
Mobile-Optimized Real-Time Vessel Detection
for Ultrasound-Guided Surgical Procedures

Mateusz Wolak, Fin Amin, Nancy DeLosa, Brian Telfer, Benjamin Roop, Lars Gjesteby
Human Health & Performance Systems, MIT Lincoln Laboratory, Lexington, MA, USA

Abstract—Non-compressible torso hemorrhage is the leading
cause of potentially survivable fatalities in civilian and battlefield
trauma. An insufficient number of trauma surgeons are expected
to be available in future large-scale combat operations and
natural disasters, creating a need for assistive technology to
enable fast and accurate vascular access in pre-hospital envi-
ronments. AI-GUIDE is a handheld surgical tool designed for
emergency medical operations that combines an ultrasound probe
with real-time image processing software, which controls robotic
needle insertion components. Currently, AI-GUIDE relies on an
external display/computer to perform the required computations.
To reduce its size and weight, we investigate optimizations for
mobile inference of the AI algorithms used in the AI-GUIDE
prototype. Key optimizations include the use of mobile-optimized
neural network models, quantization techniques, and leveraging
a software development kit to harness portable hardware accel-
eration. We compare the trade-offs between speed and accuracy
for different runtime configurations, quantization methods, and
model sizes for two resource-conscious neural networks. We
run our experiments on a smartphone as a reliable proxy for
performance on the AI-GUIDE.

Index Terms—real-time mobile object detection, portable ul-
trasound, vessel detection

I. INTRODUCTION

To reduce pre-hospital deaths in civilian and battlefield
trauma, life-saving interventions must be delivered by non-
specialist medical providers. Specifically, vascular access to
address internal hemorrhage requires significant training to
find a deep blood vessel and insert a needle and catheter.
The AI-Guided Ultrasound Intervention Device (AI-GUIDE)
is a handheld prototype that combines portable ultrasound
(US), AI algorithms, and handheld robotics to automate the
most difficult steps in performing life-saving medical pro-
cedures [1]. The portable and robust nature of this device
would help to prevent deaths under logistically-challenging
casualty care conditions. As shown in Figure 1, the current

DISTRIBUTION STATEMENT A. Approved for public release. Distribu-
tion is unlimited. This material is based upon work supported by the Dept of
the Army under Air Force Contract No. FA8702-15-D-0001. Any opinions,
findings, conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the Dept of the
Army. © 2024 Massachusetts Institute of Technology. Subject to FAR52.227-
11 Patent Rights - Ownership by the contractor (May 2014). Delivered to
the U.S. Government with Unlimited Rights, as defined in DFARS Part
252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice,
U.S. Government rights in this work are defined by DFARS 252.227-7013
or DFARS 252.227-7014 as detailed above. Use of this work other than as
specifically authorized by the U.S. Government may violate any copyrights
that exist in this work. Correspondence: Lars Gjesteby, MIT Lincoln Labora-
tory, Lars.Gjesteby@ll.mit.edu

Fig. 1. The left image shows the original components and footprint of
AI-GUIDE; note that the handheld device is connected to an external
display/computer. The right image shows the AI-GUIDE Mobile prototype
form factor with the AI computation moved to a smartphone integrated on
the handheld device.

AI-GUIDE paradigm is to transmit the US data to a standalone
computer/display. However, due to the constraints of pre-
hospital and austere environments, it is crucial to optimize
the device for size, weight and power (SWaP) to make it
easy to transport and operate. For this reason, we investigated
various avenues for the next generation of handheld US.
One way to achieve this is to move the AI processing of
the ultrasound image feed from a standalone computer to a
smartphone mounted to the handheld US probe. This requires
the optimization of the AI algorithm to run efficiently in the
compute and memory-constrained environment of a mobile
system-on-chip (SoC). In our work, we refer to this new
paradigm–with the AI processing on the smartphone–as the
AI-GUIDE Mobile prototype.

As a case study, this paper investigates the use of the
Qualcomm Neural Processing SDK to optimize various object
detection models for inference on a smartphone. Our moti-
vation is to gain insight into the feasibility of an integrated
AI-GUIDE Mobile platform for onboard AI computation. The
goal is to present an empirical study across various acceler-
ator/quantization combinations, which compares the tradeoffs
between accuracy and inference speed.

