
High Performance
Java

Jordan J. Ruloff, James A. Ross, David A. Richie,
Song J. Park, Dale R. Shires, Brian J. Henz
September 11, 2012



Schedule

I Introduction
I Context
I Java
I Aparapi
I Conclusion
I Questions



Introduction

Software Goals:

I Compatibility
I Reliability
I Fault-Tolerance
I Security
I Reusability
I Usability



Introduction

Software Goals:
I Compatibility

I Reliability
I Fault-Tolerance
I Security
I Reusability
I Usability



Introduction

Software Goals:
I Compatibility
I Reliability

I Fault-Tolerance
I Security
I Reusability
I Usability



Introduction

Software Goals:
I Compatibility
I Reliability
I Fault-Tolerance

I Security
I Reusability
I Usability



Introduction

Software Goals:
I Compatibility
I Reliability
I Fault-Tolerance
I Security

I Reusability
I Usability



Introduction

Software Goals:
I Compatibility
I Reliability
I Fault-Tolerance
I Security
I Reusability

I Usability



Introduction

Software Goals:
I Compatibility
I Reliability
I Fault-Tolerance
I Security
I Reusability
I Usability



Introduction

"For over a decade prophets have voiced the contention that the
organization of a single computer has reached its limits and that
truly significant advances can be made only by interconnection of a
multiplicity of computers." - Gene Amdahl

"We stand at the threshold of a many core world. The hardware
community is ready to cross this threshold. The parallel software
community is not." - Tim Mattson



Introduction

"For over a decade prophets have voiced the contention that the
organization of a single computer has reached its limits and that
truly significant advances can be made only by interconnection of a
multiplicity of computers." - Gene Amdahl

"We stand at the threshold of a many core world. The hardware
community is ready to cross this threshold. The parallel software
community is not." - Tim Mattson



Introduction

"For over a decade prophets have voiced the contention that the
organization of a single computer has reached its limits and that
truly significant advances can be made only by interconnection of a
multiplicity of computers." - Gene Amdahl

"We stand at the threshold of a many core world. The hardware
community is ready to cross this threshold. The parallel software
community is not." - Tim Mattson



Context

Threat

Watch Point

Best Position



Java Threading

I Thread
I - Java 5
I - 1 Runnable Task

I ThreadPoolExecutor
I - Java 5
I - 1 Concurrent Queue

I ForkJoinPool
I - Java 7
I - N Concurrent Queues
I - Work-Stealing



Java Threading

I Thread
I - Java 5
I - 1 Runnable Task

I ThreadPoolExecutor
I - Java 5
I - 1 Concurrent Queue

I ForkJoinPool
I - Java 7
I - N Concurrent Queues
I - Work-Stealing



Java Benchmarks

I Load A Set Of GeoTIFFs Into A Usable Data Format
I NASA WorldWind Java Data Formats:

I - ElevationModel
I - SurfaceImage

I Performance Comparison Between
ThreadPoolExecutor And ForkJoinPool



Execution Time For Loading
A GeoTIFF Multiple Times

20 21 22 23 24 25 26

10−0.2

100

100.2

100.4

Number Of GeoTIFFs

T
im

e(
s)

2 x Intel R© Xeon R© X5675
AMD Radeon

TM
HD 6970

ThreadPoolExecutor
ForkJoinPool



Execution Time For Loading
Multiple GeoTIFFs Multiple Times

22 23 24 25 26 27 28
100

101

Number Of GeoTIFFs

T
im

e(
s)

2 x Intel R© Xeon R© X5675
AMD Radeon

TM
HD 6970

ThreadPoolExecutor
ForkJoinPool



Hardware

I Central Processing Units (CPUs)
I Graphics Processing Units (GPUs)
I Field-Programmable Gate Arrays (FPGAs)
I Digital Signal Processors (DSPs)
I Microcontrollers



