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Abstract—In bioinformatics, short read alignment is a 
computationally intensive operation that involves matching 
millions of short strings (called reads) against a reference 
genome.  At the time of writing, a representative run requires to 
match tens of millions of reads of length of about 100 symbols 
against a genome that can consists of a few billion characters.  
Existing short read aligners are expected to report all the 
occurrences of each read as well as allow users to control the 
number of allowed mismatches between reads and reference 
genome.  Popular software implementations such as Bowtie [8] or 
BWA [10] can take many hours or days to execute, making the 
problem an ideal candidate for hardware acceleration. In this 
paper, we describe FHAST (FPGA Hardware Accelerated 
Sequencing-matching Tool), a hardware accelerator that acts as a 
drop-in replacement for short read alignment software.  Our 
architecture masks memory latency by executing many 
concurrent hardware threads accessing memory simultaneously 
and consists of multiple parallel engines to exploit the parallelism 
available to us on an FPGA.  We have implemented and tested 
FHAST on the Convey HC-1 [9], taking advantage of the large 
amount of memory bandwidth available to the system and the 
shared memory image between hardware and software. By 
comparing the performance of FHAST against Bowtie on the 
Convey HC-1 we observed up to ~70X improvement in total end-
to-end execution time, reducing runs that take several hours to a 
few minutes. We also favorably compare the rate of growth when 
expanding FHAST to utilize multiple FPGAs against multiple 
CPUs in Bowtie. 

Index Terms—bioinformatics, short read matching, hardware 
acceleration, FPGA, multithreaded.  

I.  INTRODUCTION 
Besides the sheer volume of data, one major challenge of 

big data and data intensive applications is that they are 
irregular. Traditional techniques for exploiting locality, such as 
caching, are effective for these applications; hence long 
memory latencies have an amplified impact on their 
performance. One objective of multithreaded architectures, as 
proposed in the Tera MTA [1, 2] and later the Cray XMT [3], 
is to mask long memory latencies by context switching 
between concurrent ready threads in the processor. Traditional 
multithreaded architectures have a fixed data-path, configured 
by an instruction set, that supports a pre-determined number of 
concurrent threads (i.e. a fixed number of thread register files 
etc). FPGAs provide an opportunity to explore the potentials of 

customized multithreaded architectures where the data-path, 
control and registers are tailored to the target computation. 

In this paper we propose a customized multithreaded 
architecture that is implemented on an FPGA. The structure of 
the data-path and the number of thread states supported are 
designed for the specific target application. We evaluate this 
model using a novel hardware accelerated DNA sequence 
matching tool called FHAST (FPGA Hardware Accelerated 
Sequencing-matching Tool). FHAST implements a heuristic 
based on the FM-index string-matching algorithm [4,5] 
operating on the Burrows-Wheeler transform (BWT) of the 
genome [6]. In [7] we have described the algorithm, 
implemented on an FPGA, with no multithreading, for finding 
exact matches of reads in the genome. The current 
implementation of FHAST is implemented on the Convey 
Computer HC-1. Its novel features are: (1) it is multithreaded 
and supports up to 512 concurrently executing threads on a 
single accelerator FPGA of the HC-1. (2) It supports exact as 
well as approximate matches with one and two mismatches and 
reports any number of matched locations. (3) It can be used as 
a drop-in replacement for the Bowtie sequence-matching tool 
[8]. We have compared the execution times of FHAST to 
Bowtie for zero, one and two mismatches. The observed 
speedup ranges from 7x to 70x. 

The rest of this paper is organized as follows: Section II 
discusses the background of FM-Index as a searching 
algorithm. Section III and IV discusses of implementation of 
exact and approximate matching. Section V discusses our 
experiment setup and evaluation of results. Section VI reports 
on related work and Section VII states our conclusions. 

II. THE FM-INDEX STRING MATCHING ALGORITHM 
The FM-index string-matching algorithm [3] operates on 

the Burrows-Wheeler transform (BWT) [1] of the text. The 
data structure of the FM-index that indicates a matching pattern 
is composed of two pointers (top and bottom) that specify the 
range of locations a pattern of specific length appears in the 
text. These two pointers are updated with every character of the 
read (the read is the short string being matched against the text 
of the genome). If at any one time the two pointers are equal or 
if top is less than bottom, the search is terminated and that read 
does not exist in the genome. After processing the last 
character in the read, the range between top and bottom 
indicates the number of locations that read exists on the 
genome. 



We have modified this algorithm to make it suitable for 
FPGA implementation [7]. In that scheme the Burrows-
Wheeler transform (BWT) of the text is represented as two 
tables: C-table and I-table. The C and I tables are placed in 
block RAMs and LUTs of the FPGA respectively. Hardware 
accesses these two tables during the search.  

