

2012 IEEE High Performance Extreme Computing Workshop (HPEC '12) Sixteenth Annual HPEC Workshop

10 - 12 September 2012 Westin Hotel, Waltham, MA USA www.ieee-hpec.org

Ruggedization of MXM Graphics Modules

Author: Ivan Straznicky

Curtiss-Wright Controls Defense Solutions 333 Palladium Dr., Ottawa, ON Canada K2V 1A6

Outline

- Introduction What is an MXM Graphics Module?
- MXM Use in Rugged HPEC Systems
- MXM Ruggedization Risks
- Harsh Environment Testing
 - Shock & Vibration
 - Environmental Testing
 - Thermal Testing
- Conclusions

MXM Graphics Module

- Mobile PCI Express (MXM) is an interconnect standard for GPUs in laptops and servers
 - Allows for easy upgrades with standardized socket
 - MXM-SIG controlled by nVidia
 - Latest specification revision is 3.0
 - Type A (82 x 70mm) and Type B (82 x 105mm)
 - Module integrates GPU, memory and power supply onto a small PCB

- Benefits for use in HPEC systems
 - Allows for easy upgrades with standardized socket
 - Leverages electrical interface design work
 - Functional density offered by mezzanine form factor
 - Thermal benefit offered by mezzanine form factor
 - Some GPUs are only offered in MXM form factor
- Drawbacks of MXM use in rugged HPEC systems
 - Not designed for harsh environments

MXM Ruggedization Risks

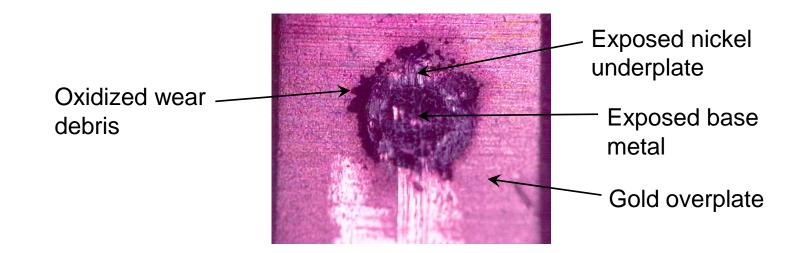
Risk	Description	Test	Mitigation
Connector contact fretting	Vibration can cause fretting corrosion failures	Shock and vibration	Stiffening and possibly lubrication
Contact corrosion	Exposure to humidity and contaminants can corrode contacts	Humidity and mixed flowing gas	Custom connector (if required)
GPU cooling	GPU can be 50W+	Full operation over extended temp. range	Thermal design analyzed prior to test
Temperature range	Components on MXM are commercial temp. range	Full operation over extended temp. range	100% ESS during production or pre- screening

The above list of risks is not exhaustive...

Shock & Vibration Testing

Rugged air cooled test vehicle

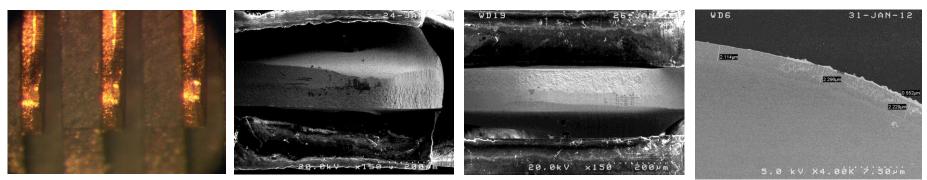
- 6U (233x160mm) VPX with 2 MXMs
- Higher displacements than conduction, ... worse case


CWCDS shock & vibration test specification

Tests	Levels	Frequency range	Duration
Sine vibration	10 g	5-2000 Hz	10 minutes
Mechanical shock	30 g peak	N/A	11ms, 18 hits total in 6 directions
Random vibration	0.002 g²/Hz @ 5 Hz 0.04 g²/Hz @ 15 Hz 0.04 g²/Hz @ 2 kHz	5-2000 Hz	1 hour/axis (3 orthogonal axes)

Shock & Vibration Testing

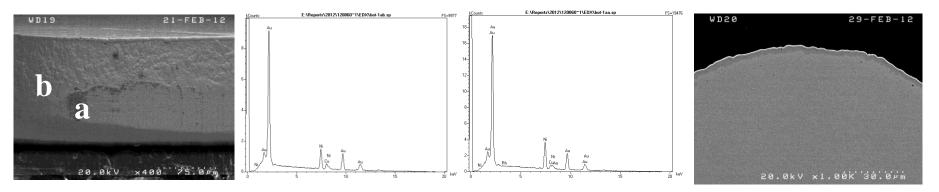
- Performance verification: Visual inspection and SEM/EDX of connector contacts
 - Provides the earliest indication of fretting issues, well before electrical testing
 - Database of previous tests used to correlate wear severity to probability of electrical failure



Example of Severe Fretting Corrosion on Connector Contact causing Electrical Failure

Base case (stiffened but not lubricated)

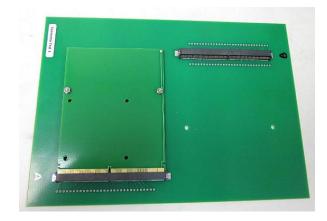
- Degree of fretting wear varied across each of two connectors (more wear on ganged power and ground pins)
- Worst case wear was through outer gold plating, but large majority (85-90%) of nickel underplating still intact
 - This amount of wear is not associated with electrical failure
- Typical wear (signal pins) did not penetrate outer gold plating


Sample analysis images (left to right): Optical, SEM (worst case), SEM (typical signal), X-section (worst case)

S&V Test Results

Mitigated case (stiffened and lubricated)

- No gold wear-through on any pins
- Lubricant may need further testing (e.g. dust + vibration)



Sample analysis images (left to right): Worst case (mitigated), EDX (area 'a'), EDX (area 'b'), X-section

Environmental Testing

- Custom test vehicle
 - 6U-ish with 2 MXMs
 - Connections for LLCR
 (low-level contact resistance)

Environmental test specification

Tests	Levels	Duration	Specification
Durability + Humidity	90-95% RH, 25- 65°C	500 hours	EIA-364, TP 31
Durability + Mixed Flowing Gas	30°C, 70% RH	20 days	EIA-364, TP 65

Environmental Test Results

- Performance verification tests: low-level contact resistance (LLCR), insulation resistance (IR), dielectric withstanding voltage (DWV)
- Pass/fail defined in MXM Module Electromechanical Spec (e.g. LLCR of 55 mΩ max.)

All tests passed

Test	LLCR (mΩ, max.)	IR (MΩ)	DWV
Durability + Humidity	50.2 (unmitigated) 35.7 (mitigated)	>50,000	Passed
Durability + Mixed Flowing Gas	36.1 (unmitigated) 33.6 (mitigated)	N/A	N/A

Thermal Qualification Testing

- CWCDS thermal qualification test
 - Performed on 6U and 3U products
 - Temperature extremes are beyond specification (-40 to 71°C)
 - Multiple cycles (but not a thermal cycling test)
 - Multiple cold and hot starts after soak
 - Functional stress test
- Results

- Pass (no functional failures)

3U conduction module with 1 MXM

6U air cooled module with 2 MXMs

- The use of MXM modules in harsh environments demands a comprehensive risk evaluation.
- Three areas of testing were used as examples of risk assessment: shock & vibration, environmental, and thermal qualification. Other tests are also required.
- The full suite of test results shows that MXMs can be successfully deployed in harsh environments, when integrated into specially designed, rugged carrier cards.

Thank you

Q & A

