
Multithreaded FPGA Acceleration of DNA Sequence
Mapping

Edward B. Fernandez, Walid A. Najjar, Stefano
Lonardi

University of California Riverside
Riverside, USA

{efernand,najjar,lonardi}@cs.ucr.edu

Jason Villarreal
Jacquard Computing Inc.

Riverside, USA
Jason@jacquardcomputing.com

Abstract—In bioinformatics, short read alignment is a
computationally intensive operation that involves matching
millions of short strings (called reads) against a reference
genome. At the time of writing, a representative run requires to
match tens of millions of reads of length of about 100 symbols
against a genome that can consists of a few billion characters.
Existing short read aligners are expected to report all the
occurrences of each read as well as allow users to control the
number of allowed mismatches between reads and reference
genome. Popular software implementations such as Bowtie [8] or
BWA [10] can take many hours or days to execute, making the
problem an ideal candidate for hardware acceleration. In this
paper, we describe FHAST (FPGA Hardware Accelerated
Sequencing-matching Tool), a hardware accelerator that acts as a
drop-in replacement for short read alignment software. Our
architecture masks memory latency by executing many
concurrent hardware threads accessing memory simultaneously
and consists of multiple parallel engines to exploit the parallelism
available to us on an FPGA. We have implemented and tested
FHAST on the Convey HC-1 [9], taking advantage of the large
amount of memory bandwidth available to the system and the
shared memory image between hardware and software. By
comparing the performance of FHAST against Bowtie on the
Convey HC-1 we observed up to ~70X improvement in total end-
to-end execution time, reducing runs that take several hours to a
few minutes. We also favorably compare the rate of growth when
expanding FHAST to utilize multiple FPGAs against multiple
CPUs in Bowtie.

Index Terms—bioinformatics, short read matching, hardware
acceleration, FPGA, multithreaded.

I. INTRODUCTION
Besides the sheer volume of data, one major challenge of

big data and data intensive applications is that they are
irregular. Traditional techniques for exploiting locality, such as
caching, are effective for these applications; hence long
memory latencies have an amplified impact on their
performance. One objective of multithreaded architectures, as
proposed in the Tera MTA [1, 2] and later the Cray XMT [3],
is to mask long memory latencies by context switching
between concurrent ready threads in the processor. Traditional
multithreaded architectures have a fixed data-path, configured
by an instruction set, that supports a pre-determined number of
concurrent threads (i.e. a fixed number of thread register files
etc). FPGAs provide an opportunity to explore the potentials of

customized multithreaded architectures where the data-path,
control and registers are tailored to the target computation.

In this paper we propose a customized multithreaded
architecture that is implemented on an FPGA. The structure of
the data-path and the number of thread states supported are
designed for the specific target application. We evaluate this
model using a novel hardware accelerated DNA sequence
matching tool called FHAST (FPGA Hardware Accelerated
Sequencing-matching Tool). FHAST implements a heuristic
based on the FM-index string-matching algorithm [4,5]
operating on the Burrows-Wheeler transform (BWT) of the
genome [6]. In [7] we have described the algorithm,
implemented on an FPGA, with no multithreading, for finding
exact matches of reads in the genome. The current
implementation of FHAST is implemented on the Convey
Computer HC-1. Its novel features are: (1) it is multithreaded
and supports up to 512 concurrently executing threads on a
single accelerator FPGA of the HC-1. (2) It supports exact as
well as approximate matches with one and two mismatches and
reports any number of matched locations. (3) It can be used as
a drop-in replacement for the Bowtie sequence-matching tool
[8]. We have compared the execution times of FHAST to
Bowtie for zero, one and two mismatches. The observed
speedup ranges from 7x to 70x.

The rest of this paper is organized as follows: Section II
discusses the background of FM-Index as a searching
algorithm. Section III and IV discusses of implementation of
exact and approximate matching. Section V discusses our
experiment setup and evaluation of results. Section VI reports
on related work and Section VII states our conclusions.

