
Scalable Cyber-Security for Terabit Cloud Computing
Jordi Ros-Giralt, Peter Szilagyi and Richard Lethin

Reservoir Labs, Inc.
632 Broadway Suite 803

New York, NY 10012, USA

Abstract—This paper addresses the problem of scalable cyber-
security using a cloud computing architecture. Scalability is
treated in two contexts: (1) performance and power efficiency
and (2) degree of cyber security-relevant information detected by
the cyber-security cloud (CSC). We provide a framework to
construct CSCs, which derives from a set of fundamental
building blocks (forwarders, analyzers and grounds) and the
identification of the smallest functional units (atomic CSC cells or
simply aCSC cells) capable of embedding the full functionality of
the cyber-security cloud. aCSC cells are then studied and several
high-performance algorithms are presented to optimize the
system’s performance and power efficiency. Among these, a new
queuing policy—called tail early detection (TED)—is introduced
to proactively drop packets in a way that the degree of detected
information is maximized while saving power by avoiding
spending cycles on less relevant traffic components. We also show
that it is possible to use aCSC cells as core building blocks to
construct arbitrarily large cyber-security clouds by structuring
the cells using a hierarchical architecture. To demonstrate the
utility of our framework, we implement one cyber-security “mini-
cloud” on a single chip prototype based on the Tilera’s
TILEPro64 processor demonstrating performance of up to
10Gbps.1

Keywords—cyber-security; cloud computing; energy efficient;
high speed networks; many-core processors

I. INTRODUCTION
The Department of Energy’s is currently developing ESnet,

the nation’s fastest computer network designed specifically to
support science. This initiative, managed by the Lawrence
Berkeley National Laboratory, will be bringing ESnet swiftly
into the 100 Gbps regime as “a key step to the DOE's vision of
an eventual 1 terabit wavelength network to connect DOE
facilities” [1]. ESnet will enable unprecedented levels of
collaboration, but paramount to its success will be its capability
to secure the scientific community against cyber attacks.

In designing secure communication systems to address
large network infrastructures such as the ESnet, one needs to
address at least two problems: first, data needs to be moved
from one node to another as efficiently as possible (forwarding
resources); second, data needs to be inspected and potential
threats must be detected and resolved (analysis resources)
before any damage is inflicted. Given a fixed set of resources,
this inevitably leads to contention: allocating more resources to
forwarding data necessarily leaves fewer resources available
for analysis, and vice versa. A key to the design of safer
networks is therefore the identification of an optimal balance (a
sweet-spot) between forwarding and analysis resources.

1 This work was funded by the US Department of Energy, contract

number DE-SC0004400.

We propose to exp loit the elastic properties of cloud
computing to construct a scalable energy-efficient cyber-threat
detection system that can flexibly and efficiently allocate
forwarding and analysis resources based on the consumer’s
demand. Our design incorporates several high-performance
“knobs” designed to make sweet-spot packet forwarding and
analysis decisions and provides a framework to scale the
performance of the cloud.

The problem of scaling up the performance of a cyber-
threat detection system has traditionally being approached with
a cluster-like arch itecture (e.g., [2]). While clusters provide a
mechanism to increase the performance of the system, they
lack the degree of elasticity provided by a cloud architecture.
As this paper will show, this elasticity is key to the design of
cyber-security systems that can sustain very high speed (up to
terabit) packet processing rates.

II. ARCHITECTURE

A. Cyber-Security Cloud (CSC)
According to the National Institute of Standards and

Technology (NIST), cloud computing is defined as [3]: “a
model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources
that can be rapidly provisioned and released with minimal
management effort or service provider interaction. This cloud
model is composed of five essential characteristics (on-demand
self-service, broad network access, resource pooling, rapid
elasticity, measured service), three service models (software as
a service, platform as a service, infrastructure as a service), and
four deployment models (private cloud, community cloud,
public cloud, hybrid cloud).” In this paper we focus on the
problem of building a specific type of cloud, one that is
dedicated to the detection of cyber-security attacks. Our cloud
will follow a platform as a service (PAAS) model—whereby
the consumer will have control over the deployed cyber-
security applications and their configuration—and it will
provide support for any of the four deployment models. We
will use the term cyber-security cloud or CSC to refer to this
type of cloud. To introduce our CSC framework, we start with
the following defin itions.

