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Introduction

"For over a decade prophets have voiced the contention that the
organization of a single computer has reached its limits and that
truly significant advances can be made only by interconnection of a
multiplicity of computers." - Gene Amdahl

"We stand at the threshold of a many core world. The hardware
community is ready to cross this threshold. The parallel software
community is not." - Tim Mattson
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Java Benchmarks

I Load A Set Of GeoTIFFs Into A Usable Data Format
I NASA WorldWind Java Data Formats:

I - ElevationModel
I - SurfaceImage

I Performance Comparison Between
ThreadPoolExecutor And ForkJoinPool
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Hardware

I Central Processing Units (CPUs)
I Graphics Processing Units (GPUs)
I Field-Programmable Gate Arrays (FPGAs)
I Digital Signal Processors (DSPs)
I Microcontrollers
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Preparation Kernels

I Bounding Box Construction
I - O(1) Parallel Time

I Bitonic Sort
I - O(log2(n)) Parallel Time

Figure: http://upload.wikimedia.org/wikipedia/en/b/bd/BitonicSort1.svg



Preparation Kernels
Execution Time
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BVH Tree Construction
Kernel

I BVH Tree Construction
I - O(log(n)) Parallel Time
I - O(2Iteration) Parallel Execution Units
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BVH Tree Construction
Kernel Algorithm

1: procedure BuildBVHTree
2: SetUpInitialNode
3: while NotFullySplit do
4: for all NodesWhichExist do
5: for all Dimension ∈ Dimensions do
6: ChooseBestSplit
7: end for
8: SplitNode
9: SetupNodeForDataParallelPortion

10: for all Dimension ∈ Dimensions do
11: if DimensionWasNotSplitDimension then
12: for all Indexes ∈ SortedIndexes do
13: CalculateNewPosition
14: Reorder
15: end for
16: end if



BVH Tree Construction
Kernel Algorithm

17: end for
18: end for
19: end while
20: for all Node ∈ Nodes do
21: CalculateAxisAlignedBoundingBoxes
22: end for
23: for Values ∈ Sorted do
24: SetToSortedIndexInFirstDimension
25: end for
26: end procedure



BVH Tree Construction
Kernel Execution Time
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Intersection Kernel

I Intersection Kernel
I - O(log(n)) Parallel Time
I - O(2Iterations−Iteration) Parallel Execution Units
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Intersection Kernel
Algorithm

1: procedure IntersectBVHTree
2: for all Ray ∈ Rays do in Parallel
3: for all Node ∈ LeafNodes do in Parallel
4: if RayHitsBoundingBox then
5: FindClosestStructureHit
6: end if
7: end for
8: FindClosestNodeHit
9: end for

10: end procedure
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Execution Time
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Questions?


