of the synthetic PROPELLER blades
generated by the two approaches. In the second column, there
are six rotated PROPELLER blades, each generated using
the traditional algorithmic method. These blades are arranged
to show different rotation angles, with an equal incremental
rotation between successive blades. Notably, the first blade in
this series is marked with an arrow, drawing attention to the
presence of minor artifacts in the blade image. These artifacts
exemplify some of the challenges inherent in the traditional
synthetic data generation process. The final column showcases
six PROPELLER blades generated using our GPT-4 based
method. Like the second row, these blades are also displayed
at varying rotation angles with the same incremental rotation.
A significant observation here is the absence of artifacts in
the blades, as indicated by an arrow on the first blade. This
row demonstrates the efficacy of the GPT-4 based approach in
generating cleaner and more accurate synthetic PROPELLER
blades compared to the traditional method.

The layout of Figure 4 effectively facilitates a direct vi-
sual comparison between the two methods. It underscores
the enhanced quality of the synthetic blades generated by
the GPT-4 model, particularly in terms of reducing artifacts,
which is a crucial factor in medical imaging. This comparison
substantiates the main proposition of the study, highlighting
the advantage of using advanced AI models like GPT-4 for
generating synthetic MRI data without the need for complex
algorithmic knowledge.

V. CONCLUSION

This study introduced a novel method for generating syn-
thetic PROPELLER MRI blades using GPT-4, addressing the
significant challenge of data scarcity in PROPELLER MRI
research. Our approach simplifies the process of synthesizing
MRI data, eliminating the need for intricate algorithmic un-
derstanding. Comparative analysis with traditional algorithmic
method, demonstrated that our GPT-4 based approach can
produce synthetic MRI data of comparable quality, but with
greater efficiency and accessibility. Particularly, the absence
of artifacts in the GPT-4 generated blades underscores the
method’s effectiveness.
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Fig. 4. Comparative Analysis of Synthetic PROPELLER Blades: The first column displays Reference Cartesian MRI Data. The second column illustrates six
PROPELLER blades generated using a traditional method. The third column shows six blades generated using the GPT-4 based method.

The findings suggest that utilizing advanced AI models
like GPT-4 can significantly benefit MRI research, offering
a practical solution to the challenges of data limitation. This
approach could potentially accelerate the development of MRI
reconstruction algorithms and enhance the overall quality of
MRI diagnostics.

In conclusion, using GPT-4 for MRI data creation shows a
lot of potential for future studies. It makes a good balance be-
tween being technically advanced and easy to use. This method
allows more researchers to help improve MRI technology, even
if they don’t have a deep understanding of complicated MRI
data processing.
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