II. THE FM-INDEX STRING MATCHING ALGORITHM
The FM-index string-matching algorithm [3] operates on

the Burrows-Wheeler transform (BWT) [1] of the text. The
data structure of the FM-index that indicates a matching pattern
is composed of two pointers (top and bottom) that specify the
range of locations a pattern of specific length appears in the
text. These two pointers are updated with every character of the
read (the read is the short string being matched against the text
of the genome). If at any one time the two pointers are equal or
if top is less than bottom, the search is terminated and that read
does not exist in the genome. After processing the last
character in the read, the range between top and bottom
indicates the number of locations that read exists on the
genome.

We have modified this algorithm to make it suitable for
FPGA implementation [7]. In that scheme the Burrows-
Wheeler transform (BWT) of the text is represented as two
tables: C-table and I-table. The C and I tables are placed in
block RAMs and LUTs of the FPGA respectively. Hardware
accesses these two tables during the search.

The main limitation of our approach in [7] is the size of
memory available on the FPGA. Very large texts must be
divided into sections and processed in batches. This limits the
inherent speed up of the algorithm because the search is
effectively performed on sections sequentially instead of
performing the entire search on the text. Our implementation
will remedy this main limitation by using external memory to
store the C-table and use multiple threads to hide long memory
latencies, each thread representing one read during the search.
This is achieved through queues where data requested in
memory is returned in the same order on how it is requested.

III. STRING MATCHING ARCHITECTURE
In this section we describe the customized multithreaded

architecture that implements the FHAST system. Each read is a
thread.

A. Architecture

Figure 1 shows the block diagram implementing exact
matching using external memory. The implementation consists
of five main blocks: the fetch, update, send, receive, and locate
blocks. Each block consists of queues that are used to hide
memory latency while performing other tasks. The C-table and
list of reads are placed on external memory. The I-table is
placed on LUTs of the FPGA. The fetch block requests external
memory for readsand generates an ID for each read.

The update block inserts the reads from the fetch block into
the send block. The update block determines if a read requires
further processing or if the read has been determined to be a
match or mismatch.

If the read needs more processing, the update block
forwards the read to the send block, which issues addresses to
access the C-table for the top and bottom pointers. The I-table
is also accessed simultaneously using the last character of the
read. As addresses are issued to external memory, the send
block places state information of the read intothe receive
block.This information in the receive block waits for data
returned from external memory for further processing. Data is
returned from memory in issue order.

The send block continuously issuesaddresses of different
reads to external memory and read information to the receive

block until the address queue of the external memory or queue
of the receive block is full. This achieves the multithreaded
search where multiple reads are waiting in queues for memory
while other reads are processed. When memory returns data the
receive block merges it with the waiting thread and passes it to
the update block.

The update block decides if a processing of a read
terminates based on one of two conditions: 1) The read is
determined to have existed on the text. This happens when the
two pointers, after processing the last character of the read,
represent a range. In this case the read is passed into the locate
block to report the match. 2) A read does not exist on the text
when data returned from memory represent an empty range of
locations where a read can possibly occur. In this case the read
is discarded. In both cases, a new read fro m the fetch block is
introduced to keep the engine full.

B. Improving Performance
The performance of the hardware previously discussed

highly depends on the number of external memory requests. To
reduce this number, the memory address are precalculated for
all character combinations up to a specificlength such that each
combination of characters represent a range for every C-table.
Instead of initializing the address to the first and last rows of
the C-table as indicated in the modified algorithm, we instead
initialize the top and bottom pointers to the precalculated
values.

We store the precalculated values in a block RAM and use

the last l characters to access the precalculated values. Figure 2
shows the a detailed update block including precalculation. The
update block decides if a new or old pattern is passed to the
send block.