II. BACKGROUND AND RELATED WORK

In this section, we overview the existing research which
guided our experiments and decisions. We predominantly
focus on mobile platforms of biomedical AI in the context
of resource-conscious deployment. Furthermore, we give an
overview of the relevant AI-GUIDE inferencing pipeline. In
our paper, we use the terms “patient” and “operator” to refer
to the person receiving and giving medical care, respectively.



Fig. 2. The flow of information in between the ultrasound probe and the smartphone. The Compute Instructions for Operator component
necessitates high object detection performance and low inference time from the Object Detection component. Otherwise, the operator would not receive
timely/reliable guidance. Considering we target 30 FPS, we have a 33 ms budget for inference.

A. AI-GUIDE Inferencing Pipeline

Figure 2 describes the flow of information from the ultra-
sound data acquisition to the AI algorithm. Succinctly, the
ultrasound device produces a B-Mode scan of the patient’s
anatomy. In order to guide the operator, the US images need to
be segmented to detect the relevant landmarks, including blood
vessels. As stated previously, the existing paradigm prescribes
processing on a standalone device such as a tablet computer.
Currently, the the standalone ultrasound device is a Terason
uSmart 3200t (Burlington, MA), which has a volume of 146.25
in3 and a weight of 4.85 lbs. Although this is portable, our
aim is to reduce SWaP even further. A cellphone-sized device
in lieu of the tablet computer could dramatically improve
portability.

B. Handheld AI

Handheld AI refers to the implementation and optimiza-
tion of artificial intelligence algorithms on portable devices,
enabling real-time data processing and decision-making in
resource-constrained environments. This technology is partic-
ularly valuable in scenarios where immediate analysis and
response are critical, such as medical diagnostics, emergency
response, and field operations. Although cloud computing can
address some of these issues, the necessity of an internet con-
nection introduces latency, reliability and security concerns.
In the context of the AI-GUIDE Mobile prototype, handheld
AI involves the integration of neural network models within a
compact, mobile platform.

Work of this nature is not unprecedented [2]–[4]. There has
been research on using smartphone apps to detect skin cancer
with very high specificity [5], [6]. Other work has delved
into handheld electrocardiograms [7]. Portable sonography
has been an exciting frontier; for example, the Butterfly is
a handheld ultrasound probe which connects to a phone [8].
Within the examples we surveyed, we noticed that mobile
phones were the de facto device for performing at least some

component of the processing/interfacing. For this reason, we
perform our experiments on a smartphone; specifically, the
Samsung Galaxy S22 is our representative device. We chose
this Android device due to the onboard AI accelerators and
its popularity among the prospective AI-GUIDE Mobile user
group. We considered performing these experiments on the
Nvidia Jetson, but even their smallest model consumes at least
5W, which exceeds our power limit [9].

C. Resource-Conscious Object Detection

For our experiments, we selected the MobileNetv2 SSDLite
Model [10] and YOLOv8 [11]. MobileNetv2 builds upon the
landmark MobileNetv1 [12], enhancing it with inverted resid-
ual connections and linear bottlenecks to improve the depth-
wise separable convolutions introduced in the original work.
MobileNetv1’s depth-wise separable convolutions efficiently
decompose standard convolutions into depth-wise and 1x1
point-wise convolutions, significantly reducing computational
demands by 8-9x while maintaining comparable accuracy.
MobileNetv2 refines this approach with inverted residual con-
nections, which incorporate residual links between bottleneck
layers within the convolutions, passing smaller tensors through
these connections to reduce memory usage. This streamlined
structure not only optimizes the computational graph layout
in memory but also further diminishes memory requirements.
Additionally, MobileNetv2 adapts the Single Shot Detector
(SSD) [13], replacing standard convolutions with depth-wise
separable convolutions, dubbed SSDLite, to further economize
memory usage. Combined with linear activations in these
bottleneck layers, MobileNetv2 achieves superior performance
with substantially lower memory consumption than its pre-
decessor, making it ideal for small SoC caches and optimal
mobile performance. We opted for the MobileNetv2 SSDLite
model due to its tailored optimization for mobile device
performance and its established reputation as an industry-
standard computer vision model for mobile applications. It



(a) Object Detection from MobileNetv2 SSD
320x320

(b) Object Detection from MobileNetv2 SSD
640x640

(c) Ground Truth

Fig. 3. Our experiments reveal promising object detection performance. The predictions in (a) and (b) were produced by the default quantization scheme
using the Hexagon accelerator.

remains one of the fastest-to-inference models while main-
taining competitive accuracy on various image classification
tasks, as demonstrated in applications like systemic sclerosis
skin identification [14]. Furthermore, this model is available
with pre-trained weights on the ImageNet dataset, facilitating
expedited training [15], [16].

