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Abstract—There is a tremendous amount of interest in AI/ML
technologies due to the proliferation of generative AI applications
such as ChatGPT. This trend has significantly increased demand
on GPUs, which are the workhorses for training AI models. Due
to the high costs of GPUs and lacking supply, it has become of
interest to optimize GPU usage in HPC centers. MIT Lincoln
Laboratory Supercomputing Center (LLSC) has developed an
easy-to-use GPU sharing feature supported by LLSC-developed
tools including LLsub and LLMapReduce. This approach over-
comes some of the limitations with the existing methods for
GPU sharing. This allows users to apply GPU sharing whenever
possible while they are developing their AI/ML models and/or
doing parametric study on their AI models or executing other
GPU applications. Based on our initial experimental results with
GPU sharing, GPU sharing with triples mode is easy to use and
achieved significant improvement in GPU usage and throughput
performance for certain types of AI applications.

Index Terms—GPU, sharing, LLsub, LLMapReduce

I. INTRODUCTION

There is a lot of interest in AI/ML technologies due to the
proliferation of generative AI applications such as OpenAI
ChatGPT [1]. Rapid growth in AI/ML related research, devel-
opment, and commercial applications has increased demand
for GPUs, which are the workhorse for training AI models.
Due to the high costs of GPUs and shortage of their supply,
there is much greater interest in using GPUs more efficiently
in HPC centers. Although some GPU applications require
multiple GPUs to run because the application GPU memory
requirement is too large to fit in a single GPU memory, not all
GPU applications utilize all GPU memory nor require multiple
GPUs. For those GPU applications that cannot utilize a single
GPU capacity in full, hardware vendors such as Nvidia and
AMD have developed ways to share GPU resources among
multiple users. The NVIDIA Multi-Process Service (MPS) [2]
is a runtime architecture that is designed to transparently
enable co-operative multi-process CUDA applications on a
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single GPU. AMD’s GPU virtualization approach [3], based
on SR-IOV (Single Root, Input/Output Virtualization), allows
up to 16 virtual partition per GPU. Similarly, the NVIDIA
Multi-Instance GPU (MIG) devices such as A100 cab split a
single GPU into up to 7 multiple isolated GPU instances [4].

In recent years, several studies have been carried out about
sharing GPU resources in order to increase GPU utilization.
A number of works related to the GPU virtualization are well
documented in the reference [5]. Middleware-based solutions
such as GPUShare [6] and SALUS [7] focus on achieving
fine-grained GPU sharing across multiple processes by en-
abling finer control of the time slice on the GPU and by
enabling two GPU sharing primitives: fast job switching and
memory sharing, respectively. Another approach is sharing
unutilized GPU resources such as GPU registers and memory
to launch more thread blocks which, in return, improves GPU
performance [8]. Furthermore, most commercial cloud service
providers offer GPU sharing features using one or more of
the following features: multi-instance, time-sharing, and multi-
process service (MPS). [9]–[11].

For HPC systems, Slurm supports NVIDIA MPS [2] and
MIG [4] so that multiple jobs can share the same GPU
on a cluster system [12]. However, NVIDIA MPS appears
to have some limitations when used with Slurm, including
that it is tricky to use when there are more than one GPUs
on a compute node [2]. With NVIDIA MIG, Slurm can
manage each GPU instance as an individual GPU resource
to be managed by the scheduler. Slurm also provides another
mechanism to share a single GPU with multiple jobs, which
is called GPU sharding [12]. However, because there is no
isolation between the processes running on the GPU, it can
be a security issue when those jobs are owned by multiple
users. As described in the Slurm reference [12], it requires an
advanced customization with Slurm configuration in order to
share a GPU with multiple jobs. This also requires additional
Slurm options with job submission to request appropriate
amount of GPU shares.

