
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP 

An Application of Constraint 
Programming to the 
Design and Operation of 
Synthetic Aperture Radars 

Michael Holzrichter 

Sandia National Laboratories 



Presentation Outline 

 Fragmentation of logical model of SARs 

 Constraint programming paradigm and 
propagation networks 

 SAR Inference Engine 

 Current areas of investigation 

2 



Synthetic Aperture Radars 

 Synthetic aperture radars (SARs) image 
the earth’s surface using microwaves. 

 SARs are complex systems 

 Hundreds of quantities:  center frequency, 
beamwidth, scene dimensions, etc. 

 Quantities must obey hundreds of 
relationships:  physics, radar equation, 
trigonometry, etc. 

3 



Logical Model of SARs 

 In aggregate, the quantities and relationships 

 Form a large web or network 

 Constitute a logical model of the SAR 

 Logical model is dispersed 

 People’s minds, documents, software 

 Many partially overlapping subsets 

 Inconsistencies invariably creep in 

 Cause degraded performance or faults 

 Incur overhead 

 
4 



SAR Inference Engine 

 SAR Inference Engine 

 provides a central, common SAR model 

 uses the constraint programming paradigm. 

 Constraints come from 

 physics, geometry, signal processing 

 system engineer design choices. 

 A propagation network provides the 
computational foundation. 

 All propagators derived from constraints. 
5 



Imperative Code to Propagation Network  

 An imperative code may compute a 
propagating wave’s one way travel time 
using the following code: 

6 

velocity = frequency * wavelength; // Equation 1 

traveltime = distance / velocity;  // Equation 2 

 Inputs:  frequency, wavelength, and distance 

 Output:  velocity, traveltime 



Imperative Code to Propagation Network  

 Alternative arrangements of Equation 1: 
 velocity = frequency * wavelength; 

 wavelength = velocity / frequency; 

 frequency = velocity / wavelength; 

 Alternative arrangements of Equation 2: 
 distance = velocity * traveltime; 

 traveltime = distance / velocity;  

 velocity = distance / traveltime; 

7 



Imperative Code to Propagation Network  

 Relation 1: 
 velocity = frequency * wavelength 

 Relation 2: 
 distance = velocity * traveltime 

 Observations: 

 Given any two quantities in a relation the 
third quantity can be calculated. 

 Both relations have the form “A = B * C” 
(more on this later). 

8 



V =

F * W
V

D =

V * T

D

T

W

F

Imperative Code to Propagation Network  

 Relations 1 and 2 depicted as a graph: 

9 

Note:  The graph depicts a simple propagation network. 

Distance 

Relation 1 Relation 2 

Travel time 

Wavelength 

Frequency 

Velocity 



Value set by “fiat”
Value inferred

from constraints

Value

undetermined

Scenario 1:  Determine Travel Time 

10 

Given a state where 
wavelength and 
distance are set… 

setting the value of 
frequency fixes the 
value of velocity 
and travel time also. 

V =

F * W
V

D =

V * T

D

T

W

F

V =

F * W
V

D =

V * T

D

T

W

F



Scenario 2:  Determine Frequency 

11 

Given a state where 
distance and travel 
time are set… 

setting the value of 
wavelength fixes 
the value of 
frequency also. 

V =

F * W
V

D =

V * T

D

T

W

F

V =

F * W
V

D =

V * T

D

T

W

F



Propagation Network Observations 

 Many different sets of inputs are possible. 

 Relationships can also be inequalities. 

 Operation is progressive. 

 Useful to record dependencies of “inferred” 
values on values determined by “fiat” 

 Enables backtracking 

 Enables determining why a quantity is in its 
current state. 

12 



Example of Selective Backtracking 

13 

Before invalidating 
distance 

After invalidating 
distance 

V =

F * W
V

D =

V * T

D

T

W

F

V =

F * W
V

D =

V * T

D

T

W

F



Hello World Example 

14 

#include <stdio.h> 

 

#include "InferenceEngine.h" 

 

#include “PropWaveConstraint.h" 

 

#include "CenterFrequencyQuantity.h" 

#include "CenterWavelengthQuantity.h" 

#include "SpeedOfLightQuantity.h" 

 

int main (int argc, char * const argv[]) { 

 

   //  Create Inference Engine and initialize with constraints 

   InferenceEngine *inferenceEngine = new InferenceEngine (); 

   inferenceEngine->addConstraint (PropWaveConstraint::getInstance ()); 

   inferenceEngine->concludeInitialization (); 

