
Overview Implementation Results Outlook

High locality and increased intra-node parallelism
for solving finite element models on GPUs by novel

element-by-element implementation

Imre KISS1 Zsolt BADICS2 Szabolcs GYIMÓTHY1 József PÁVÓ1

e-mail: kiss@evt.bme.hu

1Budapest University of Technology and Economics,
Egry József utca 18, H-1111 Budapest, Hungary

2Tensor Research LLC,
100 Wildwood Road, Andover, MA 01810, USA

HPEC ’2012

1 / 16 HPEC ’2012 - Waltham, MA USA High locality and increased intra-node parallelism on GPUs by novel EbE FEM

Overview Implementation Results Outlook

Outline

Overview

Element-by-Element method
Disassembling MxV operation
Further properties of the EbE FEM

Implementation

Storage technique
Breaking MxV
EbE BiCG solver
CUDA implementation

Results

Problem statement
Results

Conclusion, Outlook

2 / 16 HPEC ’2012 - Waltham, MA USA High locality and increased intra-node parallelism on GPUs by novel EbE FEM

Overview Implementation Results Outlook FEM Ebe FEM Disassembly Properties

Overview of the FEM method

In computational electromagnetics, Finite Element Method (FEM) is a one of
the most commonly used technique to perform complex analysis.

The linear equation system resulting from the FEM approximation of a partial
differential equation (PDE) is usually written in the form

Ax = b,

where A is the so-called system matrix, x is the vector of unknowns and b on
the right hand side (RHS) represents the excitation.

⇒ Since A is sparse, iterative solvers are usually preferred over direct ones

treatable problem size is limited by available memory (even in sparse)

the memory bound is even more restrictive when using GPUs

3 / 16 HPEC ’2012 - Waltham, MA USA High locality and increased intra-node parallelism on GPUs by novel EbE FEM

Overview Implementation Results Outlook FEM Ebe FEM Disassembly Properties

Overview of the FEM method

In computational electromagnetics, Finite Element Method (FEM) is a one of
the most commonly used technique to perform complex analysis.

The linear equation system resulting from the FEM approximation of a partial
differential equation (PDE) is usually written in the form

Ax = b,

where A is the so-called system matrix, x is the vector of unknowns and b on
the right hand side (RHS) represents the excitation.

⇒ Since A is sparse, iterative solvers are usually preferred over direct ones

treatable problem size is limited by available memory (even in sparse)

the memory bound is even more restrictive when using GPUs

3 / 16 HPEC ’2012 - Waltham, MA USA High locality and increased intra-node parallelism on GPUs by novel EbE FEM

Overview Implementation Results Outlook FEM Ebe FEM Disassembly Properties

GPU implementations for FEM

Several aspects implementing FEM on GPUs have been already investigated.

These usually tried to fit the ”traditional” FEM formulation to this unique
architecture (GPU) by ”outsourcing” a specific part of the algorithm only

accelerating the sparse matrix-vector (spmv) kernel which is the basis of
every iterative type solver,

executing only the assembly step on the GPU,

utilizing some domain decomposition technique to fit the sliced (partial)
problems into the limited GPU memory.

In general, these accelerator type designs could not utilize GPUs efficiently.

The underlying problem is the large memory footstep of the system matrix
⇒ usually can only be resolved by significant amount of data movement (slow).

4 / 16 HPEC ’2012 - Waltham, MA USA High locality and increased intra-node parallelism on GPUs by novel EbE FEM

Overview Implementation Results Outlook FEM Ebe FEM Disassembly Properties

GPU implementations for FEM

Several aspects implementing FEM on GPUs have been already investigated.

These usually tried to fit the ”traditional” FEM formulation to this unique
architecture (GPU) by ”outsourcing” a specific part of the algorithm only

accelerating the sparse matrix-vector (spmv) kernel which is the basis of
every iterative type solver,

executing only the assembly step on the GPU,

utilizing some domain decomposition technique to fit the sliced (partial)
problems into the limited GPU memory.

