
On an MPI Rank/Node Layout Utility for
Improving Performance of Communications

Intensive Heterogeneous MPI Applications on SGI
Altix ICE 8200 Systems

Bracy H. Elton
High Performance Technologies Group, Dynamics Research Corporation

AFRL/RCM, DRC HPTG
Wright-Patterson AFB, Ohio, USA

E-mail: belton@drc.com

Abstract—In heterogeneous MPI applications different MPI
processes (ranks)a may have different responsibilities and char-
acteristics in terms of communication and computation. MPI
launch facilities generally offer little in how to lay out such MPI
applications onto systems, particularly in conjunction with batch
submissions and being increasingly cumbersome with increasing
numbers of nodes. Within an application it is possible to orches-
trate desired layout arrangements; however, it typically leaves
the application less portable. We present an MPI rank/compute
node layout utility, targeted for SGI Altix ICE 8200 systems,
such as HPCMP DSRC and DHPI systems, that can be applied
externally to an application or internally in such a way so as to
maintain portability without affecting performance. The utility
helps in assigning MPI ranks to nodes on a system. Performance
might be enhanced, for example, by putting sending and receiving
MPI ranks on the same node. Additionally, the tool can help
in specifying varying ratios of MPI ranks to compute node for
separate groups of MPI ranks. It also provides the capability
to group MPI ranks in blocked or interleaved fashions across
compute nodes. Complex layouts for large numbers of MPI ranks
can be expressed in a concise syntax. When used internally, the
utility can also be made to work on Cray XE6 systems.

I. INTRODUCTION

When running MPI jobs on distributed memory systems,
typically MPI processes are mapped to compute nodes by us-
ing the default behavior of the launch mechanism or by giving
general instructions, e.g., how many MPI ranks (processes)
per compute node. For compute intensive problems, usually
this means using the same number of MPI ranks per compute
node as there are cores on a node. In heterogeneous MPI ap-
plications, different MPI ranks (processes) may have different
responsibilities and characteristics in terms of communication,
computation, and I/O. Examples of such applications include
signal processing and some coupled models (fluids/structures,
fluids/structures/chemistry, ocean/weather). Signal processing

This work performed under the United States Department of Defense (DoD)
High Performance Computing Modernization Program User Productivity
Enhancement and Technology Transfer activities through High Performance
Technologies, Inc. under contract No. GS04T09DBC0017. The opinions
expressed herein are those of the authors and do not necessarily reflect the
views of the US Department of Defense or the employer of the author.

applications may involve a series of processing pipeline stages,
each stage with its own computational characteristics and
each interface between stages with its own communications
characteristics. Additionally, some stages may be paralleized
differently than other stages, e.g., distributed memory vs.
shared memory. In coupled models, each model may involve
its own computational, communications, and implementation
characteristics, and the interfaces between the models will
have their own characteristics as well.

By using “multiple binary launch”, where a single MPI
launch command starts up potentially different executables
on different groups of compute nodes, it is possible to have
different ratios of MPI ranks to compute nodes. This may
help in applications that involve coupling a pure MPI part
of a program with one that uses both distributed memory
(MPI) and shared memory (pThreads, OpenMP) parallelism.
By having the same node listed in one group and in another
group of MPI ranks, it is possible to have non-adjacently
numbered ranks mapped to the same compute node. This may
improve inter-process communication if two non-adjacently
numbered MPI ranks would otherwise communicate over
the inter-node communications network. And generally, by
specifying the mapping between MPI processes and compute
nodes, it may be possible to significantly improve performance
and/or accommodate various resource constraints. However,
orchestrating this for a large job on batch systems, such as
those in the United States Department of Defense (DOD) High
Performance Computing Modernization Program (HPCMP) at
its DOD Supercomputing Resources Centers (DSRCs), may
prove to be painstaking and difficult, for the nodes allocated
to jobs are unknown until the batch job begins. Furthermore, if
an application is complicated and it is not readily known what
arrangement is best, searching for a performance enhancing
MPI rank/compute node mappings can be daunting.

Ideally, we would like a job to start running and then have
each MPI rank determine, in an effort to optimize commu-
nications, its job based on the layout of the nodes assigned
to the job. However, given the complexities of systems and

of programs this may not be feasible. What we can do is
to provide a utility that allows users to specify in a concise
syntax how they want their job organized across the nodes
that are assigned to the job. By combining knowledge of the
application and of the system, users can experiment with var-
ious layouts to determine what works best. Without changing
the code itself, it is possible to rearrange the nodes to the
desired mapping between nodes and MPI ranks. We introduce
a utility that addresses such difficulties and enables users to
layout their jobs on SGI ALtix ICE 8200 systems, such as the
Army Research Laboratory (ARL) Harold and ERDC DSRC
Diamond DSRC systems, with complex mappings in a concise
syntax. The MPI rank/node layout utility introduced here
attempts to address this problem by providing mechanisms
to allow users to have increased control over how their jobs
are laid out on a system. There are two modes of usage.
One provides some capability, though not necessarily optimal,
without changing the user’s MPI application; this works only
on SGI Altix ICE systems. The second mode requires some
code modification; this works on SGI Altix ICE and Cray
XE6 systems. (The code modification regards abstracting MPI
ranks so that there are logical and physical ranks and tables
to translate between them.)

