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Abstract—Modern computer-aided design (CAD) tools leverage
complex algorithms incorporating millions of interdependent
functional tasks. Scheduling these tasks efficiently across CPUs
and GPUs is paramount, as it directly governs overall perfor-
mance. However, existing scheduling approaches are typically
hardcoded within applications, limiting their adaptability to non-
stationary computing environments. To address this challenge, a
recent paper introduced a novel reinforcement learning-based
online inference task scheduling algorithm. While this approach
can learn to adapt the performance optimization in dynamic
environments, it integrates online task execution and online task
inference, leading to significant overheads, such as querying the
system status for each task. To address the concern, we propose
a reinforcement learning-based offline inference task scheduling
system. Our system separates task execution from inference,
performing the inference offline to avoid the overheads. We will
evaluate our approach on a VLSI static timing analysis workload
and demonstrate that our approach is consistently faster than the
online inference method, albeit with slightly increased resource
consumption.

Index Terms—Reinforcement Learning, Task Scheduling, Of-
fline Inference

I. INTRODUCTION

Computer-aided design (CAD) tools typically incorporate
thousands or millions of functional tasks and dependencies to
implement various synthesis and analysis algorithms [1]. For
example, [2] details timing analysis algorithms structured as
top-down task graphs, where each task represents a function
and each edge represents a functional dependency. Efficiently
scheduling these tasks across a computing environment com-
posed of multicore central processing units (CPUs) and graph-
ics processing units (GPUs) is crucial, as it directly impacts
overall performance. However, existing scheduling approaches
fall short in adaptability to the computing environments. They
either rely on general-purpose heuristics like work stealing [3]
or custom methods like hardcoding [4]. These solutions often
struggle to adapt to changes in the computing environment
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TABLE I: Runtime comparison between the online infer-
ence [5] and our offline inference task scheduling.

Approach | Online task inference | Task execution
[5] 5724.7 seconds 0.298 second
Ours 0 second 0.146 second

and can consume significant scheduling resources due to the
randomness inherent in dynamic load balancing.

A recent study [5] addressed this challenge by proposing
a resource-efficient task scheduling system that leverages
reinforcement learning (RL) for adaptability to the change
in the computing environment. Their system comprises two
entities: workers and an RL agent. The RL agent dynamically
assigns one of the workers to execute a task based on real-
time system data, such as queue loads of workers. This
approach is known as online inference task scheduling, as
task assignment (inference) happens during task execution.
However, while the online inference approach in [5] requires
only 20% resources for scheduling all tasks, we identified two
concerns. First, the online per-task inference incurs significant
overheads due to frequent system information queries. Second,
inter-process communication (IPC) [6] interleaves between
workers (implemented in C++) and the RL agent (implemented
in Python) can negatively impact overall runtime performance.

To address these limitations, we propose a reinforcement
learning-based offline inference task scheduling system. This
approach separates task execution from task inference. Specif-
ically, we perform the task inference offline, generating a pre-
determined task assignment for online task execution. This
eliminates the overhead associated with per-task inference dur-
ing online task execution, leading to a significant performance
boost for the RL-based scheduling system. Table I compares
the runtime performance of our offline inference approach
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Fig. 1: Illustration of the online inference task scheduling system [5] and the proposed offline inference task scheduling system.
(a) An example task graph of four tasks and four edges. (b) The online inference task scheduling [5] consists of the online
task inference and the online task execution. (c) The offline inference task scheduling consists of offline task inference and

the online task execution.

with the online inference approach from [S5]. While the online
approach performs both task inference and task execution
online, our solution only requires online task execution, lever-
aging the pre-determined task assignment generated offline.
We summarize our technical contributions below:

o Scheduling Algorithm. We have introduce a reinforce-
ment learning-based offline inference task scheduling
algorithm to boost performance compared to its online
counterpart. By performing task inference offline, our
scheduling algorithm eliminates the overhead of per-task
inference during online task execution. This leads to a
significant overall runtime improvement.

o Parameterized Offline Environment. We have devel-
oped a parameterized offline environment to simulate
online interactions between workers and the reinforce-
ment learning agent. This allows applications to easily
fine-tune parameters, mimicking the behavior of vari-
ous reinforcement learning-based online inference task
scheduling systems.

o Performance Studies. We have conducted experiments
to evaluate our offline inference approach against the
online method on a real static timing analysis (STA)
workload. Our new approach consistently achieves a
significantly lower runtime while requiring slightly more
CPU resources.