At MIT Lincoln Laboratory Supercomputing Center
(LLSC), we have developed a different approach based on
a unique LLSC environment. LLSC systems now use a user-
based whole-node scheduling policy to address a number of
issues that most shared HPC systems may encounter. The user-
based whole-node scheduling policy means that whole com-
pute nodes are allocated to each user [13], [14]. In other words,
once a user’s job is dispatched to a compute node and there



are unscheduled resources still available on that node, only
other jobs from that same user can be scheduled on that node;
jobs owned by other users cannot be scheduled on that node.
LLSC-developed tools such as LLsub, LLMapReduce [15],
pMatlab/gridMatlab [16]–[18], and pPython [19], [20] support
the whole-node scheduling policy with the triples mode [13].
These tools can easily control how many jobs are dispatched to
each node and how each job is assigned to which GPU based
on the GPU node specification. This feature can be exploited
to share the given compute resources (either CPU or GPU)
with multiple jobs.

This approach does not require any scheduler configuration
customization. and it is easy to share CPU and/or GPU
resources as needed. For example, this allows users to apply
GPU sharing whenever possible while they are developing
their AI/ML models and/or doing parametric study on their
AI models or executing other GPU applications. Based on our
initial experimental results, GPU sharing with the triples mode
is easy to use and has demonstrated significant improvement
in GPU usage and throughput performance for certain types
of AI applications. In this paper, we describe how GPU
sharing is implemented with the triples mode and present
the performance improvements that GPU sharing has achieved
with a couple of example ML applications.

II. TRIPLES MODE EXTENSION

As mentioned earlier, the sharing of computing resources is
achieved by extending the triples mode [13], which is available
with LLSC-developed tools. The triples mode (a.k.a., node-
based job scheduling) enables the set of all the computing tasks
from a user to be executed on a compute node to be scheduled
as a single job with child tasks. This is accomplished by
LLSC-developed tools by generating an execution script on
the fly. By doing so, the scheduling overhead is significantly
reduced and, in turn, it enables precise distribution of all of
the tasks in a job using a triplet of integers that we call triples
mode. Further, it enables the management of a large number
of short running jobs which is not possible to handle with
the typical job array [13] because such situations often burden
the scheduler to operate very slowly. The triples mode uses
three integers to define how a set of parallel tasks is mapped
onto and executed on a set of compute nodes, processes, and
threads: total number of nodes (NNODE), number of processes
per node (NPPN), and number of threads per process (NTPP).
The product of the first two numbers (NNODE * NPPN) equals
the total number of processes (computing tasks) that are to be
executed across all of the compute nodes. The third argument
define how many threads each of the processes is allowed to
spawn per process using the OMP NUM THREADS environ-
ment variable.

For a normal job submission in which each process utilizes
one thread, we recommend that users set the NPPN number
to be equal to the number of physical cores available on a
compute node so that each process is scheduled to run on
a single core. For the GPU applications, the NPPN number
can be equal to the number of GPUs on a compute node so

that each independent GPU application runs on a single GPU.
However, if a job using this normal job submission cannot
utilize the compute resources sufficiently, we may consider
an over-allocation of additional computing tasks in order to
increase the resource utilization. In other words, we would
recommend that users increase the NPPN number so that
more than one task is utilizing each GPU simultaneously.
In doing so, the triples mode code recognizes that multiple
tasks are being assigned to each GPU on the compute node,
and it round-robin assigns GPUs to the child tasks by as-
signing each individual process to a specific GPU by using
the CUDA_VISIBLE_DEVICES environment variable in the
automatically generated execution script.

To help users determine how much CPU load, GPU load,
system memory, and GPU memory their jobs/tasks are using,
users can monitor how compute resources are being utilized
by using the LLload command [21]. If their jobs are under-
utilizing compute resources, users may schedule additional
computing tasks per node by increasing the NPPN parameter,
which can be determined by examining the memory usage
and load of the CPU and/or GPU resources. For example, if
the application is CPU based, the appropriate NPPN number
can be decided by looking at the CPU memory usage and
CPU load. For GPU applications, the GPU memory usage
and GPU load are used to determine the appropriate NPPN
number. More details are included in the LLload paper.

III. EXPERIMENTS

In order to demonstrate how GPU resource utilization can
be increased by adopting GPU sharing with the triples mode,
we have selected a couple of canonical machine learning (ML)
models with their datasets, LeNet-4/MNIST [22] and ResNet-
18/ImageNet [23] using PyTorch [24].

