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Abstract—This paper addresses the problem of scalable cyber-
security using a cloud computing architecture.  Scalability is 
treated in two contexts: (1) performance and power efficiency 
and (2) degree of cyber security-relevant information detected by 
the cyber-security cloud (CSC).  We provide a framework to 
construct CSCs, which derives from a set of fundamental 
building blocks (forwarders, analyzers and grounds) and the 
identification of the smallest functional units (atomic CSC cells or 
simply aCSC cells) capable of embedding the full functionality of 
the cyber-security cloud.  aCSC cells are then studied and several 
high-performance algorithms are presented to optimize the 
system’s performance and power efficiency.  Among these, a new 
queuing policy—called tail early detection (TED)—is introduced 
to proactively drop packets in a way that the degree of detected 
information is maximized while saving power by avoiding 
spending cycles on less relevant traffic components. We also show 
that it is possible to use aCSC cells as core building blocks to 
construct arbitrarily large cyber-security clouds by structuring 
the cells using a hierarchical architecture.  To demonstrate the 
utility of our framework, we implement one cyber-security “mini-
cloud” on a single chip prototype based on the Tilera’s 
TILEPro64 processor demonstrating performance of up to 
10Gbps.1 
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I.  INTRODUCTION 
The Department of Energy’s is currently developing ESnet, 

the nation’s fastest computer network designed specifically to 
support science. This initiative, managed by the Lawrence 
Berkeley National Laboratory, will be bringing ESnet swiftly 
into the 100 Gbps regime as “a key  step to the DOE's vision of 
an eventual 1 terabit wavelength network to connect DOE 
facilities” [1].  ESnet will enable unprecedented levels of 
collaboration, but paramount to its success will be its capability 
to secure the scientific community against cyber attacks.   

In designing secure communication systems to address 
large network infrastructures such as the ESnet, one needs to 
address at least two problems: first, data needs to be moved 
from one node to another as efficiently as possible (forwarding 
resources); second, data needs to be inspected and potential 
threats must be detected and resolved (analysis resources) 
before any damage is inflicted.  Given a fixed set of resources, 
this inevitably leads to contention: allocating more resources to 
forwarding data necessarily leaves fewer resources available 
for analysis, and vice versa.  A key to the design of safer 
networks is therefore the identification of an optimal balance (a 
sweet-spot) between forwarding and analysis resources. 

                                                                 
1 This work was funded by the US Department of Energy, contract 

number DE-SC0004400. 

We propose to exp loit the elastic properties of cloud 
computing to construct a scalable energy-efficient cyber-threat 
detection system that can flexibly and efficiently allocate 
forwarding and analysis resources based on the consumer’s 
demand.  Our design incorporates several high-performance 
“knobs” designed to make sweet-spot packet forwarding and 
analysis decisions and provides a framework to scale the 
performance of the cloud. 

The problem of scaling up the performance of a cyber-
threat detection system has traditionally  being approached with 
a cluster-like arch itecture (e.g., [2]).  While clusters provide a 
mechanism to increase the performance of the system, they 
lack the degree of elasticity provided by a cloud architecture.  
As this paper will show, this elasticity is key to the design of 
cyber-security systems that can sustain very high speed (up to 
terabit) packet processing rates. 

II. ARCHITECTURE 

A. Cyber-Security Cloud (CSC) 
According to the National Institute of Standards and 

Technology (NIST), cloud computing is defined as [3]: “a 
model for enabling ubiquitous, convenient, on-demand network 
access to a shared pool of configurable computing resources 
that can be rapidly provisioned and released with minimal 
management effort or service provider interaction. This cloud 
model is composed of five essential characteristics (on-demand 
self-service, broad network access, resource pooling, rapid 
elasticity, measured service), three service models (software as 
a service, platform as a service, infrastructure as a service), and 
four deployment models (private cloud, community cloud, 
public cloud, hybrid cloud).”  In this paper we focus on the 
problem of building a specific type of cloud, one that is 
dedicated to the detection of cyber-security attacks.  Our cloud 
will follow a platform as a service (PAAS) model—whereby  
the consumer will have control over the deployed cyber-
security applications and their configuration—and it will 
provide support for any of the four deployment models.  We 
will use the term cyber-security cloud or CSC to refer to this 
type of cloud.  To introduce our CSC framework, we start with 
the following defin itions. 