The main limitation of our approach in [7] is the size of 
memory available on the FPGA. Very large texts must be 
divided into sections and processed in batches. This limits the 
inherent speed up of the algorithm because the search is 
effectively performed on sections sequentially instead of 
performing the entire search on the text. Our implementation 
will remedy this main limitation by using external memory to 
store the C-table and use multiple threads to hide long memory 
latencies, each thread representing one read during the search. 
This is achieved through queues where data requested in 
memory is returned in the same order on how it is requested.  

III. STRING MATCHING ARCHITECTURE 
In this section we describe the customized multithreaded 

architecture that implements the FHAST system. Each read is a 
thread. 
 

 
A. Architecture 

Figure 1 shows the block diagram implementing exact 
matching using external memory. The implementation consists 
of five main blocks: the fetch, update, send, receive, and locate 
blocks. Each block consists of queues that are used to hide 
memory latency while performing other tasks. The C-table and 
list of reads are placed on external memory. The I-table is 
placed on LUTs of the FPGA. The fetch block requests external 
memory for readsand generates an ID for each read.  

The update block inserts the reads from the fetch block into 
the send block. The update block determines if a read requires 
further processing or if the read has been determined to be a 
match or mismatch. 

If the read needs more processing, the update block 
forwards the read to the send block, which issues addresses to 
access the C-table for the top and bottom pointers. The I-table 
is also accessed simultaneously using the last character of the 
read. As addresses are issued to external memory, the send 
block places state information of the read intothe receive 
block.This information in the receive block waits for data 
returned from external memory for further processing. Data is 
returned from memory in issue order.  

The send block continuously issuesaddresses of different 
reads to external memory and read information to the receive 

block until the address queue of the external memory or queue 
of the receive block is full. This achieves the multithreaded 
search where multiple reads are waiting in queues for memory 
while other reads are processed. When memory returns data the 
receive block merges it with the waiting thread and passes it to 
the update block. 

The update block decides if a processing of a read 
terminates based on one of two conditions: 1) The read is 
determined to have existed on the text. This happens when the 
two pointers, after processing the last character of the read, 
represent a range. In this case the read is passed into the locate 
block to report the match. 2) A read does not exist on the text 
when data returned from memory represent an empty range of 
locations where a read can possibly occur. In this case the read 
is discarded. In both cases, a new read fro m the fetch block is 
introduced to keep the engine full. 

B. Improving Performance 
The performance of the hardware previously discussed 

highly depends on the number of external memory requests. To 
reduce this number, the memory address are precalculated for 
all character combinations up to a specificlength such that each 
combination of characters represent a range for every C-table. 
Instead of initializing the address to the first and last rows of 
the C-table as indicated in the modified algorithm, we instead 
initialize the top and bottom pointers to the precalculated 
values.  

 
We store the precalculated values in a block RAM and use 

the last l characters to access the precalculated values. Figure 2 
shows the a detailed update block including precalculation. The 
update block decides if a new or old pattern is passed to the 
send block. 

IV. OVERALL APPROXIMATE STRING MATCHING 
ARCHITECTURE  

For minimal change to the structure of the exact matching 
architecture, we use multiple exact matching engines to expand 
the capability to approximate matching. For every n allowed 
mismatch, we use n + 1 exact matching engines. Figure 3 is a 

 
Figure 1: Block diagram of exact string matching 
algorithm using external memory. 

 
Figure 2: Update block including a block RAM for pre-
calculated addresses. 



block diagram that shows the connection between exact 
matching engines. 

A. Architecture 
Engine 0 handles exact string matching and requests reads 

from external memory. When a read on iteration k fails on 
Engine 0, it is passed to Engine 1. The important information 
passed to the next engine is: the read, the iteration count 

reduced by one, and address of pointers on iteration k-1. The 
data passed are inputted to a replace block that follows a 
heuristic that enables mismatched search. The heuristic and the 
replace block are discussed in the next section. Reads that 
successfully pass Engine 1 register as a matching read with one 
mismatching character. A failing read on Engine 1 is passed to 
Engine 2 to detect reads with two mismatching characters. 
Reads that pass the three matching engines are all passed to the 
locate block that determines the location of the read in the text. 

B. Replace Block 
The replace block executes the heuristic allowing 

approximate matching. The heuristic creates three copies of the 
failing read on Engine 0 with each copy having the same 
accepted ID. The failing character of each copy is replaced by 
the other three characters of the alphabet. Each copy becomes a 
thread and inserted to the queues of the searching blocks. 
Figure 4 shows an example of the heuristic showing the 
replacement of the failing character by other characters. 