In general, these accelerator type designs could not utilize GPUs efficiently.

The underlying problem is the large memory footstep of the system matrix
⇒ usually can only be resolved by significant amount of data movement (slow).

4 / 16 HPEC ’2012 - Waltham, MA USA High locality and increased intra-node parallelism on GPUs by novel EbE FEM

Overview Implementation Results Outlook FEM Ebe FEM Disassembly Properties

The Element-by-Element FEM approach

The Element-by-Element (EbE) technique is a revised version of the FEM
method to overcome on the memory bound problem.

Assembly of element matrices to the system matrix is a linear operation, hence

⇒ certain operations with the system matrix (e.g. MxV, VxV, Vxc) can be
traced back to the level of finite elements

⇒ thus can be converted to calculations with the individual element matrices
Ae , appearing in the elementary equations

Aexe = be .

Iterative solvers can be decomposed into a sequence of matrix-vector products
and inner products of vectors (both suitable to the EbE concept)

⇒ do not store the element matrices as traditional methods do with the
system matrix, rather recompute them in each iteration

⇒ transforms a highly memory dependent problem to a massively
computational dependent one, which in turn can be efficiently parallelized

5 / 16 HPEC ’2012 - Waltham, MA USA High locality and increased intra-node parallelism on GPUs by novel EbE FEM

Overview Implementation Results Outlook FEM Ebe FEM Disassembly Properties

Disassembling matrix manipulations I

The FEM assembling procedure relies on some functions to generate the
element matrix Ae and the RHS be .

Computed element matrices and RHS vectors are assembled to form the
global system matrix A and RHS b.

Let this assembly step be represented by an operator M as

M : Aexe = be , e = 1, . . . ,m =⇒ Ax = b

A = M(Ae) =
∑
e∈E

CT
e AeCe

b = M(be) =
∑
e∈E

Cebe

where E is the set of elements, and matrix Ce represents the transition
between local and global numbering of the unknown variables for the e-th
element. Contrary to the sparse global system matrix A, the element
matrix Ae is usually dense.

6 / 16 HPEC ’2012 - Waltham, MA USA High locality and increased intra-node parallelism on GPUs by novel EbE FEM

Overview Implementation Results Outlook FEM Ebe FEM Disassembly Properties

Disassembling matrix manipulations II

Using this concept, the matrix-vector product, which is the basis of iterative
solvers, can be reformulated in terms of element-wise computations as

Ax =
∑
e∈E

CT
e AeCex =

∑
e∈E

CT
e Aexe =M(Aexe).

⇒ product of an assembled global matrix and a vector is equivalent with the
assembled vector of the elementary matrix-vector products.

⇒ the elementary contributions can be accumulated in a vector having the
size of the global degrees-of-freedom (DoF)

⇒ only vectors have to be stored during the computations

⇒ elementary matrix-vector products can be computed for each element
separately, which enables parallel realization.

The inner product of two DoF-sized vectors is also an elementary operation

⇒ this operation is obviously independent of the mesh structure and
connectivity, hence its parallel execution is straightforward.

7 / 16 HPEC ’2012 - Waltham, MA USA High locality and increased intra-node parallelism on GPUs by novel EbE FEM

Overview Implementation Results Outlook FEM Ebe FEM Disassembly Properties

Further properties

Using the EbE-FEM concept, there are several further advantages compared to
the traditional (assembly based) FEM techniques

global numbering of unknowns and finite elements is not required at all

due to the lack of assembly, there is no need for an optimized global
numbering to obtain a low bandwidth system matrix

when using some mesh refinement/reduction technique during the
iterations, locality for the necessary modifications is also ensured

However it is also notable that there are several disadvantages as well

a) since preconditioning techniques are usually requires the assembled global
system matrix, special pre-conditioning methods are required

b) since element matrices are not stored, they must be recomputed in each
iteration, which is obviously redundant when dealing with linear problems
⇒ this extra computation becomes necessary for non-linear problems