Definition  1.  Cyber-security relevancy. We will say a 
network packet is cyber-security relevant if the information it 
contains alters our understanding of the cyber-threats that can 
potentially affect our network assets.   

Definition  2. Cyber data.   We define cyber data as that 
part of the information carried by packets which are cyber-
security relevant.  For instance, an example of cyber data can 
be the event “connection C is inflicting a denial of service 
attack on network asset A.”  We will say that a packet carries a 
positive amount of cyber data if it is cyber-security relevant.  If 



a packet is more cyber-security relevant than another one, then 
we will say that it carries more cyber data.  Note that in this 
paper we do not intend to define the meaning of relevancy, 
which is an application-dependent concept.   

Definition  3. Recognizable cyber data of a system.  The 
degree to which a system is capable of recognizing cyber data 
from an input stream of packets. 

Definition  4. Selection capacity of a system.  The amount 
of cyber data that a system can detect per unit of cost incurred 
in performing such detection.  In our work, cost will refer to the 
processing time, space, energy, and capital equipment expenses 
incurred in the process of detecting cyber data.   

Definition 5. Cyber-security Cloud.  For the purpose of this 
paper, we will define a cyber-security cloud as a cloud that 
complies with NIST’s definition and at a minimum satisfies the 
following two properties: 
- CSC-P1: elastic selection capacity.  The selection capacity 

of the CSC can be elastically provisioned and released to 
scale rapidly commensurate with demand. To the consumer, 
the capabilities available for provisioning often appear to be 
unlimited and can be appropriated in any quantity at any 
time.2 

- CSC-P2: elastic recognizable cyber data.  The degree of 
recognizable cyber data of the CSC can be elastically 
increased or decreased according to consumers’ needs.  A 
consumer operating in a more or less demanding cyber-
security environment will be able to adjust the degree of 
recognizable cyber data upward or downward in the CSC.3 

The concepts of elastic selection capacity and elastic 
recognizable cyber data are illustrated in .  The CSC is modeled 
as a virtual system capable of elastically increasing or 
decreasing its selection capacity and of arbitrarily recognizing 
more or less cyber data to a level that meets a specific 
consumer’s demand.  Notice that the second property (CSC-P2) 
relates to the PAAS model, whereby the user can flexib ly add 
more cyber-security applications (denoted as “apps” in ) to the 
cloud to increase the degree of recognizable cyber data.  Our 
work focuses on the construction of a framework to build 
cyber-security clouds that satisfy the properties of CSC-P1 and 
CSC-P2.  In this paper, we will focus on CSC-P1.  For an 
extended version of this paper including our work on CSC-P2, 
refer to [4]. 

B. Initial Assumption: the Heavy-Tailed Nature of Traffic 
In order to derive a framework for the construction of cyber-
security clouds, we start with an understanding of a network 
traffic characteristic that is essential and unique to our problem 
and which can help identify interesting trade-offs in our design.  
Our in itial observation rests in the well documented “heavy 
tail” nature of most forms of network traffic (e.g., [5]).  Th is 
observation can be expressed as follows: “In a computer 

                                                                 
2 Property CSC-P1 is equivalent to NIST’s essential characteristic 

“rapid elasticity” [3], particularized to the specific case of cyber-
security. 

3  Property CSC-P2 can be seen as a specific case of NIST’s 
service model “software as a service” [3], particularized to the case of 
cyber-security. 

network, very often, to an external observer, most of the 
relevant cyber data resides in a small portion of the total 
traffic.”  For instance, in [6] the authors find that between 55% 
and 90% of the total traffic is irrelevant to the scope of their 
analysis—using our notation, we would say that between 55% 
and 90% of the traffic carries no cyber data.  This property, 
commonly referred as the heavy-tailed nature of traffic, 
provides a basis for the trade-off decisions in our design. 