A flag f is set for each read copy as each is inserted to the 
queue of the update block of Engine 1. This flag indicates that 

a read copy is recently inserted to Engine 1. If the copy fails on 
its first iteration on the new engine, the copy finishes 
processing and is no longer passed to a succeeding engine. If 
the copy proceeds to the next iteration on Engine 1, then the 
flag f of the copy is reset. If the copy fails on any succeeding 

iterations, the copy is passed to Engine 2 where new copies are 
created again.  

Figure 5 shows the block diagram of the replace block 
inserted on the update block of Engine 1. Engine 1 accepts 
reads from the replace block instead of the fetch block. The 
update block then selects reads from the previous engine when 
processing of a read ends on Engine 1. 

C. Locate Block 
Reads that exit from the matching engines are passed to a 

locate block that searches the location of the pattern on the text. 
The data passed to the locate block for each read are the pattern 

 
Figure 4: A failing character of the read creates three 
copies of the read with the failing character replaced. 

 
Figure 3: Block diagram of approximate matching 
architecture using n exact string matching architectures. 

 
Figure 5: Update block including the replace block for 
approximate matching. 

 
Figure 6: Locate block have send and receive queues 
similar to send and receive blocks for finding the 
location of a pattern from the suffix array residing in 
main memory. 



ID and the last pointers returned from memory. The 
architecture of the locate block is similar to send and receive 
blocks. Figure 6 shows the block diagram of the locate block 
consisting of queues for sending addresses to external memory 
and waiting data returning from memory. 

The locate block sends the top pointer as an address to the 

suffix array placed in external memory. External memory 
returns the location that is written to the output file. If a read 
exists at multiple locations, we send multiple addresses to 
memory for the required locations.  

V. IMPLEMENTATION AND EVALUATION 
In this section we describe the implementation of FHAST 

on the Convey Computers HC-1. 

A. FHAST Hardware/Software Implementation 
Figure 7 illustrates the role of the hardware in searching for 

the reads on the text. The software performs memory allocation 
for reading the C tables, the suffix arrays, the reads and writing 
the results to external memory. After allocating memory and 
setting up the coprocessor registers, the host CPU calls the 
coprocessor to perform the search algorithm that writes 
matching patterns to memory allocated by software. Software 
then writes results to an output file. 

We conducted our experiments on the Convey HC-1 hybrid 
core computing system composed of a dual core Intel Xeon 
processor running at 2.13 GHz as the host processor and four 
Xilinx Virtex 5 FPGAs as coprocessor. All processors, both 
host processor and FPGA coprocessors, have one shared cache 
coherent memory. Each FPGA has16 memory channels from 
eight memory controllers. This memory subsystem supports a 

peak bandwidth of 80 GB/s. We implemented designs for a 
pattern length of 101 characters that supports 0, 1, and 2 
mismatches using only one FPGA in the coprocessor. The 
design is synthesized with place and route on a Xilinx Virtex 5 
(XC5VLX330) FPGA that occupies 23,923 slices or 46% of 
the FPGA. We set the frequency to 150 MHz that is the 
maximum operating frequency of the memory controllers of 
the Convey HC1. 

TABLE I.  SPECIFICATIONS OF CPU RUNNING BOWTIE 

 CPU 1 CPU 2 

CPU type Xeon 
L540B 

Xeon 
E5520 

# of cores 2 dual cores 2 quad 
cores 

Memory size 192 GB 24 GB 
Cache size 6 MB 8 MB 
Frequency 2.13 GHz 2.27 GHz 

B. Analysis and Comparison to Bowtie 
We compare our results to the Bowtie software tool used 

for mapping DNA sequences. We executed the Bowtie 
software tool using two systems whose specifications are 
shown in Table 1. CPU 1 is the host CPU on the HC-1. We 
measured the execution time of searching 18 million unique 
reads with 101 characters in length on Chromosome 14 of the 
human genome having a length of 107 million characters. 

Table 2 shows the execution time in seconds of FHAST and 
Bowtie running in both systems in detecting the reads having 
zero, one and two mismatches. The table shows longer 
execution time of Bowtie running in both CPUs compared to 
FHAST. Notice that there is a significant difference in the 
execution time of FHAST between searching exact and 
approximate matches. This is because the reverse of a read is 
required in the search to detect mismatches. This additional 
copy of a read represents an additional thread that uses up 
bandwidth that lengthens the execution time. Also notice that 
with FHAST there is no significant difference in execution 
time between searching for one and two mismatches.  
This small difference in execution time is due to the 
simultaneous searching of reads in the three engines 
concurrently. The execution time for Bowtie increases 
significantly as more mismatches are allowed. Figure 7 shows 
the speed up of FHAST over Bowtie for the two CPUs. 
Observe that the highest speed up is achieved in detecting two 
mismatches where Bowtie execution time is the longest. By 
masking memory latency, the customized multithreading 
approach allows us to achieve better than 70x speedup on a 
150 MHz FPGA over large CPUs. 