IV. OVERALL APPROXIMATE STRING MATCHING
ARCHITECTURE

For minimal change to the structure of the exact matching
architecture, we use multiple exact matching engines to expand
the capability to approximate matching. For every n allowed
mismatch, we use n + 1 exact matching engines. Figure 3 is a

Figure 1: Block diagram of exact string matching
algorithm using external memory.

Figure 2: Update block including a block RAM for pre-
calculated addresses.

block diagram that shows the connection between exact
matching engines.

A. Architecture
Engine 0 handles exact string matching and requests reads

from external memory. When a read on iteration k fails on
Engine 0, it is passed to Engine 1. The important information
passed to the next engine is: the read, the iteration count

reduced by one, and address of pointers on iteration k-1. The
data passed are inputted to a replace block that follows a
heuristic that enables mismatched search. The heuristic and the
replace block are discussed in the next section. Reads that
successfully pass Engine 1 register as a matching read with one
mismatching character. A failing read on Engine 1 is passed to
Engine 2 to detect reads with two mismatching characters.
Reads that pass the three matching engines are all passed to the
locate block that determines the location of the read in the text.

B. Replace Block
The replace block executes the heuristic allowing

approximate matching. The heuristic creates three copies of the
failing read on Engine 0 with each copy having the same
accepted ID. The failing character of each copy is replaced by
the other three characters of the alphabet. Each copy becomes a
thread and inserted to the queues of the searching blocks.
Figure 4 shows an example of the heuristic showing the
replacement of the failing character by other characters.

A flag f is set for each read copy as each is inserted to the
queue of the update block of Engine 1. This flag indicates that

a read copy is recently inserted to Engine 1. If the copy fails on
its first iteration on the new engine, the copy finishes
processing and is no longer passed to a succeeding engine. If
the copy proceeds to the next iteration on Engine 1, then the
flag f of the copy is reset. If the copy fails on any succeeding

iterations, the copy is passed to Engine 2 where new copies are
created again.

Figure 5 shows the block diagram of the replace block
inserted on the update block of Engine 1. Engine 1 accepts
reads from the replace block instead of the fetch block. The
update block then selects reads from the previous engine when
processing of a read ends on Engine 1.

C. Locate Block
Reads that exit from the matching engines are passed to a

locate block that searches the location of the pattern on the text.
The data passed to the locate block for each read are the pattern

Figure 4: A failing character of the read creates three
copies of the read with the failing character replaced.

Figure 3: Block diagram of approximate matching
architecture using n exact string matching architectures.

Figure 5: Update block including the replace block for
approximate matching.

Figure 6: Locate block have send and receive queues
similar to send and receive blocks for finding the
location of a pattern from the suffix array residing in
main memory.

ID and the last pointers returned from memory. The
architecture of the locate block is similar to send and receive
blocks. Figure 6 shows the block diagram of the locate block
consisting of queues for sending addresses to external memory
and waiting data returning from memory.

The locate block sends the top pointer as an address to the

suffix array placed in external memory. External memory
returns the location that is written to the output file. If a read
exists at multiple locations, we send multiple addresses to
memory for the required locations.

V. IMPLEMENTATION AND EVALUATION
In this section we describe the implementation of FHAST

on the Convey Computers HC-1.

A. FHAST Hardware/Software Implementation
Figure 7 illustrates the role of the hardware in searching for

the reads on the text. The software performs memory allocation
for reading the C tables, the suffix arrays, the reads and writing
the results to external memory. After allocating memory and
setting up the coprocessor registers, the host CPU calls the
coprocessor to perform the search algorithm that writes
matching patterns to memory allocated by software. Software
then writes results to an output file.

We conducted our experiments on the Convey HC-1 hybrid
core computing system composed of a dual core Intel Xeon
processor running at 2.13 GHz as the host processor and four
Xilinx Virtex 5 FPGAs as coprocessor. All processors, both
host processor and FPGA coprocessors, have one shared cache
coherent memory. Each FPGA has16 memory channels from
eight memory controllers. This memory subsystem supports a

peak bandwidth of 80 GB/s. We implemented designs for a
pattern length of 101 characters that supports 0, 1, and 2
mismatches using only one FPGA in the coprocessor. The
design is synthesized with place and route on a Xilinx Virtex 5
(XC5VLX330) FPGA that occupies 23,923 slices or 46% of
the FPGA. We set the frequency to 150 MHz that is the
maximum operating frequency of the memory controllers of
the Convey HC1.