  
Figure 1.  A model CSC with elastic recognizable cyber 

data and elastic selection capacity 

In our work, we will define the heavy-tailed nature of 
traffic as follows. Let 𝑏𝑛  be the n-th byte transmitted in a given 
connection and let 𝐼(𝑏𝑛) be the amount of cyber data carried by 
such byte.  We will then assume that, often, 𝐼(𝑏𝑛)  is a 
monotonically decreasing function. 

As other authors have noted (e.g., [6]), from a security 
analysis perspective, the above definition of heavy tails is 
based on the observation that often the very beginning of a 
connection contains most of the cyber data of interest.  For 
instance, it is at the beginning of a connection that session 
identification information and credentials are exchanged for 
most protocols (HTTP, SIP, FTP, etc.).  This concept of heavy 
tails is graphically illustrated in .Build ing Blocks: Forwarder, 
Analyzer and Ground 

Our framework is composed of the following set of 
elemental building blocks needed to implement the functions in 
the CSC ():   
- Ground.  The ground is responsible for dropping traffic.  The 

decision to include a ground in our design stems from the 
need to drop irrelevant traffic—for instance, the tail of a 
connection that experiences heavy tailing—as a mechanism 
to reduce energy costs. 

- Forwarder.  Forwarders are responsible for splitting and 
mapping traffic onto processing resources in a way that the 
overall system’s selection capacity is maximized. 

- Analyzers.  Analyzers perform the actual traffic analysis, 
receiving as input a stream of packets and generating as 
output the detected cyber data. 

The basic functional unit within our framework is 
constructed using these three core building blocks.  This basic 
unit uses the simple network configuration presented in -a, 
which we refer to as an atomic CSC cell or, abbreviated, an 
aCSC cell (pronounced “ax cell”).   



 
Figure 2.  A single connection with a heavy tail 

Within an aCSC cell: 
- The forwarder receives input traffic and can decide to (1) drop 

the traffic, (2) forward the traffic out, (3) forward the traffic to 
an analyzer, or (4) a combination of these actions.   

- The analyzer receives traffic and extracts cyber data, which 
can then feed back to the forwarder.  The forwarder can 
optionally use this cyber data to make forwarding decisions.   

 
Figure 3.  Building blocks 

This network configuration allows for two modes of 
operation: ex ante and ex post.  In the ex ante mode (-b), a 
packet is forwarded after the analyzer has inspected it and 
conveyed new cyber data back to the forwarder.  In  the ex post 
mode (-c), a packet can be forwarded before the analyzer 
processes the packet.  The ex post configuration provides the 
ability to decouple the forwarding path from the analysis path.  
In real-time high-performance applications, this can be an 
important feature to ensure that the throughput of the cell does 
not deteriorate when the analyzer node becomes overloaded.  
This approach trades a small feedback delay for performance, 
since packets are forwarded as fast as they are received without 
waiting for the analyzers’ feedback.  In per-connection packet 
forwarding applications, a delay in executing a forwarding 
policy simply means that for a short period of time, a 
connection will operate using a non-intelligent (without 
feedback) default forwarding policy; then when the forwarder 
receives the cyber data (ex post), the connection will start to 
operate under the new (more intelligent) forward ing policy.  
Due to its high-performance characteristics, in our work we 
will focus on the ex post configuration. 

  
Figure 4.  (a) The network topology of one aCSC cell 

with (b) ex ante and (c) ex post configurations 

C. High Performance Data Structures and Knobs 
Before we describe how to use aCSC cells to build cyber-

security clouds of arbitrary sizes (Section F), we analyze the 

potential bottlenecks in the cell and the implementation of 
several high-performance knobs to alleviate them. 

-a presents a more detailed, logical view of an aCSC cell 
for the ex post configuration.  A first observation is that this 
new schematic implements the analyzer element using a set of 
𝑛 sub-analyzers, each one identical to the others.  While this is 
without loss of generality (the drawings presented in -a and -c 
are logically equivalent), this approach provides an additional 
mechanism to scale the selection capacity of an aCSC cell up 
or down (in discrete steps by increasing or decreasing 𝑛).  

