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Abstract—Graph partitioning (GP) is a classic problem that
divides the node set of a graph into densely-connected blocks.
Following the IEEE HPEC Graph Challenge and recent advances
in pre-training techniques (e.g., large-language models), we pro-
pose PR-GPT (Pre-trained & Refined Graph ParTitioning) based
on a novel pre-training & refinement paradigm. We first conduct
the offline pre-training of a deep graph learning (DGL) model
on small synthetic graphs with various topology properties. By
using the inductive inference of DGL, one can directly generalize
the pre-trained model (with frozen model parameters) to large
graphs and derive feasible GP results. We also use the derived
partition as a good initialization of an efficient GP method (e.g.,
InfoMap) to further refine the quality of partitioning. In this
setting, the online generalization and refinement of PR-GPT can
not only benefit from the transfer ability regarding quality but
also ensure high inference efficiency without re-training. Based on
a mechanism of reducing the scale of a graph to be processed by
the refinement method, PR-GPT also has the potential to support
streaming GP. Experiments on the Graph Challenge benchmark
demonstrate that PR-GPT can ensure faster GP on large-scale
graphs without significant quality degradation, compared with
running a refinement method from scratch. We will make our
code public at https://github.com/KuroginQin/PRGPT.

Index Terms—Graph Partitioning, Community Detection, In-
ductive Graph Inference, Pre-training & Refinement

I. INTRODUCTION

Graph partitioning (GP), a.k.a. graph clustering [2] or dis-
joint community detection [3], is a classic problem that divides
the node set of a graph into disjoint blocks (a.k.a. clusters or
communities) with dense linkages distinct from other blocks.
Since the extracted blocks may correspond to some substruc-
tures of real-world complex systems (e.g., functional groups in
protein-protein interactions), many network applications (e.g.,
parallel task assignment [4], Internet traffic classification [5],
and protein complex detection [6]) are formulated as GP.

GP on large-scale graphs is difficult but essential as it is
usually formulated as several NP-hard combinatorial optimiza-
tion problems (e.g., modularity maximization [7]). The IEEE
HPEC Graph Challenge [8] provides a competitive benchmark
to evaluate both quality and efficiency of a GP method and has
attracted a series of solutions (e.g., incremental LOBPCG for
spectral clustering [9], Kalman filter [10] and data batching
[11] for stochastic block partitioning, as well as fast random-
ized graph embedding [12]).

This paper serves as an extension of our prior work [1]. It introduces a
modified method and reports new results evaluated on the IEEE HPEC Graph
Challenge benchmark.

Fig. 1: An overview about the applications of (i) foundation models
(e.g., LLMs) and (ii) our PR-GPT method, including the (a) offline
pre-training and (b) online inference. The inference of PR-GPT
includes the (b.1) online generalization and (b.2) online refinement.

In this study, we explore the potential of deep graph learning
(DGL) to obtain a better trade-off between the quality and
efficiency of GP. Inspired by recent advances in foundation
models (e.g., LLMs [13]) and pre-training techniques [14],
[15], we propose PR-GPT (Pre-trained & Refined Graph
ParTitioning), a modification of our prior method [1], with
an overview shown in Fig. 1. It follows a pre-training &
refinement paradigm including the (i) offline pre-training, (ii)
online generalization, and (iii) online refinement.

Assume that one has enough time to prepare a well-trained
DGL model in an offline way. We first pre-train the PR-
GPT model (i.e., offline pre-training) on a set of small graphs
{Gt} (e.g., less than 5K nodes) that cover various topology
properties (e.g., node degrees and block sizes). After that, we
directly generalize the pre-trained model (with frozen model
parameters) to large graphs {G′} (e.g., more than 1M nodes)
via inductive inference [16] and derive feasible GP results
{C ′} without re-training (i.e., online generalization). In exist-
ing pre-training techniques [14], [17], the online generalization
after pre-training usually provides an initialization of model
parameters, which are further fine-tuned w.r.t. different tasks.
Inspired by this motivation, we treat C ′ as a good initialization
of an efficient GP method (e.g., InfoMap [18]) and adopt its
output C̄ ′ as a refined version of C ′ (i.e., online refinement).