II. REINFORCEMENT LEARNING-BASED ONLINE
INFERENCE TASK SCHEDULING

In this section, we give an overview of the reinforcement
learning-based online inference task scheduling system pre-
sented in the paper [5].

A. System Overview

The RL-based online inference task scheduling system [5]
targets at static timing analysis (STA) application — one of the
most important steps in the entire CAD flow, which describes
a STA workload as a task graph and schedules the tasks of
the task graph. The task graph consists of multiple nodes and
edges, which represent the tasks and the dependencies among
the tasks, respectively. Each task performs a STA operation.
The task dependencies not only constrain the execution order
of the tasks, but also determine the data flow among them.
For example, consider the task graph in Figure 1(a). Task A
must execute before tasks B and C, while task D depends on
the completion of both B and C. Additionally, tasks B and C
require data from task A, and task D requires data from both
B and C.

To schedule tasks across the execution contexts (e.g., CPUs
or workers) in a non-stationary computing environment, the
paper [5] presents a RL-based online inference task scheduling
system, as shown in Figure 1(b), and functions as follows:

o Workers Report State: Workers Workers send the
current state information State to the RL agent Agent.
State encodes the real-time system data, such as the
queue loads of workers.

« RL Agent Makes Decision: The RL agent Agent
analyzes the received state information State. Based
on this data, it determines the optimal action Action.

o Task Assignment: Agent communicates its decision
Action back to the workers Workers, essentially
assigning a specific worker to execute a particular task.

o Iterative Process: This process iterates for each task in
the task graph. In the example of Figure 1(a), with four
tasks, the communication between workers Workers



and the RL agent Agent would repeat four times.

B. Problem Formulation and Training

To solve the task scheduling problem, the paper [5] formu-
lates the task scheduling problem as a RL problem through
a so-called Markov Decision Process (MDP) [7]-[11], and
defines the four key elements of the MDP as follows:

o State. The state represents the current system status,
including details like the queue load of each worker, and
is queried by the workers whenever a new task is ready
for scheduling. This information is crucial for balancing
workload assigned to the workers and minimizing data
transfer costs, both of which significantly impact the over-
all system performance. In [5], the state is a vector with
2% N + 1 coordinates. The first N coordinates represent
the queue loads of all N workers. The next NV coordinates
represent the workload of the new task’s parents that is
completed at each worker. The final coordinate represents
the workload of the new task itself.

o Action. The action denotes which worker will execute
the new task.

o State transition. Once the new task is assigned to a
worker based on the action, the queue load of that worker
will change. This will further lead to a new system state.

+ Reward. After each state transition, the RL agent receives
a reward signal based on system performance-related
characteristics. In the paper [5], the reward consists of
the queue load and the data transfer cost.

After formulating the scheduling problem as a RL problem
through MDP, the paper [5] applies the Deep Q-learning
algorithm to train a good RL policy that maximizes the
accumulated reward over time.

C. Limitations of Online Inference Scheduling

While the paper [5] achieves a comparable runtime perfor-
mance using only 20% of the computing resources, it has two
key limitations. First, the per-task online inference, where the
RL agent determines worker assignment for each individual
task, incurs significant overheads. This is because the agent
needs the current system status (encoded as a state) to make
a decision for every task. Querying this state information for
every task incurs significant overhead. When the task graph
gets bigger, more overheads are incurred.

Second, the inter-process communication between the RL
agent (implemented in Python) and the workers (implemented
in C++) introduces additional overhead. Since they are sepa-
rate processes, each task inference requires two communica-
tions (one for state and one for action), as shown in Figure
1(b). This overhead becomes more significant for larger task
graphs.