YOLOv8 has been chosen for its high performance in real-
time object detection tasks, owing to significant architecture
enhancements that improve both detection speed and accuracy.
The model builds on previous versions in the YOLO (You
Only Look Once) model family, incorporating more efficient
backbone networks and advanced feature pyramid networks
to enhance multi-scale feature extraction. These improvements
build on the signature capability of YOLO models to predict
bounding boxes and class probabilities directly from full im-
ages in a single evaluation, which reduces computational cost
and maintains high accuracy. Additionally, YOLOv8 training
employs optimized loss functions and advanced optimization
techniques, including stochastic gradient descent with momen-
tum and weight decay, ensuring robust performance. Starting
with pre-trained weights from the COCO 2017 dataset and
fine-tuning on custom datasets further enhances its capability
to adapt to specific detection tasks. In other works, it has
achieved an mAP of 83.5, with 50 FPS throughput on ob-
ject detection tasks in 1080p video [17]. YOLOv8’s refined
architecture makes it a strong candidate to compare against
MobileNetv2.

III. EXPERIMENTAL SETUP

In this section we describe the process of fine-tuning the
pre-trained MobileNetv2 SSD and YOLOv8 models using
our ultrasound image dataset, converting it to the Qualcomm
.dlc (deep learning container) format, quantizing the trained
model, and deploying it to the Samsung S22 smartphone using
an Android app with Qualcomm’s software development kit
(SDK).

A. Ultrasound Dataset

The dataset we used to fine-tune the model contained
scans of ultrasound data captured from the necks of 16

normotensive human subjects using a Clarius wireless L7A
ultrasound device (Vancouver, BC, Canada). All data were
collected by Massachusetts General Hospital and MIT Lincoln
Laboratory with IRB approval. These scans are represented as
individual .png images of sequential frames captured at 30
FPS. The frames were of varying sizes but were all resized
to 640x640 pixels and normalized to the range [−1.0, 1.0].
The labels were provided by trained human annotators on
each frame with bounding boxes for landmarks of interest,
including the carotid artery, internal jugular vein (IJV), and
branching vessels. The carotid artery is a major blood vessel
in the neck that supplies blood to the brain, neck, and face.
It is essential for delivering oxygenated blood to the cerebral
regions. The internal jugular vein is a large vein that carries
deoxygenated blood from the brain, face, and neck, back to the
heart. It runs alongside the carotid artery. The compressed IJV
was also labeled as a separate class to serve as a surrogate for
hypotensive conditions [18], [19]. In total, the dataset contains
20,900 frames, with 13,809 used for training, 3,452 used for
validation, and 3,639 used for testing, where each subject’s
data is kept together in the same dataset, meaning we test on
completely unseen subjects.

B. Model Training

In order to achieve better results with shorter training times
and make full use of our relatively limited dataset without
overfitting, we initialized our MobileNetv2 SSDLite model
with pre-trained weights provided by the TensorFlow Model
Garden [16]. With these pre-trained weights, the MobileNetv2
image classifier backbone was trained on the ImageNet dataset,
while the SSDLite object detection layers were trained on the
COCO 2017 dataset [20]. We used this pretrained checkpoint
to initialize our model’s learnable parameters, then trained it
on our ultrasound dataset. This was done in Tensorflow 2 for
217 epochs with a batch size of 80, on two NVIDIA V100
GPUs. We trained two input sizes of MobileNetv2 using this
method: 640x640 and 320x320 pixels. For each resolution
there is a separate model and training run. For YOLOv8, we
used the model pretrained on the same COCO dataset. Note
that unlike MobileNetv2, we used a PyTorch backend to train



YOLO for 100 epochs with a batch size of 16. Note that the
loss functions for both YOLOv8 and MobileNetv2 are quite
sophisticated; we direct readers to their respective papers for
more details [13], [17].