Note that the application of PR-GPT is analogous to that of
LLMs. For instance, users benefit from the online inference of
ChatGPT, which can generate high-quality answers in just a



few seconds but do not need to train an LLM from scratch us-
ing a great amount of resources. The online generalization and
refinement of PR-GPT can benefit from inductive inference,
which transfers the ability to derive high-quality GP results
from pre-training data to new unseen graphs while ensuring
high inference efficiency without re-training. Experiments on
the Graph Challenge benchmark demonstrate that PR-GPT
can achieve faster GP without significant quality degradation,
compared with running a refinement method from scratch.

The major contributions of this paper beyond our prior work
[1] are summarized as follows.

• We introduce PR-GPT, an advanced modification of our
prior method, with fewer model parameters and better
scalability. In contrast, directly applying our prior method
to some large graphs in our experiments (e.g., more than
40M edges) results in the out-of-memory exception.

• To the best of our knowledge, we are the first to submit a
solution based on graph pre-training and inductive infer-
ence to the Graph Challenge benchmark, which involves
the GP on synthetic graphs with various scales, topology
properties, and ground-truth. Whereas, our prior method
was only evaluated on static graphs without ground-truth.

• We also explore the ability of PR-GPT to support stream-
ing GP while our prior work only considers static GP.

II. PROBLEM STATEMENT & PRELIMINARIES

In general, a graph G can be represented as a tuple (V,E),
where V := {v1, v2, · · · , vN} and E := {(vi, vj)|vi, vj ∈ V }
are the sets of nodes and edges. One can use an adjacency
matrix A ∈ {0, 1}N×N to describe the topology structure of
G, where Aij = Aji = 1 if (vi, vj) ∈ E and Aij = Aji = 0
otherwise. We adopt the problem statement of IEEE HPEC
Graph Challenge [19] and study the following GP problem.

Graph Partitioning (GP). Given a graph G, (static) GP
aims to partition the node set V into K disjoint subsets C :=
(C1, · · · , CK) (i.e., blocks or communities) s.t. (i) the linkage
within each block is dense but (ii) that between blocks is loose.
We consider the challenging K-agnostic GP, where the number
of blocks K is unknown. Namely, one should simultaneously
determine K and the corresponding block partition C.

Streaming GP. Graph Challenge provides two models to
simulate streaming GP. We consider the more challenging
snowball model and leave the extension to emerging edges
in future work. Given a graph G, the snowball model divides
V into T disjoint subsets (V1, · · · , VT ), with Vt as the set of
newly added nodes in the t-th step. Let V̄t := ∪ts=1Vs and Ēt

be the set of cumulative edges induced by V̄t. For each step t,
streaming GP requires to derive a K-agnostic block partition
based on the cumulative topology (V̄t, Ēt).

Modularity Maximization. GP can be formulated as the
combinatorial optimization objective of modularity maximiza-
tion [7]. Given G and K, it aims to obtain a partition C that
maximizes the modularity metric:

max
C

Mod(G,K) :=
1

2|E|

K∑
r=1

∑
vi,vj∈Cr

[Aij −
didj
2|E|

], (1)

Fig. 2: Model architecture and inference procedure of PR-GPT.

where di :=
∑

i Aij is the degree of node vi; |E| is the
number of edges. One can rewrite (1) into the matrix form:

min
H
−tr(HTQH) s.t. Hir =

{
1, vi ∈ Cr

0, otherwise
, (2)

where Q ∈ RN×N is defined as the modularity matrix with
Qij := [Aij − didj/(2|E|)]; H ∈ {0, 1}N×K indicates the
block membership C.

Pre-training & Refinement. As shown in Fig. 1, the pre-
training & refinement paradigm includes the (i) offline pre-
training, (ii) online generalization, and (iii) online refinement.
For simplicity, we denote a DGL model as C = f(G; θ),
which derives a block partition C given a graph G, with θ as
the set of model parameters to be learned.

In offline pre-training, we generate a set of small graphs Γ =
{G1, · · · , GM} (e.g., less than 5K nodes) using the generator
of Graph Challenge. The generation of each Gs ∈ Γ includes
its topology (V (s), E(s)) and corresponding block partition
C(s). We then pre-train f (e.g., iteratively updating θ) based
on {(V (s), E(s))} and {C(s)} in an offline way.

After that, we generalize f to new large graphs {G′} (e.g.,
more than 1M nodes) with frozen θ in online generalization.
Based on the inductive inference of f , one can directly
derive a feasible block partition C ′ for G′ (e.g., via only
one feed-forward propagation (FFP) of f ) without re-training.
Inspired by existing pre-training and fine-tuning paradigm, we
introduce online refinement, where the derived partition C ′ is
used as a good initialization of an efficient K-agnostic GP
method (e.g., InfoMap) to further refine the quality of C ′.