A. MNIST

The MNIST dataset is a collection of images of handwritten
numbers from 0 to 9, and the LeNet-4 model is the 4-layer
convolutional neural network (CNN) model version that, along
with LeNet-5, demonstrated a leap in performance of CNNs
over traditional feed-forward neural networks on the numeral
images of the MNIST dataset [25]. This combination of model
and dataset is a good example of an ML application that
only modestly utilizes computational and memory capabilities
on modern GPUs. In the training of the LeNet-4 model on
MNIST using PyTorch with the default batch size of 64, only
a small amount of memory is used for both CPU and GPU
from the LLload output shown in Figure 1. Also the CPU load
is very low and the GPU load is modest, which indicates that
the application does not utilize the many compute resources
leaving a lot of the GPU capability idle. It is obvious that a
single training job cannot utilize the GPU resources in full.
This is a good opportunity to demonstrate to increase GPU
utilization by sharing the GPU resources with multiple training
jobs.

To demonstrate the effect of GPU sharing, we use the
LLMapReduce command with the triples mode, a compute



Fig. 1: An LLload snapshot of resource usage when training the LeNet-4 ML model with the MNIST dataset using PyTorch.

job of 24 identical MNIST training tasks is executed sequen-
tially and concurrently on a single node which includes two
NVIDIA Volta V100 GPUs. In order to make the runtime to
be reasonably long, we executed the training for 5 epochs.
The triples mode inputs used for this example are shown in
Table I. The NTPP value is adjusted appropriately in order

TABLE I: Triples Mode Inputs

Concurrent Triples Mode Variables
Jobs NNODEa NPPNb NTPPc

1 1 1 40
2 1 2 20
4 1 4 10
6 1 6 6
8 1 8 5

12 1 12 3
24 1 24 1

aNumber of nodes, bNumber of processes per node.
cNumber of threads per process.

to not to overload the CPU resource as we increase the
number of processes per node. Although a single training job
consumed about 4 GB of GPU memory as shown in Figure 1,
we were able to run up to 24 training jobs concurrently on
two Volta GPUs. Each job is pinned to a specific GPU with
the CUDA_VISIBLE_DEVICES environment variable before
executing the training job.

GPU load and memory usage are monitored by running
LLload every 10 second as the experiment is running. Fig-
ure 2 shows how GPU load (minimum, average, and maximum
load) changes as increasing the number of concurrent training
jobs. For each experiment with a given number of concurrent
training jobs, GPU load varies while it is running over time.
However, the average GPU load clearly increases as the
number of concurrent training jobs is increased. This indicates
that sharing the GPU resources with multiple jobs can be
useful strategy to increase the GPU utilization.

Figures 3 shows how GPU memory usage changes as the
number of concurrent training jobs is increased. For each
experiment with a given number of concurrent training jobs,
GPU memory usage varies over time while it is monitored.
However, the average GPU memory usage is clearly increasing
as the number of concurrent training jobs is increased. It is
clear that, for up to 24 concurrent training jobs, the GPU mem-
ory requirement for the particular application did not exceed
the maximum available GPU memory, though it came close.
However, as we will present in the next experiment, if GPU
memory requirement exceeds the available GPU memory, the
application will fail. This means that tracking GPU memory
usage is especially important when GPU is shared by multiple

Fig. 2: Observed GPU load distribution with respect to the
number of concurrent training jobs.

Fig. 3: Observed GPU memory usage distribution with respect
to the number of concurrent training jobs.

jobs.
Figure 4 shows how individual training time changes de-

pending on how many jobs are running concurrently. The
timing data has been obtained from 24 training jobs per
each concurrent job setting. For NPPN=1, 24 training jobs
are executed serially. (The second GPU remains idle in this
instance.) For NPPN=2, 2 training jobs are executed concur-
rently, one per each GPU and each GPU runs 12 training
jobs sequentially. For NPPN=24, 24 training jobs are executed
concurrently, 12 jobs per each GPU. Increasing the number



Fig. 4: Individual training time variation with respect to the
number of concurrent training jobs on a single node with two
Volta 100 GPUs.

of concurrent processes (training jobs) usually increases the
individual training time as well. However, there is a significant
jump in individual training time when 24 training jobs are
running concurrently. This is apparently too much of a load
on GPU, and it slows down individual jobs significantly as a
result. With some likelihood, this may be caused by greater
contention for accessing the DRAM memory of the GPUs, but
further investigation is required.