 

   //  Assign values to center frequency and speed of light quantities 

   inferenceEngine->assignQuantityValue (SPEED_OF_LIGHT_NAME,   2.99739141e+008, 0); 

   inferenceEngine->assignQuantityValue (CENTER_FREQUENCY_NAME, 1.00000000e+008, 0); 

 

   //  Get value of wavelength 

   double centerWavelengthValue = Quantity::getInstance (CENTER_WAVELENGTH_NAME)->getValue (); 

 

   //  Print out result 

   fprintf (stdout, "CenterWavelength = %.17e\n", centerWavelengthValue); 

 

   return 0; 

} 

Step 2:  Create Inference 

Engine and populate it 

with constraints 

Step 1:  Include 

header files of 

•Inference Engine 

•Constraints 

•Quantities 

Step 3b:  Extract values of outputs 

Step 3a:  Enter 

values for inputs 



Scaling Up: Comprehensive SAR Model 

 Can a SAR be modeled? 

 Full-scale SAR model: 

 Port of existing Matlab model  that was 
used to develop two generations of SARs 

 Over 300 Quantities of “physical interest” 

 Over 250 Constraints of “physical interest” 

 Example of diverse quantities included:  
SNR, geometry, hardware delays, resolution 

15 



More on Constraints 

 SAR Inference Engine’s modeling: 

 Just 11 types of constraints 

 Low-level, i.e. minimal semantic content 

 High-level constraints expressed as multiple low-
level ones 

 Most important types of constraints: 

 A = B op C where “op” is either “+” or “*” 

 “Triangle Constraint” among 3 angles and 3 
lengths making up a triangle 

16 



Usage Throughout the SAR Lifecycle 

 Design phase 

 Batch mode:  generate performance curves 

 Interactive mode:  explore design space 

 Mission planning 

 Handle unanticipated conops 

 Radar operation 

 Radar operator interface 

 Embedded in radar 
17 



Example: Insertion Into Image Formation 
 Code has two phases 

 Setup / initialization 

 Data processing 

 Setup phase maps data 
attributes to image 
attributes. 

 Mapping process intimately 
tied to logical model of SAR. 

 Generation of data involved 
the inverse mapping. 

 Machine generated code 
solves speed issue. 

18 

Replace mapping logic with 

calls to SAR Inference Engine. 

Image Formation Code

Initialization Code:

Among other things, maps

attributes of input data onto

attributes of output image.

Processing Code:

This code transforms digitized

data into SAR images.



Current Areas of Investigation 

 Multivalued solutions 

 E.g. ambiguous case of Law of Sines 

 Completeness:  Are there cases where 
inferences could be made but aren’t? 

 E.g. set of triangles to fully define geometry 

 Constraint Satisfaction Problem issues: 

 Constraint propagation is weaker than CSP 
but many issues are common to both. 

 global and local consistency, relaxation 
19 



Example Propagation Network Problem 
 Line segment mid-point: 

 Xm = X1 + D 

 X2 = Xm + D 

 X1 and Xm given then d 
and X2 easily calculated 

 Local propagation fails 
when X1 and X2 given. 

 Solutions: 

 “relaxation” 

 modify network 
20 

Xm =

X1 + D

X1

X2 =

Xm + D

X1

Xm D

D D

XmX1 X2



Solution 1:  Augment Network 
 Address problem by 

augmenting network. 

 Add a new constraint 
 2*Xm = X1 + X2 

 New constraint prevents 
local propagation from 
getting stuck 

 New constraint 
mechanically derivable 
from existing constraints 

21 

Xm =

X1 + D

X1

X2 =

Xm + D

X1

Xm D2*Xm =

X1 + X2



Solution 2:  Simplify Network 
 Or address problem by 

simplifying network. 

 Remove D and combine 
constraints involving D. 

 Decision to remove D 
not suitable for 
mechanization. 

 Simple solution in this 
case but other cases… 

22 

X1

X1

Xm
2*Xm =

X1 + X2



Conclusion 

23 

 SAR Inference Engine 

 A implements a single logical model 

 Avoids inconsistencies arising from multiple fragmented 
models 

 Focuses refinement and maturation efforts. 

 Is usable throughout lifecycle of radar 

 Design through deployed operation 

 Diverse uses and comprehensive scope enabled by 

 Constraint programming paradigm 

 Constraint propagation network 

 