Evaluation Protocol. Our evaluation is consistent with
the application of foundation models as illustrated in Fig. 1.
Concretely, one can get high-quality answers from an LLM in
just a few seconds during its online inference phase and does
not need to train it from scratch. Assume that we have enough
time to prepare a well-trained f during the offline pre-training,
which is usually a one-time effort. Our evaluation focuses on
the online generalization and refinement w.r.t. the GP on large
graphs {G′}. In contrast, we have to run most existing methods
on {G′} from scratch, as they are inapplicable to inductive
graph inference and thus cannot benefit from pre-training [16].

III. METHODOLOGY

In this section, we detail our PR-GPT method. Fig. 2 gives
an overview of the model architecture and inference procedure.



A. Model Architecture

Similar to our prior method [1], PR-GPT reformulates GP
as the binary node pair classification and follows a GNN-based
end-to-end architecture. An auxiliary variable S ∈ {0, 1}N×N

is introduced to represent the binary classification result, where
Sij = Sji = 1 if nodes (vi, vj) are in the same block and
Sij = Sji = 0 otherwise. The inference of PR-GPT only
considers {Sij} w.r.t a small set of node pairs P = {(vi, vj)}
(|P | ≪ N2), which are rearranged as a vector y ∈ {0, 1}|P |.
We let ys = Sij = Sji for each ps = (vi, vj) ∈ P .

1) Feature Extraction: Let k be the dimensionality of node
embedding or features with k ≪ N . PR-GPT first uses the
following feature extraction module to extract community-
preserving features, arranged as a matrix X̃ ∈ RN×k, from
the modularity maximization objective (2):

X̃ = MLP(X) and X = QΩ = AΩ− d(dTΩ), (3)

where Ω ∈ RN×k is a random matrix with Ωir ∼ N (0, 1/k);
d := [d1, · · · , dN ]T ∈ ZN is a vector about node degrees.
It applies the Gaussian random projection [20], an efficient
dimension reduction technique with rigorous bounds w.r.t. in-
formation loss, to the modularity matrix Q in (2) that encodes
key characteristics regarding implicit community structures.

Note that Q ∈ RN×N is usually a dense matrix. Directly ap-
plying the random projection causes a complexity of O(N2k)
intractable for large graphs. To reduce the complexity, our
prior method introduces a sparsified matrix Q̃ ∈ RN×N ,
where Q̃ij = Q if (vi, vj) ∈ E and Q̃ij = 0 otherwise,
and applies the random projection to Q̃. However, Q̃ may
lose some information encoded in Q. Instead of using Q̃,
PR-GPT still applies random projection to Q but follows the
multiplication order described in (3), which can reduce the
complexity from O(N2k) to O(|E|k +Nk).

We also apply a multi-layer perceptron (MLP) to the re-
duced features X ∈ RN×k, which leverages additional non-
linearity for feature extraction.

2) Embedding Derivation: The extracted features Z̃ are
fed into a multi-layer GNN, which further derives community-
preserving embeddings. Inspired by SGC [21], we remove all
the learnable model parameters and non-linearity of GCN [22]
in our prior method, which improves the scalability. Assume
that there are L GNN layers. PR-GPT derives embedding
representations, arranged as Z̃ ∈ RN×k, via

Z̃ = LN(Z) and Z = ÃLX̃, (4)

where LN(Z) is the row-wise l2-normalization of the em-
bedding matrix Z ∈ RN×k (i.e., Zi,: ← Zi,:/|Zi,:|2); Ã :=
D̂−1/2ÂD̂−1/2; Â := A + IN is the adjacency matrix with
self-edges; D̂ is the degree diagonal matrix of Â.