C. Model Evaluation

After the model was trained, its performance was evaluated
on the test set using one NVIDIA V100 GPU. The metric used
was area under the precision-recall curve (AuC) derived from
intersection over union (IoU) scores for the bounding boxes.
IoU is computed by dividing the area where the predicted
and ground truth bounding box overlap by the total area
of both boxes. A true positive (TP) is recorded when the
IoU between a predicted and ground truth bounding box is
over 0.5, and a false negative (FN) is recorded when no
predicted bounding box has an IoU over 0.5 for a given
ground truth box. A false positive (FP) is recorded when
no ground truth label exists for a given predicted bounding
box with an IoU over 0.5, where one label cannot be re-
used for multiple predictions. True negatives (TN) are not
possible due to the nature of object detection. The AuC is
computed by calculating the precision (TP/(TP+FP)) and recall
(TP/(TP+FN)) at 11 decision thresholds, ranging from 0.0 to
1.0 in steps of 0.1. The decision threshold determines above
what confidence value bounding boxes are considered for the
calculation. We then plot precision against recall, generating a
curve between (0.0, 1.0) and (1.0, 0.0), and calculate the AuC
to compute the final metric.

D. Model Conversion

With our particular implementation of MobileNetSSDv2,
designed to be re-used for many target environments, the
model must first be converted from a TF SavedModel to a
TFLite file. This is done through a script provided with the pre-
trained weights on the TF Model Garden, and includes only the
appropriate model endpoints for mobile inference. Next, the
TFLite model must be converted to Qualcomm’s proprietary
.dlc format for use with their Neural Processing SDK on
the S22’s SoC. The compiler portion of the SDK, which
handles the conversion from various saved model formats to
.dlc, must be run on Linux for the full set of features. In
our experiment, we ran the toolchain on an Ubuntu 20.04
LTS instance within WSL 2 on a Windows 10 machine. This
conversion is handled by the snpe-tflite-to-dlc tool.
Next, Qualcomm provides a number of quantization options,
described in the next subsection. Quantization is applied to
the DLC file using the snpe-dlc-quant tool. Finally, the
computational graph is prepared for use with the specific
Hexagon architecture on the Snapdragon 8 Gen 1 SoC, using
the snpe-dlc-graph-prepare tool.

E. Quantization

Ordinarily, the numbers that make up the weights, biases,
and data within a neural network are 32-bit floats, the standard
representation for a floating-point number. Quantization seeks
to reduce the size of these values, “squeezing” the 32-bit

float into smaller, usually integer representations, like 8-
bit integers. Intuitively, the learned parameters should stay
approximately the same, and the model’s outputs, as long as
the quantization is “undone”, should not change much, leading
to a more favorable tradeoff between accuracy and speed. In
practice, this has been shown to be a very effective method for
increasing the speed of a network and has become standard
practice for deploying models to mobile SoCs.

Qualcomm provides a few different quantization algorithms
in the Neural Processing SDK, which are aware of the
hardware runtime targets on Qualcomm’s SoCs through the
snpe-dlc-quant tool. These quantization options are:
default, enhanced, adjusted weights, cross-layer equalization
(CLE) [21], and symmetric. The default option uses the
min/max of the data sample to map floats into 8-bit ints
and performs an adjustment to ensure a minimum range and
that 0.0 is exactly quantizable. The enhanced quantizer, per
Qualcomm’s documentation, uses a proprietary algorithm to
determine a set of parameters that produces better perfor-
mance. Adjusted mode excludes long tails of the data, which
may help in some cases. CLE is a technique developed by
Qualcomm for the convolutional layers used in vision models
[21], using a scale-equivariance property of the activation
functions. Qualcomm claims this can mitigate large drops in
performance with quantization. Finally, symmetric quantiza-
tion is used to ensure the negative and positive ranges of the
quantization mapping are the same. These options can also be
combined with one another using the tool.