8 / 16 HPEC ’2012 - Waltham, MA USA High locality and increased intra-node parallelism on GPUs by novel EbE FEM

Overview Implementation Results Outlook Storage Breaking MxV EbE BiCG CUDA implementation

Dynamic storage structure

The way the variables are stored gives the real modularity of the EbE method

⇒ contrary to traditional FEM methods using global numbering, here a
dynamic storage structure is used instead

⇒ it can be thought as an index array (pointers in the actual implementati-
on) keeping the information how local unknowns correspond to global ones

such storage pattern is often referred as ”spatial data structure”

4.

5.

6.

7.

8.

9.

13.

12.

11.

x4 y4 u4

x6 y6 u6

x9 y9 u9

elements
(connectivity)

64 9

 nodes

x,y,u

A global unknown contains all the (self) associated elements of not only the
solution vector, but also the global variables required by the iterative solver.

9 / 16 HPEC ’2012 - Waltham, MA USA High locality and increased intra-node parallelism on GPUs by novel EbE FEM

Overview Implementation Results Outlook Storage Breaking MxV EbE BiCG CUDA implementation

Breaking MxV into element-wise computations

In an EbE implemented BiCG solver computations can be grouped into
so-called ”EbE” steps and ”DoF” steps:

”EbE iteration” refers to the matrix-vector product Ax =M(Aexe)

indicates the computation of the element matrices,

to avoid race conditions during global updates, the elements are colored
with respect to the global unknown variable,

the iteration goes through all colors serially, and performs the
computations on the elements having the actual color in parallel.

”DoF iteration” indicates the computation of the vector-vector products.

this iteration is performed simultaneously on all U global unknown.

”global update” means that the value of a single global variable (related
to the BiCG algorithm) is affected. To avoid race conditions, atomic
updates are used to access global variables.

10 / 16 HPEC ’2012 - Waltham, MA USA High locality and increased intra-node parallelism on GPUs by novel EbE FEM

Overview Implementation Results Outlook Storage Breaking MxV EbE BiCG CUDA implementation

BiCG solver in terms of EbE and DoF iterations
EbE BiCG initialization

foreach u ∈ U do // DoF iteration

r(u) ← 0
D(u) ← 0

end
for c = 1 to |colors| do // serial loop

foreach e ∈ E(c) do // EbE iteration
re ← re + be −Aeue

De ← De + diag (e)
end

end
foreach u ∈ U do // DoF iteration

D(u) ← 1/D(u)

r̃(u) ← r(u)

d(u) ← D(u) · r(u)
d̃(u) ← D(u) · r̃(u)

q(u) ← 0
q̃(u) ← 0

end
δ ← 0 // global update
foreach u ∈ U do // DoF iteration

δ ← δ + r(u)d(u) // global update
end

EbE BiCG looping

while δ > prescribed accuracy do // host loop

for c = 1 to |colors| do // serial loop

foreach e ∈ E(c) do // EbE iteration
qe ← qe +Aede

q̃e ← q̃e +AT
e d̃e

end
end
α← 0 // global update
foreach u ∈ U do // DoF iteration

α← α+ d̃(u) · q(u) // global update
end
foreach u ∈ U do // DoF iteration

x(u) ← x(u) + δ/α · d(u)

r(u) ← r(u) − δ/α · q
r̃(u) ← r̃(u) − δ/α · q̃

end

δ̃ ← δ; δ ← 0 // global update

foreach u ∈ U do // DoF iteration

δ ← δ + r(u)D(u)r̃(u) // global update
end

α← δ/δ̃ // global update

foreach u ∈ U do // DoF iteration

d(u) ← D(u) · r(u) + α · d(u)
d̃(u) ← D(u) · r̃(u) + α · d̃(u)

q(u) ← 0
q̃(u) ← 0

end
end

11 / 16 HPEC ’2012 - Waltham, MA USA High locality and increased intra-node parallelism on GPUs by novel EbE FEM

Overview Implementation Results Outlook Storage Breaking MxV EbE BiCG CUDA implementation

CUDA implementation of the BiCG solver

In ”EbE” iterations, kernels are started serially for each set of elements
(colors) with as many threads as elements in the set.