Definition 1. Cyber-security relevancy. We will say a
network packet is cyber-security relevant if the information it
contains alters our understanding of the cyber-threats that can
potentially affect our network assets.

Definition 2. Cyber data. We define cyber data as that
part of the information carried by packets which are cyber-
security relevant. For instance, an example of cyber data can
be the event “connection C is inflicting a denial of service
attack on network asset A.” We will say that a packet carries a
positive amount of cyber data if it is cyber-security relevant. If

a packet is more cyber-security relevant than another one, then
we will say that it carries more cyber data. Note that in this
paper we do not intend to define the meaning of relevancy,
which is an application-dependent concept.

Definition 3. Recognizable cyber data of a system. The
degree to which a system is capable of recognizing cyber data
from an input stream of packets.

Definition 4. Selection capacity of a system. The amount
of cyber data that a system can detect per unit of cost incurred
in performing such detection. In our work, cost will refer to the
processing time, space, energy, and capital equipment expenses
incurred in the process of detecting cyber data.

Definition 5. Cyber-security Cloud. For the purpose of this
paper, we will define a cyber-security cloud as a cloud that
complies with NIST’s definition and at a minimum satisfies the
following two properties:
- CSC-P1: elastic selection capacity. The selection capacity

of the CSC can be elastically provisioned and released to
scale rapidly commensurate with demand. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be appropriated in any quantity at any
time.2

- CSC-P2: elastic recognizable cyber data. The degree of
recognizable cyber data of the CSC can be elastically
increased or decreased according to consumers’ needs. A
consumer operating in a more or less demanding cyber-
security environment will be able to adjust the degree of
recognizable cyber data upward or downward in the CSC.3

The concepts of elastic selection capacity and elastic
recognizable cyber data are illustrated in . The CSC is modeled
as a virtual system capable of elastically increasing or
decreasing its selection capacity and of arbitrarily recognizing
more or less cyber data to a level that meets a specific
consumer’s demand. Notice that the second property (CSC-P2)
relates to the PAAS model, whereby the user can flexib ly add
more cyber-security applications (denoted as “apps” in) to the
cloud to increase the degree of recognizable cyber data. Our
work focuses on the construction of a framework to build
cyber-security clouds that satisfy the properties of CSC-P1 and
CSC-P2. In this paper, we will focus on CSC-P1. For an
extended version of this paper including our work on CSC-P2,
refer to [4].

B. Initial Assumption: the Heavy-Tailed Nature of Traffic
In order to derive a framework for the construction of cyber-
security clouds, we start with an understanding of a network
traffic characteristic that is essential and unique to our problem
and which can help identify interesting trade-offs in our design.
Our in itial observation rests in the well documented “heavy
tail” nature of most forms of network traffic (e.g., [5]). Th is
observation can be expressed as follows: “In a computer

2 Property CSC-P1 is equivalent to NIST’s essential characteristic

“rapid elasticity” [3], particularized to the specific case of cyber-
security.

3 Property CSC-P2 can be seen as a specific case of NIST’s
service model “software as a service” [3], particularized to the case of
cyber-security.

network, very often, to an external observer, most of the
relevant cyber data resides in a small portion of the total
traffic.” For instance, in [6] the authors find that between 55%
and 90% of the total traffic is irrelevant to the scope of their
analysis—using our notation, we would say that between 55%
and 90% of the traffic carries no cyber data. This property,
commonly referred as the heavy-tailed nature of traffic,
provides a basis for the trade-off decisions in our design.

Figure 1. A model CSC with elastic recognizable cyber

data and elastic selection capacity

In our work, we will define the heavy-tailed nature of
traffic as follows. Let 𝑏𝑛 be the n-th byte transmitted in a given
connection and let 𝐼(𝑏𝑛) be the amount of cyber data carried by
such byte. We will then assume that, often, 𝐼(𝑏𝑛) is a
monotonically decreasing function.