F. Android Runtimes

Once the .dlc file has been generated, it must be prepared
for a particular set of Qualcomm SoCs, which is done using
the snpe-dlc-graph-prepare tool and a list of target
SoCs for the model. This is mainly for use with the Hexagon
DSP accelerator, which has a different architecture in different
SoC generations. Finally, the prepared .dlc file can be used
with the Neural Processing SDK’s Android library to run
model inference on a mobile device with a Qualcomm SoC.
The SDK provides a number of runtimes, which execute the
model on different hardware elements of the SoC. These are:
CPU (central processing unit), CPU Quantized, GPU (graphics
processing unit), GPU FP16, DSP (digital signal processor),
and AIP (AI processor). The CPU mode runs only non-
quantized models in 32-bit floating point on the CPU. CPU
Quantized mode allows quantized models with 8-bit integer
weights to run on the CPU, though it is generally not optimized
for this. The GPU also runs only non-quantized models,
and uses 32-bit floating point representations. The special
FP16 mode automatically converts the unquantized model to
use 16-bit floating point weights, and can leverage hardware
optimizations for this representation. In general, the GPU
can have more optimized hardware for matrix multiplication.
The DSP and AIP targets are for different generations of
the Hexagon accelerator built into Snapdragon SoCs. For our
SoC (Snapdragon 8 Gen 1, or SM8450), this is called the
DSP, and contains hardware optimizations for 8-bit integer



TABLE I
PERFORMANCE TRADEOFF FOR 320X320 RESOLUTION MODELS. THE BEST-PERFORMING VALUE IS BOLDED IN EACH METRIC COLUMN. INFERENCE

SPEEDS WHICH ARE TOO SLOW FOR 30 HZ ARE WRITTEN IN RED. N/A VALUES INDICATE UNREPORTED RESULTS.

Model Quantization Runtime Speed
(ms) AuC Model Quantization Runtime Speed

(ms) AuC

MobileNet
v2 SSD-320x320

None CPU 62.6 0.7980

YOLO
v8-320x320

None CPU 61.9 0.8902
None GPU 23.0 0.7960 None GPU 18.8 0.9237
None GPU FP16 20.7 0.7980 None GPU FP16 17.3 0.9117
Default CPU QUANT 17.7 0.7990 Default CPU QUANT 16.2 N/A
Default DSP 3.2 0.7950 Default DSP 3.7 N/A
Enhanced CPU QUANT 18.2 0.7980 Enhanced CPU QUANT 16.2 N/A
Enhanced DSP 3.2 0.7960 Enhanced DSP 3.8 N/A
Adjusted CPU QUANT 18.2 0.8000 Adjusted CPU QUANT 16.2 N/A
Adjusted DSP 3.1 0.7990 Adjusted DSP 3.9 N/A
Override CPU QUANT 18.1 0.7990 Override CPU QUANT 16.2 N/A
Override DSP 3.2 0.7960 Override DSP 3.7 N/A
Symmetric CPU QUANT 29.1 0.8220 Symmetric CPU QUANT 15.8 N/A
Symmetric DSP 3.0 0.8160 Symmetric DSP 3.9 N/A

TABLE II
PERFORMANCE TRADEOFF FOR 640X640 RESOLUTION MODELS. THE BEST-PERFORMING VALUE IS BOLDED IN EACH METRIC COLUMN. INFERENCE

SPEEDS WHICH ARE TOO SLOW FOR 30 HZ ARE WRITTEN IN RED. N/A VALUES INDICATE UNREPORTED RESULTS.

Model Quantization Runtime Speed
(ms) AuC Model Quantization Runtime Speed

(ms) AuC

MobileNet
v2 SSD-640x640

None CPU 223.7 0.8245

YOLO
v8-640x640

None CPU 209.4 0.9159
None GPU 57.6 0.8335 None GPU 48.4 0.9078
None GPU FP16 55.2 0.8337 None GPU FP16 41.2 0.9058
Default CPU QUANT 53.6 0.8110 Default CPU QUANT 54.9 N/A
Default DSP 7.3 0.8105 Default DSP 11.0 N/A
Enhanced CPU QUANT 54.1 0.7799 Enhanced CPU QUANT 55.0 N/A
Enhanced DSP 7.2 0.7847 Enhanced DSP 11.1 N/A
Adjusted CPU QUANT 53.6 0.7797 Adjusted CPU QUANT 55.2 N/A
Adjusted DSP 7.4 0.7878 Adjusted DSP 10.9 N/A
Override CPU QUANT 53.5 0.8101 Override CPU QUANT 55.6 N/A
Override DSP 7.4 0.8108 Override DSP 10.8 N/A
Symmetric CPU QUANT 111.2 0.8104 Symmetric CPU QUANT 55.1 N/A
Symmetric DSP 7.4 0.8106 Symmetric DSP 11.1 N/A

