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Abstract 
Accellerating the development of a practical Fully 

Homomorphic Encryption (FHE) scheme is the goal of the 

DARPA PROCEED program. For the past year, this 

program has had as its focus the acceleration of various 

aspects of the FHE concept toward practical 

implementation and use. FHE would be a game-changing 

technology to enable secure, general computation on 

encrypted data, e.g., on untrusted off-site hardware. 

However, FHE will still require several orders of magnitude 

improvement in computation before it will be practical for 

widespread use.  

Recent theoretical breakthroughs demonstrated the 

existence of FHE schemes [1, 2], and to date much progress 

has been made in both algorithmic and implementation 

improvements. Specifically our contribution to the Proceed 

program has been the development of FPGA based 

hardware primitives to accelerate the computation on 

encrypted data using FHE based on lattice techniques [3].   

Our project, SIPHER, has been using a state of the art tool-

chain developed by Mathworks to implement VHDL code 

for FPGA circuits directly from Simulink models. Our 

baseline Homomorphic Encryption prototypes are 

developed directly in Matlab using the fixed point toolbox 

to perform the required integer arithmetic. Constant 

improvements in algorithms require us to be able to quickly 

implement them in a high level language such as Matlab.  

We reported on our initial results at HPEC 2011 [4]. In the 

past year, increases in algorithm complexity have 

introduced several new design requirements for our FPGA 

implementation. This report presents new Simulink 

primitives that had to be developed to deal with these new 

requirements. 

A review of Fully and Somewhat 

Homomorphic Encryption 
Fully Homomorphic Encryption (FHE) holds the promise to 

securely run arbitrary computations over encrypted data on 

untrusted computation hosts [2].  The general FHE concept 

of operations is that sensitive data is encrypted with a 

public key, then sent to an untrusted computation host, 

which can perform arbitrary computations on the encrypted 

data without first needing to decrypt it.  It has been shown 

to be theoretically possible to evaluate arbitrary programs 

using just two special purpose FHE operations, EvalAdd 

and EvalMult, which at the simplest level, roughly 

correspond to bitwise XOR and AND gates operating on 

encrypted bits.  A sequence of these operations is run 

against the encrypted data, resulting in an encryption of the 

output of the original program run on the unencrypted data.  

This encrypted result can then be sent back to the original 

client, who decrypts the result using its secret key.  The 

encrypted data is protected at all times with reasonable 

security guarantees based on computational hardness 

results.   

A ‘Fully’ Homomorphic Encryption scheme allows and 

unlimited number of these Eval operations to be performed. 

All known FHE schemes are based on computationally hard 

stochastic lattice theory problems, which add some noise 

with each operation and require a very computationally 

expensive “recryption” operation that is periodically run on 

intermediate ciphertexts to keep the noise at a level that still 

permits decryption. A ‘Somewhat’ Homomorphic scheme, 

on the other hand, supports several (but not unlimited) 

EvalMult and EvalAdd operations while preserving the 

correctness of decryption. In other words, SHE can schemes 

support secure computation for only a small subset of 

programs.  By focusing on an SHE scheme, we can direct 

our research towards the implementation of efficient 

hardware primitives, while the FHE community develops 

more efficient recryption algorithms.  

Recent Developments in the SIPHER SHE 

Scheme 
Our current SHE scheme relies on operations that are 

generally inefficient to implement on standard CPU 

architectures (i.e. modular arithmetic with a large modulus). 

The EvalAdd and EvalMult operations for example are 

element wise vector adds and multiplies taken modulo some 

particular prime integer q.  These are trivial to express 

using Matlab:  c = mod(a+b, q) and c = mod(a.*b, q).   

For convenience most of the previously published SHE and 

FHE implementations have used standard tools such as the 

GNU  Multiple Precision Arithmetic Library (GMP) [5], 

which enable researchers to code operations using very 

large integers. This limits their focus to operations on CPUs 

and does not allow them to take advantage of specialized 

parallel computation hardware like FPGAs which provide 

highly cost-effective parallelism. Our approach to 

developing the FPGA code for implementing EvalAdd and 

EvalMult is to develop arithmetic circuits that will achieve 

high throughput by using parallelism and pipelining on the 

FPGA. 

We initially develop prototype descriptions in Matlab that 

we re-implement in a stream-oriented hardware 

implementable manner in Simulink. The results of the 

implementations are compared to verify correctness. A 

conversion from Simulink to VHDL is done in a completely 

automated fashion using Mathwork’s HDL coder.  This tool 

chain provides us the means to develop our primitives, 

including cyclic VHDL based FPGA prototyping, much 
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faster than traditional methods. Some examples of 

efficiency are: 

1. The Matlab and Simulink Models are driven with 

the same fixed point data variables, and generate 

the same format output, simplifying test and 

comparison 

2. The bit width of the circuits is specified at compile 

time by specifying the bit width of the input data. 

The sizing of intermediate mathematical 

operations is done automatically by the fixed point 

toolbox. Thus many of the same models can be 

used for 8 bit or 64 bit inputs.  

3. The resulting VHDL is vendor independent. This 

allows for rapid benchmarking on multiple 

architectures. However, hand optimization of 

VHDL may be required for optimum performance 

in order to take advantage of vendor specific IP. 

Implementing fast modulo add, subtract and 

multiply in Simulink for HDL generation 
Software implementations of modulus usually use some 

form of trial division to determine the remainder operation. 