As other authors have noted (e.g., [6]), from a security
analysis perspective, the above definition of heavy tails is
based on the observation that often the very beginning of a
connection contains most of the cyber data of interest. For
instance, it is at the beginning of a connection that session
identification information and credentials are exchanged for
most protocols (HTTP, SIP, FTP, etc.). This concept of heavy
tails is graphically illustrated in .Build ing Blocks: Forwarder,
Analyzer and Ground

Our framework is composed of the following set of
elemental building blocks needed to implement the functions in
the CSC ():
- Ground. The ground is responsible for dropping traffic. The

decision to include a ground in our design stems from the
need to drop irrelevant traffic—for instance, the tail of a
connection that experiences heavy tailing—as a mechanism
to reduce energy costs.

- Forwarder. Forwarders are responsible for splitting and
mapping traffic onto processing resources in a way that the
overall system’s selection capacity is maximized.

- Analyzers. Analyzers perform the actual traffic analysis,
receiving as input a stream of packets and generating as
output the detected cyber data.

The basic functional unit within our framework is
constructed using these three core building blocks. This basic
unit uses the simple network configuration presented in -a,
which we refer to as an atomic CSC cell or, abbreviated, an
aCSC cell (pronounced “ax cell”).

Figure 2. A single connection with a heavy tail

Within an aCSC cell:
- The forwarder receives input traffic and can decide to (1) drop

the traffic, (2) forward the traffic out, (3) forward the traffic to
an analyzer, or (4) a combination of these actions.

- The analyzer receives traffic and extracts cyber data, which
can then feed back to the forwarder. The forwarder can
optionally use this cyber data to make forwarding decisions.

Figure 3. Building blocks

This network configuration allows for two modes of
operation: ex ante and ex post. In the ex ante mode (-b), a
packet is forwarded after the analyzer has inspected it and
conveyed new cyber data back to the forwarder. In the ex post
mode (-c), a packet can be forwarded before the analyzer
processes the packet. The ex post configuration provides the
ability to decouple the forwarding path from the analysis path.
In real-time high-performance applications, this can be an
important feature to ensure that the throughput of the cell does
not deteriorate when the analyzer node becomes overloaded.
This approach trades a small feedback delay for performance,
since packets are forwarded as fast as they are received without
waiting for the analyzers’ feedback. In per-connection packet
forwarding applications, a delay in executing a forwarding
policy simply means that for a short period of time, a
connection will operate using a non-intelligent (without
feedback) default forwarding policy; then when the forwarder
receives the cyber data (ex post), the connection will start to
operate under the new (more intelligent) forward ing policy.
Due to its high-performance characteristics, in our work we
will focus on the ex post configuration.

Figure 4. (a) The network topology of one aCSC cell

with (b) ex ante and (c) ex post configurations

C. High Performance Data Structures and Knobs
Before we describe how to use aCSC cells to build cyber-

security clouds of arbitrary sizes (Section F), we analyze the

potential bottlenecks in the cell and the implementation of
several high-performance knobs to alleviate them.

-a presents a more detailed, logical view of an aCSC cell
for the ex post configuration. A first observation is that this
new schematic implements the analyzer element using a set of
𝑛 sub-analyzers, each one identical to the others. While this is
without loss of generality (the drawings presented in -a and -c
are logically equivalent), this approach provides an additional
mechanism to scale the selection capacity of an aCSC cell up
or down (in discrete steps by increasing or decreasing 𝑛).

The schematic in -a exposes a set of data-sharing critical
regions that can potentially become a performance bottleneck.
For each of these, we have designed and implemented a high-
performance data structure.
- Analyzers’ input queues (-a/circle 3). Upon receiving a

packet, the forwarder can decide to pass it to one of the
analyzers. Since this queue is written by a single writer (the
forwarder) and read from a single reader (one of the
analyzers), it can be implemented using a classic lockless
circular queue [7].

- Forwarder’s input queue (-a/circle 4). Analyzers need to
convey feedback to the forwarder. Since this queue is
written by multiple writers (the analyzers), it cannot be
implemented using a lockless queue. To resolve this
potential contention bottleneck, we propose a new hash
table that provides zero-locking contention (lock-free) in
exchange of a low probability of false negatives [4]. We
refer to this data structure as LF−. (A nested acronym from
the words “lock-free with low false negatives”.)

