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Abstract—In response to the looming crisis in global energy 

consumption required for advanced computing applications, the 
United States Department of Energy (DOE) Advanced Materials 
and Manufacturing Technology Office (AMMTO) is leading a 
multi-organizational effort to define a roadmap for energy 
efficiency scaling for two decades (EES2) with the aim to reduce 
energy use in all aspects of computation by more than a factor of 
1000 in two decades. By July of 2024, over 60 organizations 
representing industry, academia, and the national laboratories 
have pledged to work in various aspects of research and 
development to enable energy efficiency in computing including 
in the development of the EES2 roadmap, with an initial public 
release in 2024 as the first phase of an ongoing commitment to 
energy-efficient and sustainable computation. 

I. INTRODUCTION 
Semiconductors are instrumental in driving innovation and 

productivity throughout the global economy, with significant 
implications in virtually every economic sector and are critical 
for U.S. global competitiveness, economic stability, national 
security, and climate resilience. Advances in microelectronics, 
encompassing scientific computing, machine learning, 
automation, and more, are pivotal in driving technological 
innovations across the economy [1]. The semiconductor 
industry, essential for continuous technological progress, faces 
challenges in energy efficiency and carbon footprint. According 
to the Semiconductor Research Corporation (SRC), 
semiconductor energy use has increased unsustainably since 
2010. By 2030, semiconductors could consume nearly 25% of 
human planetary energy production [2]. This increase is driven 
by the end of Dennard scaling, increased digitalization, AI 
advancements, and the proliferation of smart devices, 
exacerbating the energy and carbon impact of semiconductor 
production. At a critical juncture, the industry could benefit 
immensely from targeted R&D investments in new 
technologies and innovative manufacturing processes, steering 
towards sustainable energy usage in the areas of 
microelectronics and computing. 

II. SCOPE OF THE PROBLEM 
The semiconductor industry faces critical challenges in energy 
efficiency and sustainability due to increasing demands from 
ubiquitous computing and manufacturing complexities. This 
has led to significant energy consumption, highlighting the 
need for innovative solutions beyond geometrical scaling to 
reduce energy use and improve efficiency. 
A. The Memory Wall and Communication Problem 

Historically, processor speed increased rapidly pre-2005, 
while memory bandwidth lagged, leading to the "memory 
wall" issue [3]. The coordination of data movements across 
multiple cores and maintaining memory coherence has become 
increasingly complex, limiting overall system performance. 
This divergence in scaling relationships has driven innovative 
approaches in microelectronic device design and operation but 
has also exacerbated energy efficiency problems. Addressing 
the memory wall requires reducing the energy cost of data 
movement and improving memory access speed. 
B. Major Sources of Computing Energy Use 

Advanced machine learning and AI technologies, 
cryptocurrency mining, and cloud computing have 
significantly increased energy demands. Specialized hardware 
for these technologies, while efficient for specific tasks, 
contributes to the overall energy footprint due to high-power 
requirements. Cryptocurrency mining, in particular, involves 
specialized ASICs that consume vast amounts of electricity 
[4][8]. The hardware supporting cloud computing 
infrastructure, including data centers with high-density chips 
and advanced 3D heterogeneous integration, also contributes 
to escalating energy consumption [5]. The proliferation of IoT 
devices and the rollout of 5G networks further add to energy 
use. Although each IoT device consumes little energy 
individually, the aggregate energy required for billions of 
devices globally adds up to significant values. 5G 
infrastructure, while more energy-efficient on a per-bit basis, 



increases overall energy consumption due to higher data rates 
and network density [6]. 
C. Energy Inefficiency at multiple levels 

Wide-ranging studies have highlighted significant 
inefficiencies in computing energy use. Shankar's research 
[7][8] compared energy intensity per instruction for top 
supercomputers against fundamental thermodynamical and 
biological limits. The findings revealed massive energy use 
disparities, with memory access being particularly energy 
intensive. For instance, Horowitz's measurements [9] and 
subsequent updates [10] showed that, despite improvements in 
processor energy efficiency with smaller geometries, the 
energy cost of external DRAM access remains unchanged. On-
chip instruction energy costs are significantly lower than off-
chip DRAM access, underscoring the need to reduce data 
movement energy, by exploring innovative memory 
technologies to address the high energy costs of data 
movement. 

III. EES2 COOPERATION PLEDGE 
The US DOE’s AMMTO is leading a collaborative effort 

involving other Federal agencies, industry leaders, 
universities, national laboratories, and international partners to 
develop an R&D roadmap for energy efficiency scaling over 
the next two decades. The EES2 goal—achieving a 1000X 
improvement in microelectronics energy efficiency—is 
designed to reverse the trend of increasing semiconductor 
energy use through innovations in research and development. 
As of July 2024, more than 60 organizations have signed the 
pledge [11]. 

IV. EES2 WORKING GROUPS 
The EES2 initiative has formed eight working groups to enable 
a comprehensive and collaborative approach to achieve its goal. 
The eight groups are further divided into two main categories: 
the compute stack and enablers. Working groups within the 
compute stack include materials and devices, circuits and 
architecture, advanced packaging/heterogeneous integration, 
and algorithms and software, emphasizing the need for co-
design from bits and instructions to algorithms and 
applications, to achieve energy efficiency. Enablers focus on 
efforts supporting the compute stack, including power and 
control electronics, manufacturing energy efficiency and 
sustainability, metrology and benchmarking, and education 
and workforce development. This categorization ensures a 
comprehensive approach to optimizing every aspect of 
computing technology for minimal energy use. Figure. 1 
graphically illustrates the key technology options discussed in 
version 1.0 of the EES2 roadmap. The technologies are 
assessed against two metrics, timeline to maturity and energy 
efficiency improvement factor. Timeline to maturity 
corresponds to the time required to achieve a technology 
readiness level (TRL) of 6. Technologies already at TRL 6 are 
included for their potential energy efficiency improvements, 
despite not being incumbent technologies. Energy efficiency 
improvement factor is measured by comparing future 
performance in an energy metric against current technology 
(e.g., energy per bit, or switching, energy for memory access, 

energy per instruction etc.). For each identified technology, the 
roadmap discusses challenges to commercial realization and 
solution pathways and action plans to address those challenges. 
The intent is to illustrate that there are many scientific and 
engineering options available for energy efficiency in 
computing given the challenges and complexities in sub-10 
nanometer technologies. The current best estimates will serve 
as a baseline roadmap that will be updated regularly as viability 
and scalability of the options are identified.  

 
Figure. 1. Key technologies for energy efficiency improvements across the 
compute stack identified by the roadmap. 

V. CONCLUSIONS AND NEXT STEPS 
The EES2 goal builds on Moore’s Law, guiding industry-

wide R&D efforts to maintain the pace of doubling transistor 
density for over five decades. The US DOE’s AMMTO is 
leading the EES2 effort by fostering collaborations and funding 
targeted research to transform traditional computing and 
microelectronic device manufacturing. The ensuing research 
investments highlight a unified vision to achieve substantial 
improvements in energy efficiency for computing including AI 
systems. 

The initial EES2 roadmap, created through extensive 
collaboration and research, identifies key technology options 
and pathways for energy efficiency. Going forward, EES2 will 
focus on measuring computing energy use and evaluating new 
technologies, such as nature-inspired computing and quantum 
information processing. This strategy aims to stay flexible and 
responsive to technological advances, promoting a sustainable 
evolution of the microelectronics sector. 
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