The schematic in -a exposes a set of data-sharing critical 
regions that can potentially become a performance bottleneck.  
For each of these, we have designed and implemented a high-
performance data structure. 
- Analyzers’ input queues (-a/circle 3).  Upon receiving a 

packet, the forwarder can decide to pass it to one of the 
analyzers.  Since this queue is written by a single writer (the 
forwarder) and read from a single reader (one of the 
analyzers), it can be implemented using a classic lockless 
circular queue [7]. 

- Forwarder’s input queue (-a/circle 4).  Analyzers need to 
convey feedback to the forwarder.  Since this queue is 
written by multiple writers (the analyzers), it cannot be 
implemented using a lockless queue.  To resolve this 
potential contention bottleneck, we propose a new hash 
table that provides zero-locking contention (lock-free) in 
exchange of a low probability of false negatives [4].  We 
refer to this data structure as LF−.  (A nested acronym from 
the words “lock-free with low false negatives”.) 

- Forwarder’s queuing policy (-a/circle 3).  We also consider 
the problem of designing an optimal queuing policy 
implemented by the forwarder when queuing packets into 
each analyzer.  To maximize the degree of selection 
capacity in the aCSC cell, the optimization criterion for this 
policy should be the “maximization of cyber data forwarded 
to the analyzer.”  To this end, we present a new queuing 
policy referred as TED (an acronym that comes from the 
words “tail early detection”) which exp loits the heavy-tailed 
properties of the traffic (). 

In our extended paper [4], each of these three critical 
regions is studied in detail.  For the sake of brevity, in this 
paper we will only describe one of them: the forwarding 
queuing policy. 

D. Forwarder’s Queuing Policy: Optimal Tail Early Dropping 
(TED) for Hierarchical Memory Architectures.   
Under heavily stressed conditions the analyzers may not be 

able to handle the full volume of network traffic.  Therefore, a 
“knob” is needed to throttle and select which packets are 
handed to the analyzer and which are not.  When analyzers are 
able to keep up with the input traffic, this knob should be fully 
opened.  As traffic volume increases and analyzers begin to fall 
behind, the knob should be turned down to reduce the number 
of packets forwarded to the analyzers.  Our objective is to 
design a knob that dynamically adjusts the amount of traffic 
throttled into the analyzers pool while maximizing the selection 
capacity of the aCSC cell. 



 
Figure 5.  (a) An aCSC cell instance, (b) behavior of the 

TED static queuing policy for a given connection 

To implement this controller, we propose a new queuing 
policy called tail early dropping (TED).  TED is similar in 
concept to the well-known queuing policy RED (random early 
detection [8]) albeit with a different objective.  While RED 
aims at maximizing fairness amongst connections and reducing 
effects such as TCP global synchronization, TED’s objective is 
to proactively drop packets so as to maximize the overall 
selection capacity of the system.  Toward this goal, we propose 
to use a queuing policy designed to exploit the heavy-tail 
properties of network flows ().  We start by introducing first a 
static version of the TED queuing policy:   

TED static queuing policy.  Let 𝜆𝑡𝑒𝑑  be a non-negative 
integer value and 𝑐  a connection flowing through an aCSC cell.  
Upon receiving a byte 𝑏𝑛  from connection 𝑐 , if the total 
number of bytes received from this connection is larger than 
𝜆𝑇𝐸𝐷, then drop 𝑏𝑛 .  Otherwise, queue it.  

This static policy (illustrated in -b) has the advantage of 
being simple to implement—it only requires tracking of the 
number of bytes received from each connection—and 
priorit izes bytes which carry higher cyber data according to the 
heavy tails principle.  A main limitation of this static policy is 
its lack of flexibility: since in general the degree of cyber data 
carried by traffic changes with time, an optimal 𝜆𝑡𝑒𝑑 ought to 
also change with time.  The key to the design of a good TED 
queuing policy is the identification of a control loop that can 
dynamically adjust the value of 𝜆𝑡𝑒𝑑  towards tracking a certain 
optimal value  𝜆𝑡𝑒𝑑

𝑜𝑝𝑡 .  Before we can identify such optimal 
value, we need to first define the meaning of optimality in the 
context of a TED queuing policy. 