- Forwarder’s queuing policy (-a/circle 3). We also consider
the problem of designing an optimal queuing policy
implemented by the forwarder when queuing packets into
each analyzer. To maximize the degree of selection
capacity in the aCSC cell, the optimization criterion for this
policy should be the “maximization of cyber data forwarded
to the analyzer.” To this end, we present a new queuing
policy referred as TED (an acronym that comes from the
words “tail early detection”) which exp loits the heavy-tailed
properties of the traffic ().

In our extended paper [4], each of these three critical
regions is studied in detail. For the sake of brevity, in this
paper we will only describe one of them: the forwarding
queuing policy.

D. Forwarder’s Queuing Policy: Optimal Tail Early Dropping
(TED) for Hierarchical Memory Architectures.
Under heavily stressed conditions the analyzers may not be

able to handle the full volume of network traffic. Therefore, a
“knob” is needed to throttle and select which packets are
handed to the analyzer and which are not. When analyzers are
able to keep up with the input traffic, this knob should be fully
opened. As traffic volume increases and analyzers begin to fall
behind, the knob should be turned down to reduce the number
of packets forwarded to the analyzers. Our objective is to
design a knob that dynamically adjusts the amount of traffic
throttled into the analyzers pool while maximizing the selection
capacity of the aCSC cell.

Figure 5. (a) An aCSC cell instance, (b) behavior of the

TED static queuing policy for a given connection

To implement this controller, we propose a new queuing
policy called tail early dropping (TED). TED is similar in
concept to the well-known queuing policy RED (random early
detection [8]) albeit with a different objective. While RED
aims at maximizing fairness amongst connections and reducing
effects such as TCP global synchronization, TED’s objective is
to proactively drop packets so as to maximize the overall
selection capacity of the system. Toward this goal, we propose
to use a queuing policy designed to exploit the heavy-tail
properties of network flows (). We start by introducing first a
static version of the TED queuing policy:

TED static queuing policy. Let 𝜆𝑡𝑒𝑑 be a non-negative
integer value and 𝑐 a connection flowing through an aCSC cell.
Upon receiving a byte 𝑏𝑛 from connection 𝑐 , if the total
number of bytes received from this connection is larger than
𝜆𝑇𝐸𝐷, then drop 𝑏𝑛 . Otherwise, queue it.

This static policy (illustrated in -b) has the advantage of
being simple to implement—it only requires tracking of the
number of bytes received from each connection—and
priorit izes bytes which carry higher cyber data according to the
heavy tails principle. A main limitation of this static policy is
its lack of flexibility: since in general the degree of cyber data
carried by traffic changes with time, an optimal 𝜆𝑡𝑒𝑑 ought to
also change with time. The key to the design of a good TED
queuing policy is the identification of a control loop that can
dynamically adjust the value of 𝜆𝑡𝑒𝑑 towards tracking a certain
optimal value 𝜆𝑡𝑒𝑑

𝑜𝑝𝑡 . Before we can identify such optimal
value, we need to first define the meaning of optimality in the
context of a TED queuing policy.

While we acknowledge that there can be a variety of
optimization criteria, g iven their wide-spread use, we focus our
attention on finding a good sweet-spot for architectures that are
based on hierarchical memory. These types of architectures are
found in most of today’s high-performance network appliances
such as routers, intelligent switches, and general purpose
computers—including the Tilera board on which we have
implemented our CSC. (Described later in Section III.)
Our optimal TED policy derives from the following
observation: in hierarchical memory architectures, memory

accesses are, in general, one order of magnitude slower than
cache accesses. For instance, in the Tilera architecture, a
memory access (80 cycles) is ten times slower than a L2 cache
access (8 cycles) and forty times slower than a L1 cache access
(2 cycles) [10].

Lemma 1: memory and cache regimes. Assume an aCSC
cell implemented on a hierarchical memory architecture. Let
𝐼𝑖𝑛 be the amount of cyber data per unit of time received by the
cell and let 𝜋𝑐 be the amount of cyber data per unit of t ime that
it can actually process. Then:
- If 𝜋𝑐 < 𝐼𝑖𝑛 , there exists a value 𝜆𝑡𝑒𝑑ℎ such that for any
𝜆𝑡𝑒𝑑 > 𝜆𝑡𝑒𝑑ℎ , the analyzers in the aCSC cell will be
accessing packets from memory (cache miss) .

