
An update on Scalable Implementation of Primitives for Homomorphic
EncRyption – FPGA implementation using Simulink

David Bruce Cousins, Kurt Rohloff, Chris Peikert, Rick Schantz

Raytheon BBN Technologies, Georgia Institute of Technology

{dcousins, krohloff, schantz}@bbn.com cpeikert@cc.gatech.edu

Abstract
Accellerating the development of a practical Fully

Homomorphic Encryption (FHE) scheme is the goal of the

DARPA PROCEED program. For the past year, this

program has had as its focus the acceleration of various

aspects of the FHE concept toward practical

implementation and use. FHE would be a game-changing

technology to enable secure, general computation on

encrypted data, e.g., on untrusted off-site hardware.

However, FHE will still require several orders of magnitude

improvement in computation before it will be practical for

widespread use.

Recent theoretical breakthroughs demonstrated the

existence of FHE schemes [1, 2], and to date much progress

has been made in both algorithmic and implementation

improvements. Specifically our contribution to the Proceed

program has been the development of FPGA based

hardware primitives to accelerate the computation on

encrypted data using FHE based on lattice techniques [3].

Our project, SIPHER, has been using a state of the art tool-

chain developed by Mathworks to implement VHDL code

for FPGA circuits directly from Simulink models. Our

baseline Homomorphic Encryption prototypes are

developed directly in Matlab using the fixed point toolbox

to perform the required integer arithmetic. Constant

improvements in algorithms require us to be able to quickly

implement them in a high level language such as Matlab.

We reported on our initial results at HPEC 2011 [4]. In the

past year, increases in algorithm complexity have

introduced several new design requirements for our FPGA

implementation. This report presents new Simulink

primitives that had to be developed to deal with these new

requirements.

A review of Fully and Somewhat

Homomorphic Encryption
Fully Homomorphic Encryption (FHE) holds the promise to

securely run arbitrary computations over encrypted data on

untrusted computation hosts [2]. The general FHE concept

of operations is that sensitive data is encrypted with a

public key, then sent to an untrusted computation host,

which can perform arbitrary computations on the encrypted

data without first needing to decrypt it. It has been shown

to be theoretically possible to evaluate arbitrary programs

using just two special purpose FHE operations, EvalAdd

and EvalMult, which at the simplest level, roughly

correspond to bitwise XOR and AND gates operating on

encrypted bits. A sequence of these operations is run

against the encrypted data, resulting in an encryption of the

output of the original program run on the unencrypted data.

This encrypted result can then be sent back to the original

client, who decrypts the result using its secret key. The

encrypted data is protected at all times with reasonable

security guarantees based on computational hardness

results.

A ‘Fully’ Homomorphic Encryption scheme allows and

unlimited number of these Eval operations to be performed.

All known FHE schemes are based on computationally hard

stochastic lattice theory problems, which add some noise

with each operation and require a very computationally

expensive “recryption” operation that is periodically run on

intermediate ciphertexts to keep the noise at a level that still

permits decryption. A ‘Somewhat’ Homomorphic scheme,

on the other hand, supports several (but not unlimited)

EvalMult and EvalAdd operations while preserving the

correctness of decryption. In other words, SHE can schemes

support secure computation for only a small subset of

programs. By focusing on an SHE scheme, we can direct

our research towards the implementation of efficient

hardware primitives, while the FHE community develops

more efficient recryption algorithms.

Recent Developments in the SIPHER SHE

Scheme
Our current SHE scheme relies on operations that are

generally inefficient to implement on standard CPU

architectures (i.e. modular arithmetic with a large modulus).

The EvalAdd and EvalMult operations for example are

element wise vector adds and multiplies taken modulo some

particular prime integer q. These are trivial to express

using Matlab: c = mod(a+b, q) and c = mod(a.*b, q).

For convenience most of the previously published SHE and

FHE implementations have used standard tools such as the

GNU Multiple Precision Arithmetic Library (GMP) [5],

which enable researchers to code operations using very

large integers. This limits their focus to operations on CPUs

and does not allow them to take advantage of specialized

parallel computation hardware like FPGAs which provide

highly cost-effective parallelism. Our approach to

developing the FPGA code for implementing EvalAdd and

EvalMult is to develop arithmetic circuits that will achieve

high throughput by using parallelism and pipelining on the

FPGA.