One can formulate the l-th GNN layer as Z(l) = ÃZ(l−1),
with Z(0) := X̃. Z

(l)
i,: is the intermediate representation of

node vi. It is also the weighted mean over features w.r.t.
{vi} ∪ n(vi), with n(vi) as the neighbor set of vi. This
mechanism further enhances the ability of {Z(l)} to capture
community structures, since it forces nodes (vi, vj) with

Algorithm 1: Result Derivation Given a Graph

Input: input graph G = (V,E)
Output: a feasible GP result C w.r.t. G

1 derive ŷ w.r.t. E via one FFP of the model
2 Ẽ ← ∅ //Initialize edge set of auxiliary graph G̃
3 for each node pair (i.e., edge) es = (vi, vj) ∈ E do
4 if ŷs > 0.5 then
5 add es = (vi, vj) to Ẽ

6 extract connected components of G̃ via DFS/BFS on Ẽ
7 treat each component as a block to form C

similar neighbors (n(vi), n(vj)) (i.e., dense local linkage) to
have similar representations (Z

(l)
i,: ,Z

(l)
j,: ).

Let z̃i := Z̃i,: be the embedding of vi. The l2-normalization
ensures that |z̃i| = 1 and thus |z̃i − z̃j |2 = 2− 2ziz

T
j .

3) Binary Node Pair Classification: Given a node pair
(vi, vj), PR-GPT adopts the following binary classifier same
as our prior method to estimate the classification result Sij

using corresponding embeddings (z̃i, z̃j):

Ŝij = exp(−|z̃i − z̃j |2τij) = exp(2τij · (z̃iz̃Tj − 1)),
with τij = gs(z̃i)gd(z̃j),

(5)

where Ŝij ∈ [0, 1] denotes the estimation of Sij ; gs and gd
are two MLPs with the same configurations; τij is a pair-wise
parameter determined by (z̃i, z̃j). Namely, {Sij} is estimated
via a combination of the (i) Euclidean distance and (ii) inner
product w.r.t. corresponding embeddings {(z̃i, z̃j)}.

4) Result Derivation: Given a graph G = (V,E), the
overall procedure to derive a feasible GP result is summarized
in Algorithm 1. Fig. 2 also gives a running example.

In line 1, we derive {Ŝij} for all the node pairs (i.e., edges)
in the edge set E of G and rearrange them as a vector ŷ. In
lines 2-5, an auxiliary graph G̃ = (V, Ẽ) is constructed based
on ŷ. G̃ shares the same node set V as G but has a different
edge set Ẽ. Concretely, we add es = (vi, vj) to Ẽ if ŷs > 0.5.
After that, the constructed G̃ may contain multiple connected
components (e.g., {v1, v2, v3, v4} and {v5, v6, v7} in Fig. 2).
In particular, edges {es} in the same component are with high
values {ŷs}. It indicates that the associated nodes are more
likely to be partitioned into the same block. In lines 6-7, we
extract all the connected components of G̃ via the DFS/BFS
on Ẽ and treat each component as a feasible block.

In addition to E, our prior method also sampled other node
pairs (e.g., (v5, v8) in Fig. 2) when constructing G̃. PR-GPT
removes this sampling procedure to further improve efficiency.

Our experiments demonstrate that even with the aforemen-
tioned simplifications, PR-GPT can still achieve impressive
GP quality on the Graph Challenge benchmark.

B. Offline Pre-training

PR-GPT adopts the same setup of offline pre-training as
our prior method. We first generate a set of small pre-training
graphs Γ = {G1, · · · , GM} using the standard generator of
Graph Challenge. Instead of fixing generator parameters, we



Algorithm 2: Online Generalization and Refinement

Input: a large graph G′ = (V ′, E′) to be partitioned
Output: a refined GP result C̄′ w.r.t. G′

1 get input features X̃′ w.r.t. G′ via (3)
2 get initial GP result C′ w.r.t. G′ via Algorithm 1
3 construct weighted super-graph G∗ based on C′

4 get refined C̄′ via a refinement method w/ G∗ as input

simulate various properties (e.g., distributions of degrees and
block sizes) by sampling these parameters from certain distri-
butions, which can increase the diversity of pre-training data.
The pre-training of PR-GPT combines the (i) unsupervised
modularity maximization and (ii) supervised binary cross-
entropy objectives for each graph Gt ∈ Γ. Due to space limits,
we omit details of pre-training data generation and pre-training
algorithm, which can be found in our prior work [1] and code.

C. Online Inference for Static GP

As described in Algorithm 2, the online inference of PR-
GPT includes the online generalization (i.e., lines 1-2) and
online refinement (i.e., lines 3-4).

1) Online Generalization: After the offline pre-training,
we can generalize PR-GPT to a large graph G′ with frozen pa-
rameters θ and derive a feasible partition C ′ via Algorithm 1.