Implementing modulus integers with large numbers of bits 

in an efficient manner requires the use of special numerical 

algorithms that have been developed, such as the 

Montgomery Reduction [6]. These algorithms avoid 

division by q, but rather scale the integers so that many of 

the divisions can be performed by a power of 2, requiring 

only simple bit shifts. Our SHE requires circuits for fast 

modulo addition and multiplication (to directly implement 

the EvalAdd and EvalMult mentioned above). In addition, 

our scheme relies heavily on the Chinese Remainder 

Transform (CRT), which can be implemented as an 

EvalMult, followed by an FFT [7] that uses modulo integer 

instead of complex arithmetic. The implementation of the 

FFT requires us to perform a standard radix 2 ‘Butterfly’ 

operation, which uses one addition, one subtraction and one 

multiply, all modulo q. Thus we need to implement a 

modulo subtraction as well as addition. 

Initially, our selection of lattice based HE led to looking at 

relatively modest sized modulus, on the order of twenty 

bits. An implementation of Montgomery Reduction based 

arithmetic would be relatively efficient, requiring hardware 

multipliers on the order of 40 bits. However, later research 

showed that for any reasonable security requirements our 

SHE scheme would need O(64) bits for our modulus.  Our 

implementation of Montgomery arithmetic in Simulink 

required us to double our bit width to represent intermediate 

values represented in Montgomery form. We found that 

there is an intrinsic limitation of 128 bit width in Simulink 

even when using the fixed point toolbox. This meant that 

we could not compile our multipliers for bit widths on the 

order of 64 bits.  

Additionally, our early arithmetic models were all designed 

for a single value of modulus q to be used for all operations.  

During the development of our SHE scheme we found that 

using multiple values of related moduli resulted in more 

efficient implementations. Thus our circuits would need to 

operate with multiple (but not unlimited) values of q. As a 

response to this we eliminated Montgomery arithmetic and 

take a simpler approach to modulo addition and subtraction. 

 Figure 1 shows the Matlab code and resulting Simulink 

block for performing a streaming EvalAdd when the inputs 

are constrained to be less than a given modulus q.  The 

model can operate on one pair of inputs every clock cycle. 

The model shown does not have any additional pipeline 

registers for simplicity, but they can be added to the model 

in order to increase the maximum clock speed of the 

resulting VHDL, at a cost of additional pipeline stages. In 

our applications we expect to process streams of input on 

the order of several thousand entries, so this additional 

pipeline latency is trivial.   

Figure 2 shows the Matlab and resulting Simlink block for 

modulo subtraction. The same comments about pipelining 

the circuit apply. 

Modulo multiplication is a much more complicated 

operation, even if the input multiplier and multiplicand are 

bounded by q.  Furthermore, we determined in our earlier 

work that the VHDL code generated by Simulink for large 

multiplications is not automatically pipelined, so the 

resulting multiplies severely restrict the resulting clock 

rates of the circuits. To address these two constraints, we 

adopted a recently developed interleaved modular 

multiplication based on a generalized Barrett reduction [8].  

This multiplier has the following properties: 

1) Long words of bit length L can be represented by n 

 
Figure 1: Internal Structure of Simulink HDL ready Modulo Add primitive. 



smaller words of bit length S (i.e. four 16 bit 

words to represent a 64 bit modulus). 

2) The multiplication is performed in n stages, where 

each stage performs one modulo multiplication 

that is L+S bits long. The stage can be pipelined to 

perform one modulo multiply per clock cycle. 

3) Each stage has a Barrett modulus performed on the 

partial product, which reduces overall bit growth 

of the partial products to L+S. Each stage requires 

3 multiplies, and all divisions required by the 

Barrett algorithm are implemented as simple bit 

shifts. 

4) One circuit can support multiple moduli. All 

parameters that are specific to a given modulus can 

be stored in a table and indexed. 

Figure 3 shows the structure of our resulting multiplier for a 

two stage operation (i.e. L = 2S). Figure 4 shows the model 

for a single stage in the pipeline. All stages use the same 

model.  Again, internal pipelining in the stage is not shown. 

Implementing fast CRT in Simulink for HDL 

generation 
As mentioned earlier, our scheme uses the CRT, which 

relies heavily on modulo arithmetic. We have developed a 

Simulink model for performing a fast CRT, based on the 

primitives discussed above.  We implemented one of the 

standard pipeline decimation in frequency FFT 

architectures, known as the Radix 2, Multiplath Delay 

Commutator [7].  The fundamental structure of the model is 

identical for a complex version that computes the standard 

FFT, and the modulo arithmetic version that computes the 

FFT portion of our CRT. The only difference is in the 

Simulink Model that implements the radix 2 butterfly. 

Figure 3 shows the structure of this pipelined CRT. The 

design trades off area for processing speed. For an N point 

transform, log2(N) radix 2 Butterflies are required (though 

the last butterfly does not require multiplies). Additionally, 

3/2N-2 delay elements are required. The data needs to be 

presented to the circuit in two parallel streams, and the 

resulting output is in bit reverse order. 

We are currently in the process of analyzing the 

performance of this circuit, and determining the size CRT 

operation that can be fit into our candidate FPGA 

architecture.  Our analysis has shown that for high security 

applications we may need to perform CRT operations on 

vectors of up to 2
14

 in length. For such large vector sizes, an 

alternative design approach may be necessary in order to fit 

the circuit within the FGPA. 

Interim Results 
Our presentation will include examples of our primitives 

coded in Matlab and Simulink and examples of VHDL code 

generated by the HDL coder. We will also be able to show 

timing results from Modelsim based simulations of the 

resulting code., as well as actual timings using a Virtex 6 on 

the Xilinx ML605  evaluation board 
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Figure 3: Top level structure of Simulink HDL ready two stage 

Barrett Modulo Multiply primitive. 

 
Figure 4: Internal structure of Barrett Modulo Multiply stage 
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Figure 5: Simulink Pipeline FFT Structure 
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