matrix multiplication, and is used with the quantized model
(DSP Arch v69). Our SoC does not have an AIP, so this
option was not used; however, in different processors this
refers to a coprocessor further optimized for AI models. The
models are run on the Android device through Qualcomm’s
Android library. The Android app must handle populating the
input tensors and interpreting the output tensors. This can
involve de-quantizing the results, and correctly mapping them
to bounding boxes and classes.

G. Benchmarking

For our experiments, we created an Android app, which
used Qualcomm’s Android runtime library to run experiments
using our converted and quantized .dlc model files. This
was a simple app, which allowed us to select a model file,
dataset folder, and runtime target. It then performed inference,
collected timing data, and saved the model’s predictions to
local storage, so we could evaluate the model’s accuracy. For
each experiment, we tested a different combination of runtime
and quantization options on the test set. We tested 5 runtime
options: CPU, GPU, GPU FP16, CPU QUANT, and DSP,
along with 6 quantization options: none, default, enhanced,
adjusted, override, and symmetric. The override option refers
to an optional override flag to ignore and overwrite any quan-

tization or optimizations already present on the model before
conversion. We were unable to obtain results for Qualcomm’s
CLE quantization, as it would cause the model to output very
large numbers in the output tensors, which lead to a final
accuracy of almost zero. We believe this is because the CLE
optimizer is only designed to work with certain layer types and
activation functions, and our models were not fully compatible.

Additionally, the CPU, GPU, and GPU FP16 runtimes do
not support quantization, while CPU QUANT and DSP only
support quantized models, so not all combinations were tested.
For each experiment, we ran inference on the test set 3 times
and took the median result to ensure random variations due to
background processes, thermal throttling, or other factors did
not affect our results. Timing results were obtained through the
Android app, using the System.currentTimeMillis()
function to measure how much time the model inference func-
tion call took for each image, and then averaging the result.
When running an experiment, the app also output the predicted
bounding boxes as .txt files. Detection performance was by
exporting the predicted bounding boxes to our compute cluster,
and comparing them to our ground truth results using our AuC
metric.



IV. RESULTS AND DISCUSSION

Our experiments have revealed insightful performance char-
acteristics across various models and quantization schemes.
For the 320x320 resolution models, as shown in Table I, the
best performance in terms of speed was achieved with the
DSP runtime. Specifically, the symmetric quantization on DSP
yielded the fastest inference time of 3.0 ms for MobileNet
and 3.7 ms for YOLO. The highest object detection perfor-
mance for the MobileNet model was achieved with symmetric
quantization on the CPU, with an AuC of 0.8220, whereas
YOLO attained its highest object detection performance using
the GPU runtime without quantization, with an AuC of 0.9237.
Interestingly, while the enhanced quantization did not signifi-
cantly improve performance, symmetric quantization provided
a benefit in object detection performance for MobileNet mod-
els. This finding is counter intuitive as typically, quantized
models are outperformed by their unquantized counterparts.
We surmise that this discrepancy was caused by label noise
on the test set, and that the use of “improved” quantization
algorithms does not have a major impact on accuracy.

For the 640x640 resolution models, as shown in Table II,
the symmetric quantization combined with the DSP runtime
offered a balanced tradeoff between speed and object detection
performance for MobileNet, with an inference time of 7.4 ms
and an AuC of 0.8106. YOLO models performed best in terms
of accuracy using the GPU runtime without quantization, with
an AuC of 0.9159. However, the DSP runtime with default
quantization achieved an inference time of 11.0 ms, which is
within acceptable limits for many real-time applications.