II. MPI RANK/NODE LAYOUT UTILITY

Specific features of the MPI rank/node layout utility include
the following:

• Sorting of the input node list (provided from the batch
system) according to rack, IRU, and node within an IRU.
Sorting can be ascending, descending, or random within
each category. Sorting is optional.

• Calculating the number of required nodes for a particular
layout.

• Listing and reporting details of the processing. This aides
verifying desired behavior of the utility.

• Specifying numbered ranks or a number of ranks
with specific rank numbers determined automatically as
needed (in ascending order from 0).

• Listing multiple layout specifications for groups of ranks.
• Setting default behavior for all specifications.
• Specifying two-dimensional (2-D) blocked layouts. This

indicates MPI ranks spread across in a 2-D blocked
fashion across compute nodes. You can indicate the
number of MPI ranks per node.

• Specifying two groups of MPI ranks interleaved layouts.
Here, two groups of MPI ranks are dispersed across a col-
lection of compute nodes, in such a way that MPI ranks
from each group can be assigned to the same compute
node. This can help facilitate inter-node communications
for two different sets of MPI ranks. For example, MPI
rank 1 and 100 could be on the same node. If these ranks
communicate, then it would be on the same node and
perhaps improved. You can also specify the MPI rank
density (MPI ranks per compute node).

• Specifying the number of ranks per node for each layout
specification. Some groups of MPI ranks may need more

memory than others, in which case different groups
may have different MPI rank densities (MPI ranks per
compute node). Also, an MPI application that has groups
of MPI ranks that also employ threading, e.g., via POSIX
pThreads or OpenMP, may need to have different MPI
rank densities for each group.

• Allowing for gaps in the consumption of nodes. That is,
the utility allows for skipping nodes. This might be useful
in spreading an application out on a system in a way
so as to not consume all the inter-node communications
bandwidth.

In lieu of space to cover the utility’s syntax and ocom-
plete semantics, we provide an illustrative example. Consider
four groups (1–4) of nodes, say, from an signal processing
applications where the groups constitute stages of a processing
pipeline, where communication goes from stage 1 to stage 2 to
stage 3 to stage 4. Suppose group 1 requires a lot of memory
and little computing but stage 2 requires little memory and a
lot of computing. Suppose stage 3 requires a lot of computing
and moderate memory while stage 4 employs multithreading
via OpenMP. Suppose stage 1, 2, 3, and 4 comprise 8, 32,
256, and 1 MPI ranks, respectively. Then
#!/bin/csh
uniq < ${PBS_NODEFILE} > nodefile
set layout = \
"’interleave2d(8,1,32,4):5,block2d(256,16,16,8,8):8,2:1’"

layout -num_nodes -consolidate -layout ${layout}
layout -nodefile nodefile -consolidate \
-layout ${layout} > mynodelist

set cmd = "mpirun -f mynodelist my_app.exe
${cmd}

results in 42 nodes being used for 298 MPI ranks. The first
40 (8+32) MPI ranks will have 5 ranks each, one from stage
1 and 4 from stage 2, each (the first node will have MPI ranks
0, 8, 9, 10, 11). The next 256 MPI ranks will be spread across
256/8 = 32 nodes in a 2×2 array of 8×8 subblocks. Two nodes
(one MPI rank each) comprise stage 4. Changing the “:8” in
the “block2d[...]:8” to “4” results in the 2-D blocked
array having four MPI ranks per node, resulting in employing
74 nodes for (still) 298 MPI ranks.

While the specific syntax for the utility remains unspecified
here, the above example illustrates that it is easy to devise
complex mappings of MPI ranks onto compute nodes. Its
compact and simple syntax readily supports parametric studies
over different layouts.

You can find more information on this utility by running
the following command on the ARL DSRC Harold and ERDC
DSRC Diamond systems:
$PET_HOME/cta/sip/layout-1.0/bin/layout -help

III. SUMMARY

We have briefly introduced a new utility to help with
experimenting with various mappings between MPI ranks
(processes) and compute nodes on SGI Altix ICE systems,
such as the ARL DSRC Harold, ERDC DSRC Diamond,
and AFRL Desch DHPI systems. The utility helps balance
resources across MPI ranks. Examples where this may be
beneficial in improved MPI application throughput include
pipelined signal processing applications and coupled models
(climate/ocean, structures/fluid dynamics).