We initially develop prototype descriptions in Matlab that

we re-implement in a stream-oriented hardware

implementable manner in Simulink. The results of the

implementations are compared to verify correctness. A

conversion from Simulink to VHDL is done in a completely

automated fashion using Mathwork’s HDL coder. This tool

chain provides us the means to develop our primitives,

including cyclic VHDL based FPGA prototyping, much

Sponsored by Air Force Research Laboratory (AFRL) Contract No.

FA8750-11-C-0098. The views expressed are those of the authors and
do not reflect the official policy or position of the Department of

Defense or the U.S. Government. Distribution Statement “A”

(Approved for Public Release, Distribution Unlimited). .

faster than traditional methods. Some examples of

efficiency are:

1. The Matlab and Simulink Models are driven with

the same fixed point data variables, and generate

the same format output, simplifying test and

comparison

2. The bit width of the circuits is specified at compile

time by specifying the bit width of the input data.

The sizing of intermediate mathematical

operations is done automatically by the fixed point

toolbox. Thus many of the same models can be

used for 8 bit or 64 bit inputs.

3. The resulting VHDL is vendor independent. This

allows for rapid benchmarking on multiple

architectures. However, hand optimization of

VHDL may be required for optimum performance

in order to take advantage of vendor specific IP.

Implementing fast modulo add, subtract and

multiply in Simulink for HDL generation
Software implementations of modulus usually use some

form of trial division to determine the remainder operation.

Implementing modulus integers with large numbers of bits

in an efficient manner requires the use of special numerical

algorithms that have been developed, such as the

Montgomery Reduction [6]. These algorithms avoid

division by q, but rather scale the integers so that many of

the divisions can be performed by a power of 2, requiring

only simple bit shifts. Our SHE requires circuits for fast

modulo addition and multiplication (to directly implement

the EvalAdd and EvalMult mentioned above). In addition,

our scheme relies heavily on the Chinese Remainder

Transform (CRT), which can be implemented as an

EvalMult, followed by an FFT [7] that uses modulo integer

instead of complex arithmetic. The implementation of the

FFT requires us to perform a standard radix 2 ‘Butterfly’

operation, which uses one addition, one subtraction and one

multiply, all modulo q. Thus we need to implement a

modulo subtraction as well as addition.

Initially, our selection of lattice based HE led to looking at

relatively modest sized modulus, on the order of twenty

bits. An implementation of Montgomery Reduction based

arithmetic would be relatively efficient, requiring hardware

multipliers on the order of 40 bits. However, later research

showed that for any reasonable security requirements our

SHE scheme would need O(64) bits for our modulus. Our

implementation of Montgomery arithmetic in Simulink

required us to double our bit width to represent intermediate

values represented in Montgomery form. We found that

there is an intrinsic limitation of 128 bit width in Simulink

even when using the fixed point toolbox. This meant that

we could not compile our multipliers for bit widths on the

order of 64 bits.

Additionally, our early arithmetic models were all designed

for a single value of modulus q to be used for all operations.

During the development of our SHE scheme we found that

using multiple values of related moduli resulted in more

efficient implementations. Thus our circuits would need to

operate with multiple (but not unlimited) values of q. As a

response to this we eliminated Montgomery arithmetic and

take a simpler approach to modulo addition and subtraction.

 Figure 1 shows the Matlab code and resulting Simulink

block for performing a streaming EvalAdd when the inputs

are constrained to be less than a given modulus q. The

model can operate on one pair of inputs every clock cycle.

The model shown does not have any additional pipeline

registers for simplicity, but they can be added to the model

in order to increase the maximum clock speed of the

resulting VHDL, at a cost of additional pipeline stages. In

our applications we expect to process streams of input on

the order of several thousand entries, so this additional

pipeline latency is trivial.

Figure 2 shows the Matlab and resulting Simlink block for

modulo subtraction. The same comments about pipelining

the circuit apply.

Modulo multiplication is a much more complicated

operation, even if the input multiplier and multiplicand are

bounded by q. Furthermore, we determined in our earlier

work that the VHDL code generated by Simulink for large

multiplications is not automatically pipelined, so the

resulting multiplies severely restrict the resulting clock

rates of the circuits. To address these two constraints, we

adopted a recently developed interleaved modular

multiplication based on a generalized Barrett reduction [8].

This multiplier has the following properties:

1) Long words of bit length L can be represented by n

Figure 1: Internal Structure of Simulink HDL ready Modulo Add primitive.

smaller words of bit length S (i.e. four 16 bit

words to represent a 64 bit modulus).