While we acknowledge that there can be a variety of 
optimization criteria, g iven their wide-spread use, we focus our 
attention on finding a good sweet-spot for architectures that are 
based on hierarchical memory.  These types of architectures are 
found in most of today’s high-performance network appliances 
such as routers, intelligent switches, and general purpose 
computers—including the Tilera board on which we have 
implemented our CSC.  (Described later in Section III.) 
Our optimal TED policy derives from the following 
observation: in hierarchical memory architectures, memory 

accesses are, in general, one order of magnitude slower than 
cache accesses.  For instance, in the Tilera architecture, a 
memory access (80 cycles) is ten times slower than a L2 cache 
access (8 cycles) and forty times slower than a L1 cache access 
(2 cycles) [10]. 

Lemma 1: memory and cache regimes.  Assume an aCSC 
cell implemented on a hierarchical memory architecture.  Let 
𝐼𝑖𝑛 be the amount of cyber data per unit of time received by the 
cell and let 𝜋𝑐 be the amount of cyber data per unit of t ime that 
it can actually process.  Then: 
- If  𝜋𝑐 <  𝐼𝑖𝑛  , there exists a value 𝜆𝑡𝑒𝑑ℎ  such that for any 
𝜆𝑡𝑒𝑑 > 𝜆𝑡𝑒𝑑ℎ  , the analyzers in  the aCSC cell will be 
accessing packets from memory (cache miss) . 

- For any value of 𝜋𝑐, there exists a value 𝜆𝑡𝑒𝑑𝑙  such that for 
any 𝜆𝑡𝑒𝑑 < 𝜆𝑡𝑒𝑑𝑙  , the analyzers in the aCSC cell will be 
accessing packets from cache (cache hit). 

Proof.  For the sake of brevity, refer to [4].  
Lemma 1 reveals the existence of a sweet-spot: On one 

hand, 𝜆𝑡𝑒𝑑 ought to be large to ensure that the analyzers receive 
enough cyber data; on the other, if 𝜆𝑡𝑒𝑑is too large, the cell will 
operate in memory regime, penalizing its overall selection 
capacity.  A sweet-spot therefore comes from identifying the 
largest value of 𝜆𝑡𝑒𝑑  that will still allow the cell to operate 
within the boundaries of the cache regime—that is, without 
entering the memory regime.  We refer to this value as 𝜆𝑡𝑒𝑑𝑐𝑎𝑐ℎ𝑒. 

The general form of our TED queuing algorithm can be 
expressed as follows: 
Constants: ∆𝒕𝒆𝒅, 𝒕𝒕𝒆𝒅, 𝝀𝒕𝒆𝒅𝒊 . 
Step 1.  Start with 𝝀𝒕𝒆𝒅 = 𝝀𝒕𝒆𝒅𝒊 , for an arbitrary 𝝀𝒕𝒆𝒅𝒊  
Step 2.  If the cell is operating in memory regime, then keep reducing 

𝝀𝒕𝒆𝒅 by a value ∆𝒕𝒆𝒅 > 0 until the cell starts to operate in 
cache regime. 

Step 3.  Wait a period of time 𝒕𝒕𝒆𝒅  and then increase 𝝀𝒕𝒆𝒅 by ∆𝒕𝒆𝒅 .  
After that, return to step 2. 

This algorithm, as illustrated in , is designed to track 𝜆𝑡𝑒𝑑𝑐𝑎𝑐ℎ𝑒 
using a conservative iterative approach: with instant 
(effectively infinite slope) decrease to converge from memory 
regime to cache regime and with a slow periodic increase (with 
a slope of ∆𝑡𝑒𝑑/ 𝑡𝑡𝑒𝑑).   illustrates the two regimes and the 
behavior of the TED control algorithm. 

E. Cloud Scalability 
From a functional perspective, an aCSC cell satisfies the 

properties of the cloud (Definit ion 5) albeit  at a much smaller 
scale, delivering a bounded amount of selection capacity.  
Being functionally equivalent, aCSC cells can be used as 
building blocks for the construction of larger clouds.  This can 
be achieved using a fractal-like arch itecture as illustrated in 
Figure 7.  The schematic shows that on a macroscopic view, 
the functional elements of the cloud are equivalent to those of 
an aCSC cell, with the forwarder function receiving and 
mapping traffic onto the analyzer function.  Zooming into the 
cloud, we can obtain a new microscopic view, showing that the 
cloud itself is made of s maller aCSC cells.  Each of these 
elements could be further zoomed in, disclosing a new layer of 
smaller aCSC cells, resembling the structure of a Russian 



nesting doll.  (For a more detailed description of the benefits of 
this self-similar architecture, refer to [4].) 