TABLE I. SPECIFICATIONS OF CPU RUNNING BOWTIE

 CPU 1 CPU 2

CPU type Xeon
L540B

Xeon
E5520

of cores 2 dual cores 2 quad
cores

Memory size 192 GB 24 GB
Cache size 6 MB 8 MB
Frequency 2.13 GHz 2.27 GHz

B. Analysis and Comparison to Bowtie
We compare our results to the Bowtie software tool used

for mapping DNA sequences. We executed the Bowtie
software tool using two systems whose specifications are
shown in Table 1. CPU 1 is the host CPU on the HC-1. We
measured the execution time of searching 18 million unique
reads with 101 characters in length on Chromosome 14 of the
human genome having a length of 107 million characters.

Table 2 shows the execution time in seconds of FHAST and
Bowtie running in both systems in detecting the reads having
zero, one and two mismatches. The table shows longer
execution time of Bowtie running in both CPUs compared to
FHAST. Notice that there is a significant difference in the
execution time of FHAST between searching exact and
approximate matches. This is because the reverse of a read is
required in the search to detect mismatches. This additional
copy of a read represents an additional thread that uses up
bandwidth that lengthens the execution time. Also notice that
with FHAST there is no significant difference in execution
time between searching for one and two mismatches.
This small difference in execution time is due to the
simultaneous searching of reads in the three engines
concurrently. The execution time for Bowtie increases
significantly as more mismatches are allowed. Figure 7 shows
the speed up of FHAST over Bowtie for the two CPUs.
Observe that the highest speed up is achieved in detecting two
mismatches where Bowtie execution time is the longest. By
masking memory latency, the customized multithreading
approach allows us to achieve better than 70x speedup on a
150 MHz FPGA over large CPUs.

Figure 7: Role of software is mainly on memory
allocation and reporting. Hardware performs the
search algorithm.

TABLE II. EXECUTION TIME (IN SECONDS) OF FHAST AND BOWTIE. FHAST
IS RUNNING ON A SINGLE FPGA, BOWTIE ON A SINGLE CORE, 18 MILLION

READS MATCHED IN CHROMOSOME 14.

Mismatch FHAST Bowtie
CPU1 CPU2

0 55.43 715 404
1 71.17 1924 1142
2 73.25 5410 3698

We have also evaluated FHAST on all four accelerator

FPGAs (AEs) of the Convey HC-1. The execution of FHAST
relies on pre- and post-processing of the read data in software.
The breakdown of the FHAST execution time, in software and
hardware, shows the software phases are the limiting factor but
the hardware achieves a near linear speedup.

The multithreaded execution time for Bowtie, using up to
16 cores, and the speedup over a single thread, on the same
data set is shown in Table III. Note that the execution time of
FHAST, on four FPGAs, (138 seconds) is significantly lower
than that of Bowtie with 16 cores (336 seconds) by a factor of
2.43.

TABLE III. MULTITHREADED EXECUTION TIME OF BOWTIE AND SPEEDUP
OVER SINGLE THREAD

Threads 1 2 4 8 16
Time (s) 3325 1772 896 501 336
Speedup 1 1.88 3.71 6.64 9.90

VI. RELATED WORKS
The first use of FPGA in accelerating edit distance

calculations on DNA strings appeared in [21]. Subsequent
work focused, mostly, on accelerators for dynamic
programming algorithms such as Smith-Waterman algorithm.
In [15], the algorithm was parameterized based on the length of
the pattern, allowed mismatches, and number of symbols. In
[12, 13, 16, 17], systolic arrays were used to execute the

algorithm. In [13], the target is optimizing the cell that is the
fundamental block in faster execution. In [12], the focus is
using systolic array to take advantage of parallelism inherent to
the algorithm. In [16], the systolic array structure is
automatically generated using a compiler. In [17], the Smith-

Waterman algorithm was implemented on a supercomputing
platform using FPGAs as coprocessors. The platform included
a highly pipelined system that reduces FPGA resource
utilization.