In ”DoF” iterations, a single kernel with a dedicated thread for each
vector element operation is started.

During ”global updates”, atomic operations are used to avoid race
conditions.

BiCG looping is implemented as a host iteration.

Only the δ variable is transferred to the host side at every iteration.

The Jacobi preconditioner is stored associated with the global unknowns
locally.

If multiple GPUs are used, both EbE and DoF iterations can be split, but
certain barriers are necessary to propagate all sub-results to all cards.

12 / 16 HPEC ’2012 - Waltham, MA USA High locality and increased intra-node parallelism on GPUs by novel EbE FEM

Overview Implementation Results Outlook Problem statement Results

Test problem: the UTAH torso model

The test problem is a static conduction problem (an ECG forward problem):

⇒ the Laplace equation with spatially varying conductivity is to be solved

∇ · σ∇ϕ = 0.

the domain is discretized by tetrahedral elements and linear nodal shape
functions are used

element matrices are computed using analytical expressions

the global unknowns (DoF) are the ϕ potential values at mesh nodes

13 / 16 HPEC ’2012 - Waltham, MA USA High locality and increased intra-node parallelism on GPUs by novel EbE FEM

Overview Implementation Results Outlook Problem statement Results

Results I

The computations have been carried out on a HP-XW8600 workstation

having 128 GB memory

an NVIDIA GTX 590 GPU card (with two GPU processors on a single
board)

a quad-core Intel Xeon X3440 CPU

CPU implementation is based on the Intel R©Math Kernel Library (MKL).

0

500

1000

1500

2000

0 1 2 3 4 5 6 7

Number of Unknowns (x 106)

Run time [s]

1 GPU

2 GPUs

CPU

14 / 16 HPEC ’2012 - Waltham, MA USA High locality and increased intra-node parallelism on GPUs by novel EbE FEM

Overview Implementation Results Outlook Problem statement Results

Results II (continued, detailed)

Test case #1 #2 #3 #4
No. of tetrahedra 560K 6, 559K 18, 884K 29, 772K
No. ov unknowns 91K 1, 339K 3, 836K 6, 064K

GPU implementation
No. of iterations 322 671 978 1 111
Colors used 41 45 53 56
Memory [MByte] 12 213 613 968
Runtime (1 GPU) [s] 2.8 40.3 171.3 303.8
Runtime (2 GPUs) [s] 1.7 23.6 93.4 167.6

CPU implementation
No. of iterations 79 248 338 391
Memory [MByte] 1,564 5,251 13,645 19,371
Runtime [s] 5.9 403.4 1,166.6 1,694.6

15 / 16 HPEC ’2012 - Waltham, MA USA High locality and increased intra-node parallelism on GPUs by novel EbE FEM

Overview Implementation Results Outlook

Conclusion, Outlook

Conclusion

Since the EbE-FEM requires no communication on the level of processing
cores (highly localization) the hardware utilization can be maximized.

This design was found to utilize GPUs more effectively than accelerator
designs why also competitive with modern multi-CPU implementations.

Excellent memory utilization since does not depend on the traditional
”assemble-and-solve” style.

Outlook

Preliminary multi-GPU results indicate good scalability of the method,
which could easily be extended to GPU clusters.

Real advantage of the method is exploited when treating non-linear
problems or when the mesh structure changes during the computation.

16 / 16 HPEC ’2012 - Waltham, MA USA High locality and increased intra-node parallelism on GPUs by novel EbE FEM

	Overview
	FEM
	Ebe FEM
	Disassembly
	Properties

	Implementation
	Storage
	Breaking MxV
	EbE BiCG
	CUDA implementation

	Results
	Problem statement
	Results

	Outlook