In summary, the online inference task scheduling system
that interleaves task inference and execution between two
separate processes (RL agent and workers) can lead to per-
formance degradation due to factors like CPU migrations.
Moreover, the frequent inter-process communication between
the RL agent and workers adds to the overall runtime cost.

To address these limitations, we propose an offline inference
task scheduling system. This approach separates task inference
from task execution. We perform the task inference offline,
generating a pre-determined task assignment for task execu-
tion. This eliminates the need for per-task online inference and
the associated overhead, leading to improved performance.

III. REINFORCEMENT LEARNING-BASED OFFLINE
INFERENCE TASK SCHEDULING

The RL-based online inference task scheduling in [5]
integrates task inference with task execution (as shown in
Figure 1(b)), leading to significant overhead. To address
this, we propose separating task inference from execution,
moving the task inference offline. This creates a two-stage
process, offline task inference and online task execution. The
offline task inference stage focuses solely on task inference.
It analyzes the system state and generates an optimal task
assignment. The online task execution stage executes the
tasks based on the pre-determined task assignment generated
offline. This separation eliminates the need for per-task online
inference and its associated overhead, resulting in improved
performance. Figure 1(c) illustrates this two-stage approach.

A. The Offline Task Inference Stage

At the offline inference stage, we perform the task inference.
Unlike the online inference [5] that only determines the worker
ID for each task, our offline inference for a task determines
” the execution order for that task and e the worker ID
that is going to execute that task. We need to additionally
determine the execution order because of the following reason.
The execution order is supposed to be determined by the
workers dynamically as they know when a task is finished and
when a new task is available to be scheduled, as the online
inference task scheduling system does. However, at the offline
task inference stage we are not executing the tasks across
the workers yet and thus the workers can not determine the
execution order for us. That is the reason why we need to
additionally decide the execution order of the tasks.

c To determine the execution order of tasks, we perform a
topological sorting algorithm on the task graph. This order is
crucial because of task dependency constraints. For example,
in Figure 1(a), task A must precede tasks B and C, and
task D can only start after both B and C finish. Therefore, a
valid execution order is either A—-B—C-D or A—-C—B-D, which
corresponds to the topological order of the task graph. There
are two most popular topological sorting algorithms: Breadth-
First Search (BFS)-based and Depth-First Search (DFS)-based.
The BFS-based algorithm prioritizes tasks at the same depth
level, exploring them all before moving on to deeper levels.
Conversely, the DFS-based algorithm explores tasks as deep
as possible along a chosen branch before backtracking and
exploring another branch. While the BFS- and DFS-based
algorithms generate same order for Figure 1(a), we can use
a more complex task graph (like Figure 2) to illustrate the
detailed differences between BFS- and DFS-based topological
sorting.



Fig. 2: The topological orders of a task graph using DFS-based
and BFS-based topological sorting algorithm.

e To determine which worker executes which task (i.e.,
perform task inference), we leverage the trained reinforcement
learning (RL) policy from the existing approach [5]. Here’s
how it works:

e Task Order Determination: We first establish the ex-
ecution order for all tasks using a topological sorting
algorithm (as explained previously).

o Synthetic State Generation: For each task in the order,
we create a synthetic state State™ to approximate the
actual system state State that would be available online,
as shown in Figure 1(c). This synthetic state State*
is a vector with 2 * N + 1 coordinates, similar to
the online approach. The first /N coordinates represent
the queue loads of N Virtual workers. We use
virtual workers Virtual workers to represent the
workers Workers because we don’t directly interact
with Workers as we are offline. The next N coordinates
respectively record the amount of workload of the task’s
parent tasks completed by the N virtual workers. The last
coordinate represents the workload of the current task
itself.

o Worker Assignment and State Update: We feed the
synthetic state State™ to the trained RL policy. The
policy then recommends an action Action, which es-
sentially assigns the task to a specific virtual worker. This
worker assignment is stored for later online execution. To
simulate task execution progress, we update the synthetic
state State™. We add the current task’s workload to the
assigned virtual worker’s queue load in State*. We also
decay the queue load of all virtual workers by dividing
their respective coordinates in State® by their average,
mimicking the progress of actual workers.