2) Online Refinement: We further treat the derived C ′ as a
good initialization of an existing K-agnostic GP method and
apply this method to refine C ′. Concretely, the initialization
can be in the form of a weighted super-graph G∗ w.r.t. C ′,
where we merge nodes in each block as a super-node (e.g.,
v∗1 = C1 = {v1, v2, v3, v4} in Fig. 2) and set the number of
between-block edges as the weight of corresponding super-
edge (e.g., 3 for (v∗1 , v

∗
2) in Fig. 2). We use G∗ as the input

of a K-agnostic GP method that can handle weighted graphs
(e.g., InfoMap [18] and Locale [23] in our experiments) and
derive a GP result C∗ w.r.t. G∗. C∗ is then recovered to a
partition C̄ ′ w.r.t. G′, which is a refined version of C ′.

Compared with running a refinement method on G′ from
scratch, online refinement may be much more efficient, since
it reduces the number of nodes to be processed (e.g., reducing
11 nodes to 4 super-nodes in Fig. 2). Therefore, PR-GPT has
the potential to achieve faster GP w.r.t. the refinement method.

D. Extension to Streaming GP

The online generalization and refinement of PR-GPT shares
a motivation similar to that of some streaming GP approaches
[9], [19], where the partition of current step provides an
initialization for next step. In each step, these streaming
approaches incrementally update their GP results to avoid
running the base algorithm from scratch. Similarly, PR-
GPT tries to achieve faster GP compared with a refinement
method by reducing the number of nodes to be processed.
Due to these similar motivations, we believe that PR-GPT has
the potential to support streaming GP.

As stated in Section II, we consider the snowball model,
where new nodes are added in each step. The inductive

TABLE I: Detailed Statistics of the Generated Benchmark Datasets

N |E| K Degrees Density
10K 402K-449K 25 6-194 8× 10−3

50K 2.02M-2.03M 44 8-246 2× 10−3

100K 4.05M-4.07M 56 6-242 8× 8−4

500K 20.3M-20.3M 98 4-230 1× 10−4

1M 40.6M-40.7M 125 4-264 8× 10−5

inference of DGL allows RP-GPT to directly generalize the
pre-trained model parameters to new topology of each step
without re-training. Our analysis about inference time (see
Table VII) shows that online refinement is the major bottleneck
of PR-GPT. We adopt a naive strategy to directly run the
non-bottleneck online generalization procedure from scratch
in each step. Our experiments demonstrate that even without
incremental updating for online generalization, PR-GPT can
still obtain efficiency improvement for streaming GP, which
is consistent with some previous work [19], based on its
mechanism of reducing the scale of a graph to be processed.

E. Complexity Analysis

To derive embeddings {z̃i}, the complexities of (i) feature
extraction described in (3) and (ii) one FFP of GNN defined
in (4) are O(|E|k + Nk) and O(|E|Lk + Nk), with L as
the number of GNN layers. The complexities of (iii) one
FFP of binary classifier (5) to construct G̃ and (iv) extracting
connected components of G̃ via DFS/BFS are O(|E|k2)
and O(N + |Ẽ|), where |Ẽ| is the number of edges in G̃,
with |Ẽ| ≤ |E|. Therefore, the overall complexity of online
generalization is no more than O(|E|k(L + k) + Nk), with
k, L≪ N, |E|.

The complexity of online refinement depends on the con-
crete refinement method (e.g., InfoMap), which is usually
efficient. Note that any improvement regarding the efficiency
of a refinement method (e.g., better parallel implementations)
can also further improve the efficiency of PR-GPT.

IV. EXPERIMENTS

A. Experiment Setups

We followed standard setups of the IEEE HPEC Graph
Challenge benchmark [8] to validate the effectiveness of PR-
GPT for both static and streaming GP.

1) Datasets: We considered the hardest setting with the (i)
ratio between the number of within-block edges and between
edges and (ii) block size heterogeneity set to 2.5 and 3. The
standard generator of Graph Challenge was used to generate
graphs with different scales, where we respectively set the
number of nodes N to 10K, 50K, 100K, 500K, and 1M.
For each setting, we independently generated five graphs and
reported corresponding average evaluation results. Table I
summarizes statistics of the generated datasets, where |E| and
K denote the numbers of edges and blocks.

2) Baselines: We compared PR-GPT with seven baselines
that can tackle K-agnostic GP, including (i) MC-SBM [24],
(ii) Par-SBM [25], (iii) Louvain [26], (iv) RaftGP-C [12], (v)
RaftGP-M [12], (vi) InfoMap [18], and (vii) Locale [23].