Although our MobileNet retained comparable detection per-
formance when using quantization, our experiments found the
object detection performance of quantized YOLO models to
be lacking. After analyzing the outputs from quantized YOLO
models, we noticed that the class probabilities were the same
low (< 0.01) float value for all classes and predictions within
each image. We surmise this is due to the logits in the final
layer having small magnitude. This in turn could cause the
quantization process to map these logits to the same value. As
such, we did not include these results, as we do not believe
they are representative of the potential quantized performance
of YOLOv8. Additionally, the quantization tools and runtime
from Qualcomm and scripts from Ultralytics were configured
and used exactly according to standard guidelines, but subtle
changes to options in these tools could cause sub-optimal
performance. Given the intricate nature of deep learning model
optimization and deployment, even minor deviations from
the optimal configuration can lead to significant performance
variations. We sought to follow the standard guidelines and
best practices, but there is a possibility of errors in our
implementation or experimental setup for YOLO. Future work
should delve deeper into available optimizations and export
options within the Qualcomm and Ultralytics tools, to preserve
YOLOv8 performance during quantization. An interesting
connection can be drawn between our work and [22]. Similar
to ours, their research delves into inferencing under extreme

mass and energy constraints–however the context of their
experiments is for space applications.

The DSP runtime demonstrated significant advantages in
speed, making it suitable for real-time applications where
inference time is critical. Our study underscores the efficacy
of quantization and the DSP runtime for mobile deep learning
inference, greatly increasing throughput with only a minor
penalty to accuracy. For the AI-GUIDE Mobile prototype,
the optimal configuration would bethe 640x640 symmetric
quantized MobileNet model on the DSP, which outperformed
other configurations in both metrics. Additionally, YOLOv8
showed promising quantized inference speed and unquantized
accuracy, making optimization of quantized YOLOv8 models
an important future step.

V. SUMMARY AND FUTURE WORK

In summary, this work analyzed multiple accelerators and
quantization methods for vessel detection algorithms on ultra-
sound images, with the goal of achieving 30 FPS speed at high
object detection performance. The default quantization on the
DSP provided excellent speedup for both the MobileNetv2 SS-
DLite and YOLOv8 models, while maintaining high precision-
recall AuC for MobileNetv2, particularly at 640x640 image
resolution.

In the future, there are a number of investigations to
be carried out. First, a larger set of computer vision mod-
els could be analyzed, including the latest iteration of the
YOLO family, mobile-optimized vision transformer models,
and video-based object detection models, such as Robust
and Efficient Post-Processing [23] and YOLOV [24]. Given
the strong speedup of the DSP with MobileNetSSDv2 and
YOLOv8, these slightly more complex models could yield
better accuracy, while still achieving adequate inference speed.
Next, a wider range of mobile and low-power SoCs and
accelerators could be evaluated, including the latest flagship
Snapdragon SoC, stand-alone development boards, or the NPU
built into the new Snapdragon X Elite processor. Furthermore,
Qualcomm’s Userbuffer memory interface could be added
to the benchmark app. Qualcomm claims using this special
memory interface in the Android app saves a memory copy
operation when loading inputs and outputs to and from the
model, and this could improve overall performance. Finally a
more optimal configuration of the Qualcomm and Ultralytics
tools, along with other optimizations, such as quantization-
aware training [25] should be investigated to make YOLOv8
suitable for the AI-GUIDE Mobile prototype.

ACKNOWLEDGMENT

The authors would like to acknowledge the MIT Lincoln
Laboratory Supercomputing Center (LLSC) for their support
of high performance computing tasks.

REFERENCES

[1] L. J. Brattain, T. T. Pierce, L. A. Gjesteby, M. R. Johnson, N. D. DeLosa,
J. S. Werblin, J. F. Gupta, A. Ozturk, X. Wang, Q. Li et al., “AI-enabled,
ultrasound-guided handheld robotic device for femoral vascular access,”
Biosensors, vol. 11, no. 12, p. 522, 2021.



[2] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and
J. Kepner, “Ai and ml accelerator survey and trends,” in 2022 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE,
2022, pp. 1–10.

[3] N. A. Switz, M. V. D’Ambrosio, and D. A. Fletcher, “Low-cost mobile
phone microscopy with a reversed mobile phone camera lens,” PloS one,
vol. 9, no. 5, p. e95330, 2014.

[4] J. T. Coulibaly, M. Ouattara, M. V. D’Ambrosio, D. A. Fletcher,
J. Keiser, J. Utzinger, E. K. N’Goran, J. R. Andrews, and I. I. Bogoch,
“Accuracy of mobile phone and handheld light microscopy for the
diagnosis of schistosomiasis and intestinal protozoa infections in côte
d’ivoire,” PLoS neglected tropical diseases, vol. 10, no. 6, p. e0004768,
2016.