Overall throughput performance can be observed by cal-
culating the speedup based on the elapsed time of each job
with the given number of concurrent training jobs as shown
in Figure 5. Since this particular application needs only small

Fig. 5: Speedup of the whole training job based on the job
elapsed time with respect to the number of concurrent training
jobs.

amount of GPU memory, multiple training jobs can share
the GPU resources to make full use of the GPU resources.
As observed in Figure 5, linear speedup was observed up to

8 concurrent training jobs, 4 jobs per each GPU, and there
is a slight efficiency drop with 12 concurrent training jobs.
with 24 concurrent training jobs, a significant efficiency drop
occurs. However, even with the significant efficiency drop at
24 concurrent training jobs, the overall training speedup of
about 10 is still achieved, which is much faster compared to
running the all of the training jobs sequentially.

We have also tried to run another experiment with 48 train-
ing jobs using the MNIST dataset. In this case, the experiment
runs well up to 24 concurrent training jobs as observed in the
previous experiment. However, because running 48 concurrent
jobs requires more GPU memory than the two Volta V100
GPU memory can provide, 21 of the 48 training jobs failed
with CUDA out-of-memory errors. Thus, it is important to
look out for the GPU memory consumption when sharing
GPUs with multiple jobs and make sure that the total memory
usage by multiple jobs does not exceed the available GPU
memory.

B. ImageNet

The ImageNet dataset contains 14,197,122 annotated im-
ages according to the WordNet hierarchy [23]. The ImageNet
dataset has been used to train a wide variety of image
detection and classification neural network models, and for this
series of experiments, we used it to train ResNet-18 networks
[26]. We have designed this experiment to run 12 individual
training jobs serially and concurrently to demonstrate how
GPU sharing behaves when each training job requires modest
amount of GPU memory. In order to monitor the GPU usage,
the LLload -g command is executed every 15 second and
the snapshots are saved for analysis. For this experiment, the
training job is performed using the default batch size of 256
and default learning rate of 0.1 for one epoch. LLMapReduce
with the triples mode is again used to control different number
of concurrent training jobs. Based on the GPU memory usage,
we have been able to perform up to 6 concurrent jobs per
compute node, avoiding any CUDA out-of-memory errors.

Figure 6 shows the GPU memory usage history over
time with different number of concurrent processes per node
(NPPN). First, the peak GPU memory usage remained flat
for each NPPN configuration, and it increases as NPPN is
increased, since each training process maintains its own pool
of GPU memory. With NPPN=6, we observed that the peak
GPU memory usage is close to the maximum GPU memory
(64 GB) of two Volta GPUs. Since there are total 12 training
jobs to be performed, periodically we see sudden dips in
GPU memory usage due to memory activities associated with
job completions and subsequent job launches. However, these
sudden dips in GPU memory usage occur less frequently as
NPPN is increased since more jobs are running concurrently
and there are fewer job completions and subsequent job
launches.

It is also worth noting that the total elapsed time to complete
the entire training (total 12 jobs) task is significantly reduced
from 38,848 seconds ( 10.8 hours) for NPPN=1 to 15,136
seconds ( 4.2 hours) for NPPN=6. This again demonstrates



(a) NPPN = 1

(b) NPPN = 2

(c) NPPN = 4

(d) NPPN = 6

Fig. 6: GPU memory usage history over time with various
GPU sharing strategies, varying the number of concurrent
processes per node (NPPN).

that GPU sharing increases GPU utilization and, in turn,
increases overall throughput performance of the total training
task almost 3x with NPPN=6 compared to NPPN=1.