 
Figure 7: Role of software is mainly on memory 
allocation and reporting. Hardware performs the 
search algorithm. 



TABLE II.   EXECUTION TIME (IN SECONDS) OF FHAST AND BOWTIE. FHAST 
IS RUNNING ON A SINGLE FPGA, BOWTIE ON A SINGLE CORE, 18 MILLION 

READS MATCHED IN CHROMOSOME 14. 

Mismatch FHAST Bowtie 
CPU1 CPU2 

0 55.43 715 404 
1 71.17 1924 1142 
2 73.25 5410 3698 

 
We have also evaluated FHAST on all four accelerator 

FPGAs (AEs) of the Convey HC-1. The execution of FHAST 
relies on pre- and post-processing of the read data in software. 
The breakdown of the FHAST execution time, in software and 
hardware, shows the software phases are the limiting factor but 
the hardware achieves a near linear speedup.  

The multithreaded execution time for Bowtie, using up to 
16 cores, and the speedup over a single thread, on the same 
data set is shown in Table III. Note that the execution time of 
FHAST, on four FPGAs, (138 seconds) is significantly lower 
than that of Bowtie with 16 cores (336 seconds) by a factor of 
2.43. 

TABLE III.  MULTITHREADED EXECUTION TIME OF BOWTIE AND SPEEDUP 
OVER SINGLE THREAD 

Threads 1 2 4 8 16 
Time (s) 3325 1772 896 501 336 
Speedup 1 1.88 3.71 6.64 9.90 

 

VI. RELATED WORKS 
The first use of FPGA in accelerating edit distance 

calculations on DNA strings appeared in [21]. Subsequent 
work focused, mostly, on accelerators for dynamic 
programming algorithms such as Smith-Waterman algorithm. 
In [15], the algorithm was parameterized based on the length of 
the pattern, allowed mismatches, and number of symbols. In 
[12, 13, 16, 17], systolic arrays were used to execute the 

algorithm. In [13], the target is optimizing the cell that is the 
fundamental block in faster execution. In [12], the focus is 
using systolic array to take advantage of parallelism inherent to 
the algorithm. In [16], the systolic array structure is 
automatically generated using a compiler. In [17], the Smith-

Waterman algorithm was implemented on a supercomputing 
platform using FPGAs as coprocessors. The platform included 
a highly pipelined system that reduces FPGA resource 
utilization.  

Algorithms based on seeds and hash tables that perform 
DNA sequence matching have also been explored. Seeds are 
shorter sequences of reads where a hash table is built based on 
the location of the seed on the genome. The index of the hash 
tables serves as reference if reads appear on the genome. The 
entire read is then verified on the location listed on the hash 
table. One tool that uses seeds is BLAST [18] and it has also 
been implemented on FPGAs. In [20], the seed generation 
phase of BLAST was accelerated. In [19], BLAST is 
implemented on an FPGA with an optimized verification 
phase. A combination of seeds and the Smith-Waterman 
algorithm has also been implemented in [11]. This 
implementation first maps the seeds using the hash table 
previously discussed and the then uses the Smith-Waterman 
algorithm for the alignment. 

Besides using seeds and dynamic programming, finite 
automata have also been used for exact sequence matching. 
The implementation of the Aho-Corasick algorithm in FPGAs 
has been explored in [14] where protein sequences are matched 
on a reference genome. The brute force approach has also been 
implemented in [22]. In this approach, the reads are placed in 
registers and the genome is streamed while the searching is 
performed by direct comparison of characters. 

VII. CONCLUSION 
In this paper we have described and demonstrated an 

FPGA-based customized multithreading approach to hide long 
memory latencies using the FHAST tool for matching DNA 
short reads. We compared the FHAST’s execution time and 
output results to Bowtie, which is a widely used tool for 
sequencing reads. Experimental results show that FHAST 
achieves a speedup of up to 70x over Bowtie. Allowing more 
mismatches increases the speed up compared to Bowtie. This is 

 
Figure 7: Speed up of FHAST and Bowtie for exact 
matches, one and two mismatches.  

 
Figure 8: Breakdown of the FHAST execution in hardware and 
software times using 1 to 4 Accelerator Engines (FPGAs) 



because the execution time of Bowtie dramatically increases 
while only a minimal increase in execution time is observed in 
FHAST when allowing for more mismatches. FHAST could 
handle even a higher number mismatches by adding more 
engines without any significant increase in execution time. The 
parallel execution of FHAST is limited by the software pre- 
and post-processing necessary to prepare the data for hardware 
processing and display the results in the same format as 
Bowtie. However, in spite of this overhead, FHAST executing 
on four FPGAs is 2.43 times than Bowtie on 16 cores. 
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