- For any value of 𝜋𝑐, there exists a value 𝜆𝑡𝑒𝑑𝑙 such that for
any 𝜆𝑡𝑒𝑑 < 𝜆𝑡𝑒𝑑𝑙 , the analyzers in the aCSC cell will be
accessing packets from cache (cache hit).

Proof. For the sake of brevity, refer to [4].
Lemma 1 reveals the existence of a sweet-spot: On one

hand, 𝜆𝑡𝑒𝑑 ought to be large to ensure that the analyzers receive
enough cyber data; on the other, if 𝜆𝑡𝑒𝑑is too large, the cell will
operate in memory regime, penalizing its overall selection
capacity. A sweet-spot therefore comes from identifying the
largest value of 𝜆𝑡𝑒𝑑 that will still allow the cell to operate
within the boundaries of the cache regime—that is, without
entering the memory regime. We refer to this value as 𝜆𝑡𝑒𝑑𝑐𝑎𝑐ℎ𝑒.

The general form of our TED queuing algorithm can be
expressed as follows:
Constants: ∆𝒕𝒆𝒅, 𝒕𝒕𝒆𝒅, 𝝀𝒕𝒆𝒅𝒊 .
Step 1. Start with 𝝀𝒕𝒆𝒅 = 𝝀𝒕𝒆𝒅𝒊 , for an arbitrary 𝝀𝒕𝒆𝒅𝒊
Step 2. If the cell is operating in memory regime, then keep reducing

𝝀𝒕𝒆𝒅 by a value ∆𝒕𝒆𝒅 > 0 until the cell starts to operate in
cache regime.

Step 3. Wait a period of time 𝒕𝒕𝒆𝒅 and then increase 𝝀𝒕𝒆𝒅 by ∆𝒕𝒆𝒅 .
After that, return to step 2.

This algorithm, as illustrated in , is designed to track 𝜆𝑡𝑒𝑑𝑐𝑎𝑐ℎ𝑒
using a conservative iterative approach: with instant
(effectively infinite slope) decrease to converge from memory
regime to cache regime and with a slow periodic increase (with
a slope of ∆𝑡𝑒𝑑/ 𝑡𝑡𝑒𝑑). illustrates the two regimes and the
behavior of the TED control algorithm.

E. Cloud Scalability
From a functional perspective, an aCSC cell satisfies the

properties of the cloud (Definit ion 5) albeit at a much smaller
scale, delivering a bounded amount of selection capacity.
Being functionally equivalent, aCSC cells can be used as
building blocks for the construction of larger clouds. This can
be achieved using a fractal-like arch itecture as illustrated in
Figure 7. The schematic shows that on a macroscopic view,
the functional elements of the cloud are equivalent to those of
an aCSC cell, with the forwarder function receiving and
mapping traffic onto the analyzer function. Zooming into the
cloud, we can obtain a new microscopic view, showing that the
cloud itself is made of s maller aCSC cells. Each of these
elements could be further zoomed in, disclosing a new layer of
smaller aCSC cells, resembling the structure of a Russian

nesting doll. (For a more detailed description of the benefits of
this self-similar architecture, refer to [4].)

Figure 6. (a) Example of cache versus memory regimes;

(b) TED control algorithm used to track 𝝀𝒕𝒆𝒅
𝒄𝒂𝒄𝒉𝒆.

Figure 7. A CSC can be constructed using aCSC cells

organized in a fractal-like manner.

This hierarchical architecture for cloud computing has the
virtue of providing a new degree of elasticity. By adding more
aCSC cells to the cloud and by structuring them using a higher
number of fractal levels, one can progressively increase the
performance of the cloud. In our design, we propose a cloud
structure formed with the four levels shown in the next table:

Table 1. Levels of the CSC
Level Description and interconnect type
Core Multiple cores in a single processor forming one aCSC

cell. A cell consists of 𝑛+ 1 cores, 1 core used as a
forwarder node and 𝑛 cores used as analyzers. Packets
are shared/forwarded via main memory or cache.