Java Libraries

I JCuda
I jocl.org JOCL
I JogAmp.org JOCL
I JavaCL
I LWJGL
I Aparapi
I Rootbeer



Java Libraries

I JCuda
I jocl.org JOCL
I JogAmp.org JOCL
I JavaCL
I LWJGL
I Aparapi
I Rootbeer



Java Libraries

I JCuda
I jocl.org JOCL
I JogAmp.org JOCL
I JavaCL
I LWJGL
I Aparapi
I Rootbeer



Java Libraries

I JCuda
I jocl.org JOCL
I JogAmp.org JOCL
I JavaCL
I LWJGL
I Aparapi
I Rootbeer



Preparation Kernels

I Bounding Box Construction
I - O(1) Parallel Time

I Bitonic Sort
I - O(log2(n)) Parallel Time

Figure: http://upload.wikimedia.org/wikipedia/en/b/bd/BitonicSort1.svg



Preparation Kernels
Execution Time

216 217 218 219 220
10−0.2

100

100.2

100.4

100.6

Number Of Triangles

T
im

e(
s)

2 x Intel R© Xeon R© X5675
AMD Radeon

TM
HD 6970

Java Threads
OpenCLTM CPU
OpenCLTM GPU



BVH Tree Construction
Kernel

I BVH Tree Construction
I - O(log(n)) Parallel Time
I - O(2Iteration) Parallel Execution Units

N Dims

Iter=1

Iter=2

Iter=3

BVH Tree
Leaves



BVH Tree Construction
Kernel Algorithm

1: procedure BuildBVHTree
2: SetUpInitialNode
3: while NotFullySplit do
4: for all NodesWhichExist do
5: for all Dimension ∈ Dimensions do
6: ChooseBestSplit
7: end for
8: SplitNode
9: SetupNodeForDataParallelPortion

10: for all Dimension ∈ Dimensions do
11: if DimensionWasNotSplitDimension then
12: for all Indexes ∈ SortedIndexes do
13: CalculateNewPosition
14: Reorder
15: end for
16: end if



BVH Tree Construction
Kernel Algorithm

17: end for
18: end for
19: end while
20: for all Node ∈ Nodes do
21: CalculateAxisAlignedBoundingBoxes
22: end for
23: for Values ∈ Sorted do
24: SetToSortedIndexInFirstDimension
25: end for
26: end procedure



BVH Tree Construction
Kernel Execution Time

216 217 218 219 220

100

101

102

Number Of Triangles

T
im

e(
s)

2 x Intel R© Xeon R© X5675
AMD Radeon

TM
HD 6970

Java Threads
OpenCLTM CPU
OpenCLTM GPU



Intersection Kernel

I Intersection Kernel
I - O(log(n)) Parallel Time
I - O(2Iterations−Iteration) Parallel Execution Units

Intersection

Iter=1

Iter=2

Iter=3

BVH Tree
Leaves

Prep



Intersection Kernel
Algorithm

1: procedure IntersectBVHTree
2: for all Ray ∈ Rays do in Parallel
3: for all Node ∈ LeafNodes do in Parallel
4: if RayHitsBoundingBox then
5: FindClosestStructureHit
6: end if
7: end for
8: FindClosestNodeHit
9: end for

10: end procedure



Intersection Kernel
Execution Time

216 217 218 219 220

100

101

102

103

Number Of Triangles

T
im

e(
s)

2 x Intel R© Xeon R© X5675
AMD Radeon

TM
HD 6970

Java Threads
OpenCLTM CPU
OpenCLTM GPU



Conclusion

I Java 7 ForkJoinPool Should Be
Utilized Where It Is More Efficient

I Aparapi
- Pros:

I - Higher Performance

I - Utilize Additional
Resources

- Cons:
I - Limited Usability



Conclusion

I Java 7 ForkJoinPool Should Be
Utilized Where It Is More Efficient

I Aparapi
- Pros:

I - Higher Performance

I - Utilize Additional
Resources

- Cons:
I - Limited Usability



Conclusion

I Java 7 ForkJoinPool Should Be
Utilized Where It Is More Efficient

I Aparapi
- Pros:

I - Higher Performance

I - Utilize Additional
Resources

- Cons:
I - Limited Usability



Conclusion

I Java 7 ForkJoinPool Should Be
Utilized Where It Is More Efficient

I Aparapi
- Pros:

I - Higher Performance

I - Utilize Additional
Resources

- Cons:
I - Limited Usability



Questions?