TABLE II: Evaluation Results of Static GP with N=10K

Methods Time↓(s) AC↑(%) ARI↑(%) F1↑(RCL, PCN)(%)

MC-SBM 217.06 99.32 99.51 99.53 (99.17, 99.91)
Par-SBM 2.34 99.89 99.97 99.97 (99.97, 99.98)
Louvain 3.99 94.68 95.71 95.94 (99.90, 92.38)
RaftGP-C 11.01 99.32 99.15 99.20 (99.86, 98.56)
RaftGP-M 10.34 99.27 99.09 99.14 (99.86, 98.45)
InfoMap 1.18 99.89 99.96 99.96 (99.97, 99.96)
PR-GPT(IM) 0.80 99.94 99.96 99.96 (99.98, 99.95)

Improv. +32.2% +0.05% +0.0% +0.0%
Locale 3.20 95.15 97.18 97.33 (99.96, 94.86)
PR-GPT(Lcl) 1.56 96.81 98.08 98.19 (99.94, 96.50)

Improv. +51.3% +1.7% +0.9% +0.9%

In particular, MC-SBM is the standard baseline of Graph
Challenge. Locale is an advanced modification of Louvain.
RaftGP-C and RaftGP-M are two variants of the innovation
award winner of Graph Challenge 2023, which are GNN-based
embedding approaches without (pre-)training. We adopt In-
foMap and Locale as two example refinement methods of PR-
GPT and highlight the improvement in quality and efficiency
w.r.t. running these refinement methods from scratch. Note that
PR-GPT can also be easily extended to leverage other efficient
GP approaches (e.g., Louvain) for online refinement.

3) Evaluation Metrics: We followed the evaluation criteria
of Graph Challenge to adopt accuracy (AC), adjusted random
index (ARI), precision, and recall as quality metrics. Given
precision and recall, we also reported the corresponding F1-
score. The inference time (sec) of a method was adopted as the
efficiency metric, based on the evaluation protocol described
in Section II. We defined that a method encounters the out-of-
time exception if it cannot derive a feasible GP result within
10, 000 seconds.

4) Parameter & Environment Settings: Let k be the fea-
ture or embedding dimensionality. LF, LGNN, and LBC denote
the numbers of MLP layers in (3), GNN layers in (4), and
MLP layers in (5), respectively. We set (k, LF, LGNN, LBC) =
(32, 2, 2, 4) for PR-GPT on all the datasets. Other parameter
settings of PR-GTP can be checked in our code.

We used Python 3.8 to implement PR-GPT, where the model
architecture and Algorithm 1 were implemented via PyTorch
1.10 and SciPy 1.10 (with BFS/DFS supported by the effi-
cient ‘scipy.sparse.csgraph.connected components’ function).
Moreover, we adopted the official or widely-used (C/C++ or
Python) implementations of all the baselines and tuned their
parameters to report the best quality.

All the experiments were conducted on a server with one
Intel 14-core CPU, one 24GB memory GPU, 45GB main
memory, and Ubuntu 20.04 OS.

B. Evaluation of Static GP

The average evaluation results of static GP over five gen-
erated graphs w.r.t. each setting of the dataset are shown in
Tables II, III, IV, V, and VI, where metrics of PR-GPT are
in bold if they achieve improvement w.r.t. the corresponding
refinement methods; OOT and OOM represent the out-of-time
and out-of-memory exceptions; ‘(IM)’ and ‘(Lcl)’ indicate that
InfoMap and Locale are used as the refinement method. We
also report the corresponding runtime (sec) of each online

TABLE III: Evaluation Results of Static GP with N=50K

Methods Time↓(s) AC↑(%) ARI↑(%) F1↑(RCL, PCN)(%)

MC-SBM 2553.67 99.33 99.19 99.22 (98.51, 99.97)
Par-SBM 19.77 99.00 99.34 99.36 (99.98, 98.76)
Louvain 29.13 83.60 72.43 73.51 (99.91, 59.00)
RaftGP-C 63.91 99.18 98.52 98.57 (99.91, 97.29)
RaftGP-M 63.16 99.00 98.16 98.22 (99.89, 96.66)
InfoMap 11.67 99.88 99.96 99.96 (99.97, 99.94)
PR-GPT(IM) 6.61 99.63 99.63 99.64 (99.94, 99.35)