Algorithms based on seeds and hash tables that perform
DNA sequence matching have also been explored. Seeds are
shorter sequences of reads where a hash table is built based on
the location of the seed on the genome. The index of the hash
tables serves as reference if reads appear on the genome. The
entire read is then verified on the location listed on the hash
table. One tool that uses seeds is BLAST [18] and it has also
been implemented on FPGAs. In [20], the seed generation
phase of BLAST was accelerated. In [19], BLAST is
implemented on an FPGA with an optimized verification
phase. A combination of seeds and the Smith-Waterman
algorithm has also been implemented in [11]. This
implementation first maps the seeds using the hash table
previously discussed and the then uses the Smith-Waterman
algorithm for the alignment.

Besides using seeds and dynamic programming, finite
automata have also been used for exact sequence matching.
The implementation of the Aho-Corasick algorithm in FPGAs
has been explored in [14] where protein sequences are matched
on a reference genome. The brute force approach has also been
implemented in [22]. In this approach, the reads are placed in
registers and the genome is streamed while the searching is
performed by direct comparison of characters.

VII. CONCLUSION
In this paper we have described and demonstrated an

FPGA-based customized multithreading approach to hide long
memory latencies using the FHAST tool for matching DNA
short reads. We compared the FHAST’s execution time and
output results to Bowtie, which is a widely used tool for
sequencing reads. Experimental results show that FHAST
achieves a speedup of up to 70x over Bowtie. Allowing more
mismatches increases the speed up compared to Bowtie. This is

Figure 7: Speed up of FHAST and Bowtie for exact
matches, one and two mismatches.

Figure 8: Breakdown of the FHAST execution in hardware and
software times using 1 to 4 Accelerator Engines (FPGAs)

because the execution time of Bowtie dramatically increases
while only a minimal increase in execution time is observed in
FHAST when allowing for more mismatches. FHAST could
handle even a higher number mismatches by adding more
engines without any significant increase in execution time. The
parallel execution of FHAST is limited by the software pre-
and post-processing necessary to prepare the data for hardware
processing and display the results in the same format as
Bowtie. However, in spite of this overhead, FHAST executing
on four FPGAs is 2.43 times than Bowtie on 16 cores.

ACKNOWLEDGMENT
In this work W. Najjar and E. Fernandez are supported in

part by NSF Awards 0905509, 0811416 and by a Cisco
Systems research grant. S. Lonardi is supported by NIH Award
AI85077-01A1 and NSF Award DBI 1062301. J. Villarreal is
supported at Jacquard Computing Inc. by AFRL contract
FA9453-09-C-0173.

REFERENCES
[1] G. Alverson, R. Alverson, D. Callahan, B. Koblenz, A. Porterfield, and

B. Smith. “Exploiting heterogeneous parallelism on a multithreaded
multiprocessor.” In Proc. of the 6th Int. Conf. on Supercomputing, ICS
’92, pages 188–197, New York, NY, USA, 1992. ACM.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and
B. Smith. “The Tera Computer System.” In Proc. of the 4th Int. Conf. on
Supercomputing, ICS ’90,pages 1–6, New York, NY, USA, 1990. ACM.

[3] J. Feo, D. Harper, S. Kahan, and P. Konecny. “ELDORADO.” In Proc.
of the 2nd Conference on Computing Frontiers, CF ’05, pages 28-34,
New York, NY, USA, 2005. ACM.