B. The Online Execution Stage

At the online execution stage, the workers are responsible
for executing the tasks based on the recorded actions for-
warded from the offline inference stage. The recorded actions
dictate three key aspects for each task: 1) task ID, 2) the
execution order of the task, and 3) the worker ID that will
execute the task. We read in and store the recorded actions
in a data structure. Next, we directly query the data structure
without doing any task inference and assign the tasks in the
recorded order to the responsible workers.

TABLE II: The statistics of the six task graphs we used. ||V||
and || E|| respectively denote the number of nodes and edges
of a task graph.

Graph IV £l | IvVI+ £
synthetic | 88,626 | 115,777 204,403
aes_core | 66,751 86,446 153,197
ac97_ctrl | 42,438 | 53,558 95,996

tv80 17,038 | 23,087 40,125
wb_dma | 13,125 | 16,593 29,718
c6288 4,837 6,244 11,081

IV. EXPERIMENTAL RESULTS

We compared the runtime performance of our reinforcement
learning-based offline inference task scheduling system and its
online inference counterpart [5]. We compiled programs using
gce-12 with —std=c++17 and -03 enabled. We ran all the
experiments on a Ubuntu 19.10 (Eoan Ermine) machine with
80 Intel Xeon Gold 6138 CPU at 2.00GHz and 256 GB RAM.

A. VLSI Timing Analysis Workloads

We evaluated the performance on an industrial VLSI static
timing analysis (STA) application [2], [12], that leverages task
graph parallelism for parallelizing graph-based analysis (GBA)
workloads. STA plays a critical role in the overall CAD flow
because it verifies the expected timing behavior of a circuit
design and reports the critical paths that violate the given
timing constraints (e.g., set-up time and hold time). We chose
the state-of-art open-source STA engine, OpenTimer [13],
as the experimental tool. OpenTimer formulates the GBA
algorithm into a task graph. The task graph represents the
corresponding circuit design and can contain millions of tasks
and dependencies for large designs. Each task computes the
required timing information at its corresponding node in the
task graph (e.g., slew, delay, arrival time), while each edge
represents a dependency between two tasks.

Table II lists the statistics of the six task graphs we used.
Five of them are transformed from the circuit descriptions into
task graphs and are dumped by OpenTimer. We synthesized
one more task graph called synthetic by concatenating
three task graphs aes_core, tv80, and c6288. Using a
synthetic graph improves the model’s performance, generaliz-
ability, and robustness by providing a more diverse training
set for better generalization.

B. Training and Testing

We trained the RL policy on the graph synthetic follow-
ing the Deep Q-learning algorithm presented in the paper [5].
We then tested the trained policy on the six test graphs. We
note that the graph synthetic used in the test phase is
composed of the same three types of graphs (aes_core,
tv80, and c6288) as those used in the training phase, but
using different instances. Hence, the graph synthetic used
in the test phase is very different from the one used in the
training phase.



C. Performance Comparison
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Fig. 3: Elapsed time comparison between offline inference
scheduling with BFS order (denoted as Offline-B), offline
inference scheduling with DFS order (denoted as Offline-D),
and online inference scheduling (denoted as Online) on the
six graphs, respectively.

Figure 3 shows the elapsed time comparison. We can see
that the offline approach (with both BFS and DFS order) is
consistently better than the online approach for all the test
graphs. For example, for the graph aes_core, the offline
approach with DFS order finishes the analysis in 0.2 second
while the online approach needs 4 hours. The substantial time
difference comes from the following reasons. First, the online
inference performs the per-task inference on the fly, which
incurs significant overhead. Second, our offline approach sep-
arates task inference from task execution and utilized a pre-
determined task assignment, eliminating the need for online
inference decisions for each task. These factors contribute to
the clear performance advantage of our offline inference task
scheduling system over the online inference counterpart, as
demonstrated by the experimental results.