Improv. +43.6% -0.3% -0.3% -0.3%
Locale 23.75 93.97 94.44 94.62 (99.96, 89.92)
PR-GPT(Lcl) 13.44 94.49 94.41 94.59 (99.90, 89.85)

Improv. +43.4% +0.6% -0.03% -0.03%

TABLE IV: Evaluation Results of Static GP with N=100K

Methods Time↓(s) AC↑(%) ARI↑(%) F1↑(RCL, PCN)(%)

MC-SBM 9240.27 99.00 98.93 98.95 (97.98, 99.99)
Par-SBM 52.68 98.97 99.62 99.63 (99.99, 99.26)
Louvain 68.03 74.08 59.99 61.28 (99.94, 44.40)
RaftGP-C 138.58 99.49 99.04 99.06 (99.93, 98.23)
RaftGP-M 133.14 99.75 99.58 99.59 (99.95, 99.24)
InfoMap 28.85 99.93 99.97 99.97 (99.97, 99.96)
PR-GPT(IM) 16.92 99.82 99.81 99.81 (99.85, 99.78)

Improv. +41.4% -0.1% -0.2% -0.2%
Locale 55.33 89.91 86.87 87.21 (99.97, 77.54)
PR-GPT(Lcl) 31.79 90.84 89.79 90.05 (99.83, 82.12)

Improv. +42.5% +1.0% +3.4% +3.3%

inference step of PR-GPT in Table VII, where ‘Feat’, ‘FFP’,
‘Init’, and ‘Refine’ represent the runtime of (i) feature extrac-
tion described in (3), (ii) one FFP of the model, (iii) initial
result derivation (i.e., Algorithm 1), and (iv) online refinement.

On all the datasets, two variants of PR-GPT achieve signifi-
cant improvement of efficiency (e.g., more than 20%) w.r.t. the
corresponding refinement methods while the quality degrada-
tion is less than 1%. In summary, PR-GPT achieves the best
efficiency and is always in the top groups with the best quality.
It indicates that the pre-training & refinement paradigm of PR-
GPT can help ensure a better trade-off between the quality and
efficiency of static GP.

Surprisingly, PR-GPT can even obtain improvement for both
aspects in some cases. Compared with InfoMap, Locale is a
weaker refinement method in terms of quality. PR-GPT can
even ensure significant quality improvement (e.g., more than
10%) when Locale suffers from poor quality metrics (e.g., on
datasets with N = 500K and 1M). The aforementioned results
demonstrate that the offline pre-training (on historical small
graphs) may also help resist noise and improve the GP quality
(on new large graphs) compared with running a refinement
method from scratch. In contrast, most existing GP approaches
cannot benefit from pre-training and inductive inference.

According to Table VII, online refinement is the major
bottleneck of PR-GPT, depending on the concrete refinement
method. In particular, the runtime of online refinement is much
smaller than that of running a refinement method from scratch.
It verifies our motivation that the online generalization can
derive a good initialization (i.e., a weighted super-graph G∗)
with a much smaller scale (e.g., in terms of the number of
nodes to be processed) and thus help achieve faster GP.

C. Evaluation of Streaming GP

As discussed in Section III-D, the online generalization and
refinement of PR-GPT shares a motivation similar to some
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Fig. 3: Evaluation results of streaming GP.

TABLE V: Evaluation Results of Static GP with N=500K

Methods Time↓(s) AC↑(%) ARI↑(%) F1↑(RCL, PCN)(%)

MC-SBM OOT OOT OOT OOT
Par-SBM 305.65 97.69 98.69 98.71 (99.99, 97.49)
Louvain 561.62 39.75 20.85 22.73 (99.90, 12.85)
RaftGP-C OOM OOM OOM OOM
RaftGP-M OOM OOM OOM OOM
InfoMap 245.78 99.42 99.75 99.75 (99.76, 99.74)
PR-GPT(IM) 194.68 99.16 98.77 98.79 (99.76, 97.91)

Improv. +20.8% -0.3% -1.0% -1.0%
Locale 464.72 61.25 38.45 39.77 (99.96, 24.96)
PR-GPT(Lcl) 325.28 69.71 51.84 52.79 (99.79, 35.99)

Improv. +30.0% +13.8% +34.8% +32.7%

TABLE VI: Evaluation Results of Static GP with N=1M

Methods Time↓(s) AC↑(%) ARI↑(%) F1↑(RCL, PCN)(%)