[4] P. Ferrragina and G. Manzini, “Opportunistic Data Structures with
Application.” In Proc. 41st IEEE Symposium on Foundations of
Computer Science, pp. 390-398, 2000.

[5] P. Ferrragina and G. Manzini, “An Experimental Study of an
Opportunistic Index.” In Proc. 12th ACM-SIAM Symposium on
Discrete Algorithms, pp. 269-278, 2001.

[6] M. Burrows and D.J. Wheeler, A Block-sorting Lossless Data
Compression Algorithm, SRC Research Report, May 1994.

[7] E. Fernandez, W. Najjar, and S. Lonardi, “String Matching in Hardware
using the FM-Index.” In Proc. IEEE Int. Symp. on Field-Programmable
Custom Computing Machines, FCCM 2011, pages 218-225, Salt Lake
City, UT, USA, 2011.

[8] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, “Ultrafast and
Memory-Efficient Alignment of Short DNA sequences to the Human
Genome.” Genome Biology, 2009.

[9] www.conveycomputer.com.
[10] H. Li and R. Durbin, “Fast and Accurate Short Read Alignment with

Burrows-Wheeler Transforms.” Bioinformatics, 2009.
[11] C. Olson, M. Kim, C. Clauson, B. Kogon, C. Ebeling, S. Hauck, W.

Ruzzo, “Hardware Acceleration of Short Read Mapping.” in Proc. IEEE
Int. Symp. on Field-Programmable Custom Computing Machines,
FCCM 2012.

[12] G. Caffarena, S. Bojanic, J. Lopez, C. Pedreira, and O. Nieto-Taladriz.
“High-Speed Systolic Array for Gene Matching.” Int. Symp.on Field
Programmable Gate Arrays (FPGA), 2004.

[13] M. Gok and C. Yilmaz, Efficient Cell Designs for Systolic Smith-
Waterman Implementations”. Int. Conf. on Field Programmable Logic
and Applications (FPL), 2006.

[14] Y. Dandass, S. Burgess, M. Lawrence, and Susan Bridges. Accelerating
String Set Matching in FPGA Hardware for Bioinformatic Research.
BMC Bioinformatics, April, Vol. 9, No. 197, pp1471-2105, 2008.

[15] K. Benkrid, Y. Liu, and A. Benkrid. A Highly Parameterized and
Efficient FPGA-Based Skeleton for Pairwise Biological Sequence
Alignment. IEEE Trans. on Very Large Scale Integration Systems, Vol.
17, No. 4, pp. 561-570. April 2009.

[16] B. Buyukkurt and W. Najjar. Compiler Generated Systolic Arrays for
Wavefront Algorithm Acceleration on FPGAs. In Proc. of 18th Int. Conf.
on Field Programmable Logic and Applications (FPL), 2008.

[17] P. Zhang, G. Tan, and G. Gao. Implementation of the Smith-Waterman
algorithm on a Reconfigurable Supercomputing Platform. Conference
on High Performance Networking and Computing, 2007.

[18] BLAST. http://blast.ncbi.nlm.nih.gov/Blast.cgi
[19] M. Herbordt, J. Model, Y. Gu, B. Sukhwani, and T. Van Court. Single

Pass, BLAST-Like, Approximate String Matching on FPGAs. In Proc. of
IEEE Symp. on Field Programmable Custom Computing Machines
(FCCM), 2006.

[20] A. Jacob, J. Lancaster, J. Buhler, and R. Chamberlain. FPGA
accelerated seed generation in Mercury BLASTP. In Proc. of IEEE
Symp. on Field Programmable Custom Computing Machines (FCCM),
2007.

[21] D.T. Hoang; Searching genetic databases on Splash 2,Proc. IEEE
Workshop on FPGAs for Custom Computing Machines (FCCM), 1993.

[22] E. Fernandez, W. Najjar, E. Harris and S. Lonardi, Exploration of Short
Reads Genome Mapping in Hardware, In Proc. of 20th Int. Conf. on
Field Programmable Logic and Application, 2010.