 
Figure 6.  (a) Example of cache versus memory regimes; 

(b) TED control algorithm used to track 𝝀𝒕𝒆𝒅
𝒄𝒂𝒄𝒉𝒆. 

 
Figure 7.  A CSC can be constructed using aCSC cells 

organized in a fractal-like manner. 

This hierarchical architecture for cloud computing has the 
virtue of providing a new degree of elasticity.  By adding more 
aCSC cells to the cloud and by structuring them using a higher 
number of fractal levels, one can progressively increase the 
performance of the cloud.  In our design, we propose a cloud 
structure formed with the four levels shown in the next table: 

Table 1.  Levels of the CSC 
Level Description and interconnect type 
Core Multiple cores in a single processor forming one aCSC 

cell.  A cell consists of 𝑛+ 1 cores, 1 core used as a 
forwarder node and 𝑛 cores used as analyzers.  Packets 
are shared/forwarded via main memory or cache. 

Processor For processors with 𝑚 cores, mapping of ⌈𝑚/(𝑛 + 1)⌉ 
aCSC cells onto a single processor to form a larger 
aCSC cell.  Packets are shared/forwarded via main 
memory or cache. 

Box Multiple processors embedded into a single box.  
Packets are shared/forwarded via a processor 
interconnect (e.g. PCI). 

Network Multiple boxes connected over a network fabric. 
Packets are shared/forwarded over the network. 

III. IMPLEMENTATION 
We have implemented a cyber-security “mini-cloud” using 

the framework presented in this paper on a single-chip 
prototype providing processing speeds of up to 10Gbps.  We 
refer to this prototype as CSC10.  On the software side, while 
the concepts explained in this paper are general and can be 
implemented using any high-level programmable language, our 

CSC implementation is based on Bro [9], an open source 
network analysis framework developed by the International 
Computer Science Institute (ICSI) in Berkeley, CA, and the 
National Center for Supercomputing Applications (NCSA) in 
Urbana-Champaign, IL. On the hardware side, we use a 
Tilera’s TILEncore PCI-Express card, which comes with 64 
cores (called tiles) running Linux and several high-performance 
features including the following: 
- NetIO: a Tilera-proprietary high-speed packet capturing 

module capable of DMA-ing packets directly onto the 
application (bypassing the Linux kernel). 

- Hardware-aided load balancing: IP tuple hashing and load 
balancing performed in hardware.  This feature is used by the 
analyzers that require per-flow processing. 

- Zero overhead Linux: this feature allows the programmer to 
specify a set of “dataplane” tiles, each of which runs a single 
user-space process without incurring any Linux system 
overhead.   

(For a more detailed description of these hardware-aided 
optimizations, refer to our extended paper [4].) 

The TILEPro64 network processor comes with two 10Gbps 
XAUI ports and each of its tiles is clocked  at 700MHz and 
includes L1 and L2 data caches of 16KB and 64KB, 
respectively.   presents a 2-level mapping (cores and processor) 
of the CSC architecture onto the TILEncore chip.  The first 
level has eight aCSC cells, each with five analyzers and one 
forwarder, for a total of 48 tiles (six tiles in each aCSC cell).  
The second level consists of one single-chip aCSC.  In addition 
to allocating 48 t iles for mapping the functions of the mini-
cloud, two other sets of tiles are used as follows: 
- Ingress Packet Processor (IPP) tiles: Four tiles are used to 

run the ingress packet processor, a Tilera component part of 
NetIO which is used to accelerate the reception and 
transmission of packets [10]. 

- OS tiles: The rest of the tiles, are used to run the operating 
system and housekeeping functions.   