MC-SBM OOT OOT OOT OOT
Par-SBM 761.63 98.90 99.43 99.44 (99.99, 98.89)
Louvain 1266.81 25.10 13.76 15.41 (99.87, 8.38)
RaftGP-C OOM OOM OOM OOM
RaftGP-M OOM OOM OOM OOM
InfoMap 680.75 98.64 99.35 99.36 (99.45, 99.26)
PR-GPT(IM) 530.42 99.07 99.48 99.49 (99.55, 99.42)

Improv. +22.1% +0.4% +0.1% +0.1%
Locale 1216.16 49.70 24.84 26.19 (99.95, 15.13)
PR-GPT(Lcl) 996.65 62.23 35.53 36.62 (99.81, 22.58)

Improv. +18.1% +25.2% +43.0% +39.8%

streaming GP approaches. We demonstrate the potential of
PR-GPT to support streaming GP by comparing its quality and
efficiency with that of running the corresponding refinement
method from scratch in each step.

As stated in Section II, the snowball model was adopted
to simulate streaming GP, where we set the number of steps
to 10. The average evaluation results of streaming GP over
five independent runs on the datasets with N = 100K
are visualized in Fig. 3. In addition, Table VIII reports the
corresponding variation regarding (i) the number of nodes N
and (ii) the average number of nodes Ñ in the initialization
(i.e., the weighted super-graph) given by PR-GPT.

With the increase of step, the time of running a refinement
method from scratch grows linearly. For PR-GPT, the increase
of inference time is slightly sub-linear, which is consistent with
the evaluation of streaming GP in some previous solutions [19]
submitted to Graph Challenge. PR-GPT can achieve quality
close to the corresponding baselines in most steps and even
obtain better quality in some cases. As shown in Table VIII,
PR-GPT significantly reduces the number of nodes to be
processed. In particular, it can ultimately reduce the scale of a
graph by about half as the step increases. In summary, the pre-

TABLE VII: Detailed Inference Time (sec) of PR-GPT

N Total Feat FFP Init Refine

10K PR-GPT (IM) 0.80 0.01 0.03 0.51 0.25
PR-GPT (Lcl) 1.56 1.00

50K PR-GPT (IM) 6.61 0.04 0.16 2.91 3.49
PR-GPT (Lcl) 13.44 10.33

100K PR-GPT (IM) 16.92 0.08 0.33 6.45 10.06
PR-GPT (Lcl) 31.79 24.93

500K PR-GPT (IM) 194.68 0.41 1.69 46.64 145.94
PR-GPT (Lcl) 325.28 276.54

1M PR-GPT (IM) 530.42 0.80 3.34 113.14 413.13
PR-GPT (Lcl) 996.65 879.36

TABLE VIII: Detailed Variation of N and Ñ in Streaming GP

Steps 1 2 3 4 5 6 7 8 9 10
N 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K
Ñ 8K 18K 27K 37K 46K 54K 60K 63K 63K 60K

training & refinement paradigm of PR-GPT has the potential
to support streaming GP.

V. CONCLUSION

In this paper, we considered K-agnostic GP and proposed
PR-GPT. It follows a pre-training & refinement paradigm, in-
cluding the (i) offline pre-training on historical small graphs as
well as the (ii) online generalization to and (iii) refinement on
new large graphs. We evaluated PR-GPT on the IEEE HPEC
Graph Challenge benchmark, comparing its inference quality
and efficiency over seven baselines. Experiments demonstrated
that PR-GPT, combined with different refinement methods
(e.g., InfoMap and Locale), can achieve faster GP without sig-
nificant quality degradation. Surprisingly, it can even achieve
improvement for both quality and efficiency in some cases.
Based on a mechanism of providing a good initialization with
a smaller scale (i.e., the number of nodes to be processed),
PR-GPT also has the potential to support streaming GP and
can obtain efficiency improvement consistent with the results
of some previous work.

In this study, we only considered the snowball model of
streaming GP. We plan to extend our method to another
emerging edge model of Graph Challenge in our future work.
Moreover, extending PR-GPT to (i) dynamic graphs [27]–[30]
that has a motivation similar to streaming GP and (ii) attributed
graphs with the consideration of inherent correlations between
graph topology and attributes [31]–[34] are also our next
research focuses.
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