2) The multiplication is performed in n stages, where

each stage performs one modulo multiplication

that is L+S bits long. The stage can be pipelined to

perform one modulo multiply per clock cycle.

3) Each stage has a Barrett modulus performed on the

partial product, which reduces overall bit growth

of the partial products to L+S. Each stage requires

3 multiplies, and all divisions required by the

Barrett algorithm are implemented as simple bit

shifts.

4) One circuit can support multiple moduli. All

parameters that are specific to a given modulus can

be stored in a table and indexed.

Figure 3 shows the structure of our resulting multiplier for a

two stage operation (i.e. L = 2S). Figure 4 shows the model

for a single stage in the pipeline. All stages use the same

model. Again, internal pipelining in the stage is not shown.

Implementing fast CRT in Simulink for HDL

generation
As mentioned earlier, our scheme uses the CRT, which

relies heavily on modulo arithmetic. We have developed a

Simulink model for performing a fast CRT, based on the

primitives discussed above. We implemented one of the

standard pipeline decimation in frequency FFT

architectures, known as the Radix 2, Multiplath Delay

Commutator [7]. The fundamental structure of the model is

identical for a complex version that computes the standard

FFT, and the modulo arithmetic version that computes the

FFT portion of our CRT. The only difference is in the

Simulink Model that implements the radix 2 butterfly.

Figure 3 shows the structure of this pipelined CRT. The

design trades off area for processing speed. For an N point

transform, log2(N) radix 2 Butterflies are required (though

the last butterfly does not require multiplies). Additionally,

3/2N-2 delay elements are required. The data needs to be

presented to the circuit in two parallel streams, and the

resulting output is in bit reverse order.

We are currently in the process of analyzing the

performance of this circuit, and determining the size CRT

operation that can be fit into our candidate FPGA

architecture. Our analysis has shown that for high security

applications we may need to perform CRT operations on

vectors of up to 2
14

 in length. For such large vector sizes, an

alternative design approach may be necessary in order to fit

the circuit within the FGPA.

Interim Results
Our presentation will include examples of our primitives

coded in Matlab and Simulink and examples of VHDL code

generated by the HDL coder. We will also be able to show

timing results from Modelsim based simulations of the

resulting code., as well as actual timings using a Virtex 6 on

the Xilinx ML605 evaluation board

References
[1] C. Gentry and S. Halevi. Implementing Gentry’s Fully-

Homomorphic encryption scheme. In Kenneth Paterson,

editor, Advances in Cryptology – EUROCRYPT 2011,

volume 6632 of Lecture Notes in Computer Science, chapter

9, pages 129–148. Springer, 2011.

[2] D. Micciancio. A first glimpse of cryptography's Holy Grail.

Comm. ACM 53, 3 (March 2010), 96-96.

[3] V. Lyubashevsky, C. Peikert, and O. Regev. “On ideal

lattices and learning with errors over rings”. In Henri Gilbert,

editor, Advances in Cryptology – EUROCRYPT 2010, volume

6110 of Lecture Notes in Computer Science, chapter 1, pages

Figure 2: Internal Structure of Simulink HDL ready

Modulo Subtract primitive.

Figure 3: Top level structure of Simulink HDL ready two stage

Barrett Modulo Multiply primitive.

Figure 4: Internal structure of Barrett Modulo Multiply stage

1–23. Springer Berlin / Heidelberg, Berlin.

[4] D. Cousins, K. Rohloff, C. Peikert, R. Schantz “Scalable

Implementation of Primitives for Homomorphic EncRyption

– FPGA implementation using Simulink” 2011 High

Performance Extreme Computing Workshop Sep 21-22

2011, Lexington MA

[5] http://gmplib.org/ last accessed May 14, 2012.

[6] P. L. Montgomery “Modular Multiplication Without Trial

Division”, Mathematics of Computation Vol. 44, No. 170

(Apr., 1985), pp. 519-521, American Mathematical Society.

[7] L. R. Rabiner and B. Gold. Theory and Application of Digital

Signal Processing. Prentice-Hall, Inc., 1975.

[8] M. Knezevic, F. Vercauteren, and I. Verbauwhede, “Faster

Interleaved Modular Multiplication Based on Barrett and

Montgomery Reduction Methods”, IEEE Transactions on

Computers, Vol. 59, No. 12, Dec 2010.

Figure 5: Simulink Pipeline FFT Structure

Simulink 512 pt streaming FFT

Simulink parameterized processing stage

Simulink shuffle stageSimulink complex butterfly stage

http://gmplib.org/