[5] T. M. de Carvalho, E. Noels, M. Wakkee, A. Udrea, and T. Nijsten,
“Development of smartphone apps for skin cancer risk assessment:
progress and promise,” JMIR Dermatology, vol. 2, no. 1, p. e13376,
2019.

[6] A. Udrea, G. Mitra, D. Costea, E. Noels, M. Wakkee, D. Siegel,
T. de Carvalho, and T. Nijsten, “Accuracy of a smartphone application
for triage of skin lesions based on machine learning algorithms,” Journal
of the European Academy of Dermatology and Venereology, vol. 34,
no. 3, pp. 648–655, 2020.

[7] K. C. Wong, H. Klimis, N. Lowres, A. von Huben, S. Marschner,
and C. K. Chow, “Diagnostic accuracy of handheld electrocardiogram
devices in detecting atrial fibrillation in adults in community versus
hospital settings: a systematic review and meta-analysis,” Heart, vol.
106, no. 16, pp. 1211–1217, 2020.

[8] R. C. Gibbons, D. J. Jaeger, M. Berger, M. Magee, C. Shaffer, and
T. G. Costantino, “Diagnostic accuracy of a handheld ultrasound vs
a cart-based model: A randomized clinical trial,” Western Journal of
Emergency Medicine, vol. 25, no. 2, p. 268, 2024.

[9] NVIDIA, “Jetson orin,” https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/jetson-orin/, 2024, accessed:
2024-07-02.

[10] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[11] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLO,” Jan. 2023.
[Online]. Available: https://github.com/ultralytics/ultralytics

[12] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[13] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11–14, 2016, Proceedings, Part I 14. Springer, 2016, pp.
21–37.

[14] M. Akay, Y. Du, C. L. Sershen, M. Wu, T. Y. Chen, S. Assassi,
C. Mohan, and Y. M. Akay, “Deep learning classification of systemic
sclerosis skin using the mobilenetv2 model,” IEEE Open Journal of
Engineering in Medicine and Biology, vol. 2, pp. 104–110, 2021.

[15] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[16] H. Yu, C. Chen, X. Du, Y. Li, A. Rashwan, L. Hou, P. Jin, F. Yang,
F. Liu, J. Kim, and J. Li, “TensorFlow Model Garden,” https://github.
com/tensorflow/models, 2020.

[17] D. Reis, J. Kupec, J. Hong, and A. Daoudi, “Real-time flying object
detection with yolov8,” arXiv preprint arXiv:2305.09972, 2023.

[18] U. C. Turba, R. Uflacker, C. Hannegan, and J. B. Selby, “Anatomic
relationship of the internaljugular vein and the common carotid artery
applied to percutaneous transjugular procedures,” CardioVascular and
Interventional Radiology, vol. 28, pp. 303–306, 2005.

[19] C. A. Troianos, R. J. Kuwik, J. R. Pasqual, A. J. Lim, and D. P.
Odasso, “Internal jugular vein and carotid artery anatomic relation as
determined by ultrasonography,” The Journal of the American Society
of Anesthesiologists, vol. 85, no. 1, pp. 43–48, 1996.

[20] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.
Springer, 2014, pp. 740–755.

[21] M. Nagel, M. v. Baalen, T. Blankevoort, and M. Welling, “Data-
free quantization through weight equalization and bias correction,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 1325–1334.

[22] Z. Towfic, D. Ogbe, J. Sauvageau, D. Sheldon, A. Jongeling, S. Chien,
F. Mirza, E. Dunkel, J. Swope, M. Ogut et al., “Benchmarking and test-
ing of qualcomm snapdragon system-on-chip for jpl space applications
and missions,” in 2022 IEEE Aerospace Conference (AERO). IEEE,
2022, pp. 1–12.

[23] A. Sabater, L. Montesano, and A. C. Murillo, “Robust and efficient post-
processing for video object detection,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp.
10 536–10 542.

[24] Y. Shi, N. Wang, and X. Guo, “Yolov: Making still image object
detectors great at video object detection,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 37, no. 2, 2023, pp. 2254–
2262.

[25] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 2704–
2713.