Processor For processors with 𝑚 cores, mapping of ⌈𝑚/(𝑛 + 1)⌉
aCSC cells onto a single processor to form a larger
aCSC cell. Packets are shared/forwarded via main
memory or cache.

Box Multiple processors embedded into a single box.
Packets are shared/forwarded via a processor
interconnect (e.g. PCI).

Network Multiple boxes connected over a network fabric.
Packets are shared/forwarded over the network.

III. IMPLEMENTATION
We have implemented a cyber-security “mini-cloud” using

the framework presented in this paper on a single-chip
prototype providing processing speeds of up to 10Gbps. We
refer to this prototype as CSC10. On the software side, while
the concepts explained in this paper are general and can be
implemented using any high-level programmable language, our

CSC implementation is based on Bro [9], an open source
network analysis framework developed by the International
Computer Science Institute (ICSI) in Berkeley, CA, and the
National Center for Supercomputing Applications (NCSA) in
Urbana-Champaign, IL. On the hardware side, we use a
Tilera’s TILEncore PCI-Express card, which comes with 64
cores (called tiles) running Linux and several high-performance
features including the following:
- NetIO: a Tilera-proprietary high-speed packet capturing

module capable of DMA-ing packets directly onto the
application (bypassing the Linux kernel).

- Hardware-aided load balancing: IP tuple hashing and load
balancing performed in hardware. This feature is used by the
analyzers that require per-flow processing.

- Zero overhead Linux: this feature allows the programmer to
specify a set of “dataplane” tiles, each of which runs a single
user-space process without incurring any Linux system
overhead.

(For a more detailed description of these hardware-aided
optimizations, refer to our extended paper [4].)

The TILEPro64 network processor comes with two 10Gbps
XAUI ports and each of its tiles is clocked at 700MHz and
includes L1 and L2 data caches of 16KB and 64KB,
respectively. presents a 2-level mapping (cores and processor)
of the CSC architecture onto the TILEncore chip. The first
level has eight aCSC cells, each with five analyzers and one
forwarder, for a total of 48 tiles (six tiles in each aCSC cell).
The second level consists of one single-chip aCSC. In addition
to allocating 48 t iles for mapping the functions of the mini-
cloud, two other sets of tiles are used as follows:
- Ingress Packet Processor (IPP) tiles: Four tiles are used to

run the ingress packet processor, a Tilera component part of
NetIO which is used to accelerate the reception and
transmission of packets [10].

- OS tiles: The rest of the tiles, are used to run the operating
system and housekeeping functions.

IV. PERFORMANCE TEST
Figure 9 provides a performance benchmark of our CSC10

mini-cloud. These results were obtained by stressing CSC10
using a cluster of HTTP clients and servers generating traffic at
10Gbps. The figure shows two graphs: the total throughput
sustained by the CSC10 (Figure 9-a) and its degree of selection
capacity (Figure 9-b), both displayed as a function of the
number of forwarders and analyzers being used. In this
benchmark, our definition of selection capacity is a measure of
the number of events that the Bro application can detect per
unit of time. Specifically, we measure the number of events of
type “this HTTP connection is a GET request” emitted by a
Bro script (this script corresponds to one “app” in the cloud as
illustrated in). These graphs illustrate two important concepts.
First, the performance of the forwarding path (Figure 9-a) is
approximately independent of the analysis path (since
throughput is flat regardless of the number of analyzers per
forwarder). Second, for the specific application used in this
benchmark, a number of analyzers between two and four for
each forwarder is sufficient (since selection capacity is flat
beyond four analyzers—Figure 9-b). For a more detailed set of
performance results, refer to [4].