Figure 7 shows how busy the GPUs are over time with
varying number of concurrent processes per node. Each point
represents the GPU load snapshot at a point in time. The GPU
load is more scattered and sensitive than the GPU memory
usage; the GPU load varies dramatically over time. However,
as NPPN is increased, the GPU load variation becomes less
scattered, which indicates that the GPUs have more than
enough work to be busy all the time. Further, this suggests that
the GPU kernel queues have an adequate backlog of scheduled
work that there are very few gaps between one computational
kernel finishing execution on a GPU symmetric multiprocessor
(SM) and another kernel beginning.

There is a slight improvement in the total elapsed time
when comparing the results between NPPN=2 and NPPN=4
in Figure 6. This behavior can be explained by looking at
the GPU load histories shown in Figures 7b and 7c – their
temporal GPU load history looked similar, but there is a higher
concentration of GPU load along the GPU load = 1.0 line
in 7b for NPPN=2, while there is a higher concentration of
GPU load along the GPU load = 2.0 line in 7c forNPPN=4.
Please note that for NPPN=6 in Figure 7d, the first half part
of the temporal GPU load is concentrated around 1.0 which
is unexpected behavior; we are not sure what caused this
behavior. However, during the latter part of Figure 7d, the
peak GPU load consistently hovered around 2.0, which helped
result in a faster completion for the whole set of training tasks.

We also compared the individual training time of the 12
training jobs for each given number of concurrent processes
(NPPN) as shown in Figure 8. There is little change in the
individual training time between NPPN=1 and NPPN=2, and
the variation of the individual training time looks similar
between NPPN=1 and NPPN=2. This is expected since the
particular PyTorch code is written for a single GPU resource
and there are two GPUs on the node. However, there are sig-
nificant increase in the individual training time with NPPN=4
and NPPN=6 because this involves GPU sharing between the
assigned training jobs. The variation of the individual training
time becomes significantly larger with NPPN=6 because its
GPU memory requirement is close to its physical GPU mem-
ory limit of 64 GB, and the GPUs are very busy as shown in
Figure 7. Again, there is likely main GPU memory contention
between all of the training processes.

Finally, the speedup achieved by sharing the GPU resource
with the ResNet-18/ImageNet training experiment is presented
in Figure 9. It shows almost linear speedup (1.85) from
NPPN=1 to NPPN=2, since the particular application is written
for a single GPU, and the compute node has two Volta 100
GPUs. But, it shows significant slowdown with GPU sharing
with NPPN=4 and NPPN=6 where each GPU processes two
and three concurrent training jobs respectively. However, over-
all throughput performance has been improved substantially
from NPPN=1 to NPPN=6 by 2.56 times based on the elapsed
time to complete the whole training jobs. It is obvious but still



(a) NPPN = 1

(b) NPPN = 2

(c) NPPN = 4

(d) NPPN = 6

Fig. 7: GPU load history over time with various GPU sharing
strategies, varying the number of concurrent process per node
(NPPN).

important to understand the application in order to get the
best use of the GPU resources. All of these experiments show
that GPU sharing can achieve better throughput performance
and reduce the total elapsed time for the given training jobs,
even for applications in which each task shows modest GPU
memory usage.

Fig. 8: ResNet-18/ImageNet training time variation with re-
spect to the number of concurrent training jobs on a single
node with two Volta 100 GPUs.

Fig. 9: ResNet-18/ImageNet training by sharing the GPU
resources with varying number of concurrent processes per
node.

IV. SUMMARY

LLSC has developed an easy-to-use resource sharing tool
by extending the triples mode. This study is focused on
GPU sharing which enables the launching of multiple ML
applications on each GPU, which in return increases GPU
utilization and overall throughput performance. By launching
multiple processes, it is possible to minimize any idle time of
GPU resources.



The LLSC approach does not requires any sophisticated
middleware implementation nor the customization of the
scheduler configuration. Thus, it is easy to deploy on the
production environment. In addition, this approach allows
users to apply GPU overloading whenever possible while they
are developing their AI/ML models, doing parametric study on
their AI models, or executing other GPU applications. Based
on our initial results with GPU sharing experiments, GPU
sharing with the triples mode is beneficial for certain types
of AI applications and make more efficient use of GPUs in
HPC environment and, in turn, increases overall throughput
significantly.
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