IV. PERFORMANCE TEST 
Figure 9 provides a performance benchmark of our CSC10 

mini-cloud.  These results were obtained by stressing CSC10 
using a cluster of HTTP clients and servers generating traffic at 
10Gbps.  The figure shows two graphs: the total throughput 
sustained by the CSC10 (Figure 9-a) and its degree of selection 
capacity (Figure 9-b), both displayed as a function of the 
number of forwarders and analyzers being used. In this 
benchmark, our definition of selection capacity is a measure of 
the number of events that the Bro application can detect per 
unit of time.  Specifically, we measure the number of events of 
type “this HTTP connection is a GET request” emitted by a 
Bro script (this script corresponds to one “app” in the cloud as 
illustrated in ).  These graphs illustrate two important concepts.  
First, the performance of the forwarding path (Figure 9-a) is 
approximately independent of the analysis path (since 
throughput is flat regardless of the number of analyzers per 
forwarder).  Second, for the specific application used in this 
benchmark, a number of analyzers between two and four for 
each forwarder is sufficient (since selection capacity is flat 
beyond four analyzers—Figure 9-b).  For a more detailed set of 
performance results, refer to [4]. 



 
Figure 8.  CSC10 on a single TILEncore chip 

V. TERABIT CYBER-SECURITY: CSC1000 
To illustrate how the proposed architecture can be used to scale 
up the CSC, we describe a possible design of a terabit-scale 
CSC (referred as CSC1000).  The terabit design is based on a 
4-level hierarch ical architecture starting from a Tilera Gx 
processor.  The Gx is the newest generation of processors 
which comes with cores clocked at a frequency up to 1.5GHz 
and a faster implementation of NetIO called mPIPE [10].  
Since the older TILEPro64 chip can sustain 10Gbps (see 
Section IV), we make the assumption that the Gx will be 
capable of sustaining 20Gbps.  (This could be an average 
estimate, since the Gx is designed to sustain raw packet 
forwarding rates up to 40Gbps.)  A Gx chip provides the 
infrastructure for the first and second fractal levels, mapping 
multiple aCSC into its many-core architecture.  Tilera offers a 
1U rack-mountable device incorporating four Tilera’s TILE-Gx 
processors, totaling 144 to 288 cores, which would yield a 
cloud performance of 80Gbps.  Each Gx processor can be 
connected to the PCI-Express switch via an x8 PCI-Express 2.0 
link, with a capacity of 32Gbps (per-link) in each direction (full 
duplex). Each processor is expected to require no more than 
15Gbps to forward packets to other processors, although 
20Gbps may be required if the input load balance is pessimal. 
(Each processor takes in one quarter of the total 80Gbps traffic, 
and, being one of four processors, is expected to forward three 
quarters of the traffic it  receives to other processors.) The 1U 
device constitutes the third level.  Finally, 12 1U devices (or 
more) can be connected in a network to deliver a total 
throughput of 960Mbps, for a full four-level architecture. 

VI. CONCLUSIONS 
In our work, we use a cloud computing architecture to 

address the problem of scalable cyber-security for very high- 
speed networks (up to terabit per second rates).  The key to 
sustaining high rates resides in the design of a system that can 
efficiently triage those parts of the traffic that are most cyber 
security-relevant and avoid spending precious resources 
processing traffic components that are less relevant.  We argue 
that the elemental functions needed to implement a cyber-
security cloud are three, forwarders, analyzers and grounds, 
and propose a new design based on aCSC cells—small 

configurations of these three elements that embed the full 
functionality of the cloud but at a much lower scale.  To control 
the flow of packets within one aCSC cell, we present tail early 
dropping, a new closed-loop queuing policy designed to make 
proactive packet dropping decisions toward maximizing the 
selection capacity of the cell.  We then show how aCSC cells 
can be used to construct larger clouds using a fractal-like 
architecture, and provide a configuration example of a cyber-
security cloud to sustain terabit rates.  To demonstrate the 
framework, we have implemented a two-fractal level mini-
cloud using a Tilera TILEPro64 processor supporting packet 
processing rates up to 10Gbps.   

Our next step is to scale up our implementation to support 
rates of 100Gbps and beyond by increasing the number of 
fractal levels using the new generation of Tilera Gx processors 
and the design described in Section V. 

 
Figure 9 Performance of one CSC10 mini-cloud 
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