Figure 8. CSC10 on a single TILEncore chip

V. TERABIT CYBER-SECURITY: CSC1000
To illustrate how the proposed architecture can be used to scale
up the CSC, we describe a possible design of a terabit-scale
CSC (referred as CSC1000). The terabit design is based on a
4-level hierarch ical architecture starting from a Tilera Gx
processor. The Gx is the newest generation of processors
which comes with cores clocked at a frequency up to 1.5GHz
and a faster implementation of NetIO called mPIPE [10].
Since the older TILEPro64 chip can sustain 10Gbps (see
Section IV), we make the assumption that the Gx will be
capable of sustaining 20Gbps. (This could be an average
estimate, since the Gx is designed to sustain raw packet
forwarding rates up to 40Gbps.) A Gx chip provides the
infrastructure for the first and second fractal levels, mapping
multiple aCSC into its many-core architecture. Tilera offers a
1U rack-mountable device incorporating four Tilera’s TILE-Gx
processors, totaling 144 to 288 cores, which would yield a
cloud performance of 80Gbps. Each Gx processor can be
connected to the PCI-Express switch via an x8 PCI-Express 2.0
link, with a capacity of 32Gbps (per-link) in each direction (full
duplex). Each processor is expected to require no more than
15Gbps to forward packets to other processors, although
20Gbps may be required if the input load balance is pessimal.
(Each processor takes in one quarter of the total 80Gbps traffic,
and, being one of four processors, is expected to forward three
quarters of the traffic it receives to other processors.) The 1U
device constitutes the third level. Finally, 12 1U devices (or
more) can be connected in a network to deliver a total
throughput of 960Mbps, for a full four-level architecture.

VI. CONCLUSIONS
In our work, we use a cloud computing architecture to

address the problem of scalable cyber-security for very high-
speed networks (up to terabit per second rates). The key to
sustaining high rates resides in the design of a system that can
efficiently triage those parts of the traffic that are most cyber
security-relevant and avoid spending precious resources
processing traffic components that are less relevant. We argue
that the elemental functions needed to implement a cyber-
security cloud are three, forwarders, analyzers and grounds,
and propose a new design based on aCSC cells—small

configurations of these three elements that embed the full
functionality of the cloud but at a much lower scale. To control
the flow of packets within one aCSC cell, we present tail early
dropping, a new closed-loop queuing policy designed to make
proactive packet dropping decisions toward maximizing the
selection capacity of the cell. We then show how aCSC cells
can be used to construct larger clouds using a fractal-like
architecture, and provide a configuration example of a cyber-
security cloud to sustain terabit rates. To demonstrate the
framework, we have implemented a two-fractal level mini-
cloud using a Tilera TILEPro64 processor supporting packet
processing rates up to 10Gbps.

Our next step is to scale up our implementation to support
rates of 100Gbps and beyond by increasing the number of
fractal levels using the new generation of Tilera Gx processors
and the design described in Section V.

Figure 9 Performance of one CSC10 mini-cloud

REFERENCES
[1] “Department of Energy Builds National 100GigE Research Net,” Press

Release, July 13, 2011.
[2] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, B. T ierney, “The

NIDS Cluster: Scalable, Stateful Network Intrusion Detection on
Commodity Hardware,” Recent Advances in Intrusion Detection, 2007

[3] National Institute of Standards and Technologies, “The NIST Definition
of Cloud Computing,” Special Publication 800-145, September 2011.

[4] J. Ros-Giralt, P. Szilagyi, R. Lethin, “Scalable Cyber-Security for
Terabit Cloud Computing (Extended Version),” Reservoir Labs
Technical Report, May 2012.

[5] V. Paxson, “Empirically derived analytic models of wide-area TCP
connections,” IEEE/ACM Transactions on Networking, 2(4):316–336,
August 1994.

[6] Jose Gonzalez, Vern Paxson, Nicholas Weaver, “Shunting: A Hardware
/Software Architecture for Flexible, High Performance Network
Intrusion Prevention,” ACM Conference on Computer and
Communications Security, November 2007.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford
Stein, “Introduction to Algorithms,” The MIT Press; 3rd edition, 2009.

[8] Floyd, Sally; Jacobson, Van. "Random Early Detection (RED) gateways
for Congestion Avoidance". IEEE/ACM Transactions on Networking,
1(4): 397–413, August 1993.

[9] Vern Paxson, “Bro: A System for Detecting Network Intruders in Real-
Time,” Computer Networks, December 1999.

[10] Carl Ramey, “TILE-Gx100 ManyCore Processor: Acceleration
Interfaces and Architecture,” T ilera Corporation, August 2011.