In Figure 4, we report the total number of used workers and
the number of the top 95% workers used by each approach.
Here, we define the number of top 95% workers as the number
of workers that handle the top 95% (vast majority) of the
total number of tasks, where the workers are ranked in a
descending order based on the total number of tasks assigned
to them. Our findings reveal that the offline approach uses
a higher total number of workers compared to the online
approach. This occurs because our offline approach interacts
with virtual workers during offline inference, making it less
sensitive to real-time changes in the computing environment
and less adaptive than the online approach. However, both
online and offline approaches utilize a similar number of top
95% workers. This indicates that, regardless of the inference
strategy (online or offline), most tasks are assigned to a
relatively small group of workers. This highlights the resource
efficiency of both RL-based approaches.
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Fig. 4: Histogram of the number of utilized workers and the
top 95% workers between offline inference scheduling with
BFS order (denoted as Offline-B), offline inference scheduling
with DFS order (denoted as Offline-D), and online inference
scheduling (denoted as Online) on the six graphs, respectively.
The number of top 95% workers denotes the number of
workers that handle the top 95% of the total number of tasks,
where the workers are ranked in a descending order based on
the total number of tasks assigned to them.

D. Runtime Breakdown

To further demonstrate the advantages of our offline ap-
proach over the online approach, we show the runtime break-
down of the online approach in Table III. As the table shows,
online task inference consumes significantly more time than
online task execution for all six graphs. For instance, task
inference takes over four hours, while task execution requires
only 0.15 second when running aes_core. This breakdown
in Table III clearly highlights the substantial overhead as-
sociated with online inference in the online inference task
scheduling system. By eliminating this online inference cost
incurred with each test run, our offline inference approach
offers a significant runtime advantage.

E. Benefits of Offline Over Online Inference

In this section, we conclude two main benefits of our
offline inference task scheduling over the online inference



TABLE III: Runtime breakdown of the online inference
scheduling approach measured in seconds.

Graph Online task inference | Online task execution
synthetic 25961.84 0.1453
aes_core 14527 0.15
ac97_ctrl 5724.7 0.298

tv80 915.8 0.117
wb_dma 552.557 0.093
c6288 86.1 0.029

task scheduling [5]. First, our offline approach demonstrates
significant performance improvements over [5], particularly
for running large-scale industrial workloads like static timing
analysis (STA). As shown in Figure 3, the offline approach
finishes all STA workloads in under one second, while the
online approach requires considerably more time. This advan-
tage becomes even more pronounced in real-world scenarios
where workloads are typically run multiple times. The offline
approach’s faster execution translates to a significant time
saving for these repetitive tasks.

Second, our inference approach and the online inference
approach are comparable in terms of the task execution time.
From the runtime breakdown in Table III and the elapsed time
comparison in Figure 3, we find out that the our method and
the online approach run comparably in terms of task execution
time. For example, when running aes_core, the offline
approach needs 0.19 second and the online approach needs
0.15 second. Take ac97_ctrl graph as another example.
The offline approach finishes in 0.146 second and the online
approach finishes in 0.298 second. Our offline approach runs
faster in three out of six graphs. Different from the online
inference approach that interacts directly with the workers, our
offline approach is less adaptive to the change of the comput-
ing environment than the online approach. It is difficult for
our method to outperform the online approach in all graphs in
view of the task execution time. Although the online approach
is a little bit faster in some graphs, the difference is minimal.
That means our offline inference approach is comparable to
the online inference approach in terms of scheduling the tasks
across the underlying execution units.

Overall, our offline inference task scheduling offers signifi-
cant advantages for industrial workloads due to its faster over-
all runtime. While task execution time remains comparable,
the reduced task inference overhead translates to a substan-
tial performance improvement. This makes our approach a
compelling choice for real-world STA applications and similar
scenarios.

V. CONCLUSION

We have introduced a reinforcement learning-based offline
inference task scheduling system to boost the performance of
the online inference task scheduling system. We have evaluated
our task scheduling system on an industrial static timing
analysis workload. Compared to the existing RL-based online
inference scheduling, our new RL-based offline inference

scheduling achieves better runtime performance on all tested
task graphs while using slightly more computing resources.
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