
Benchmarking Parallel Eigen Decomposition for
Residuals Analysis of Very Large Graphs

Edward M. Rutledge, Benjamin A. Miller, and Michelle S. Beard
Lincoln Laboratory

Massachusetts Institute of Technology
Lexington, MA 02420

{rutledge, bamiller, michelle.beard}@ll.mit.edu

Abstract—Graph analysis is used in many domains, from the
social sciences to physics and engineering. The computational
driver for one important class of graph analysis algorithms is
the computation of leading eigenvectors of matrix representations
of a graph. This paper explores the computational implications
of performing an eigen decomposition of a directed graph’s
symmetrized modularity matrix using commodity cluster hard-
ware and freely available eigensolver software, for graphs with 1
million to 1 billion vertices, and 8 million to 8 billion edges.
Working with graphs of these sizes, parallel eigensolvers are
of particular interest. Our results suggest that graph analysis
approaches based on eigen space analysis of graph residuals are
feasible even for graphs of these sizes.

I. INTRODUCTION

A graph consists of a pair of sets: a set of vertices, V ,
denoting entities, and a set of edges, E, which connect the
vertices. Graphs are used to model networks in many domains,
from the social sciences to physics and engineering. A number
of problems that arise in these domains can be cast as the
problem of finding anomalous subgraphs within a larger graph.
The eigen decomposition of a graph’s “modularity matrix” is
the computational driver for a class of algorithms that aim to
find subgraphs whose structure differs significantly from that
described by a random graph model, such as the community
detection algorithms described in [1], and the anomaly de-
tection algorithms described in [2], [3]. The utility of these
algorithms has been demonstrated for graphs generated both
synthetically and from real-world data [2]–[4].

As the ability to collect and store ever-increasing amounts
of data results in ever-larger graphs, it is natural to ask how
well these algorithms scale. For graphs with |V | vertices
and |E| edges, iterative methods exist for finding the first
m eigenvectors in O((m|E| + m2|V | + m3)h), where h
is the number of iterations of the method [5], but what
performance do these algorithms have in practice, and what
are the practical limits of applying these algorithms to large

This work is sponsored by the Intelligence Advanced Research Projects
Activity (IARPA) under Air Force Contract FA8721-05-C-0002. The U.S.
Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright annotation thereon.

Disclaimer: The views and conclusions contained herein are those of the
author and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of IARPA or the U.S.
Government.

data sets using state-of-the-art technology? This paper explores
that question, providing benchmarking results for computation
of the eigen decomposition of the modularity matrix of graphs
with one million to one billion nodes, using commodity cluster
hardware and freely available eigensolver software.

The remainder of this paper is organized as follows. Section
II gives an overview of the algorithm we consider in this paper:
the eigen decomposition of a directed graph’s symmetrized
modularity matrix. Section III describes the implementation
of this algorithm for which we present benchmarking results.
Section IV describes the benchmarking experiments. Section
V presents some of our benchmarking results. Section VI
concludes and presents potential future work.

II. ALGORITHM OVERVIEW

Graph analysis algorithms such as those described in [1], [2]
rely on finding eigenvectors of the graph’s modularity matrix.
The modularity matrix is essentially an expression of how a
given graph’s structure deviates from that expected under a
random model in which the likelihood of a potential edge’s
existence is proportional to the product of the degrees of the
vertices connected by the edge. The modularity matrix of an
unweighted, directed graph is given by

B̂ = A− koutkTin/|E|,

where A is the graph adjacency matrix, kout is the out-degree
vector (a vector whose ith entry is the out-degree of the ith
vertex), kin is the in-degree vector (a vector whose ith entry
is the in-degree of the ith vertex), and |E| is the total number
of edges in the graph. As in [6], this paper considers the
“symmetrized” modularity matrix B = (B̂ + B̂T)/2, or

B = (A− koutkTin +AT − kinkTout)/2|E|.

Note that for an undirected graph, in which an edge from
vertex u to vertex v exists only if there is an edge from
v to u, A is symmetric and kout = kin. Thus, B = B̂
(and B̂ is symmetric), so the problem of computing the
eigen decomposition of B reduces to the (easier) problem of
computing the eigen decomposition of symmetric B̂.

In this paper, we consider the computation of the largest
magnitude eigenvectors of the symmetrized modularity matrix

B (i.e., the space of largest positive residuals) for very large
randomly generated directed graphs.

III. IMPLEMENTATION

In practically all efficient algorithms for eigenvector compu-
tation, the matrix being decomposed is only accessed through
matrix-vector multiplication. As described in [1], [4], multi-
plication of a vector by the symmetrized modularity matrix
can be implemented efficiently as

Bx = Ax− kout((kTinx)/2|E|) (1)
+ATx− kin((kToutx)/2|E|).

The dense matrix B does not need to be stored to compute
Bx. Only the sparse adjacency matrix A, the degree vectors
kout and kin, and the count of edges |E| must be stored.
The operation can be implemented as 2 sparse matrix-vector
multiplications, 2 vector dot products, 2 scalar-vector multi-
plications, and 3 vector additions.

There are over a dozen freely available eigensolver software
packages. A survey is given in [7]. For our application, we
desire a parallel eigensolver that can utilize commodity cluster
hardware. Using a cluster allows us to solve larger problems,
and allows us to solve problems more quickly, than using
a single workstation. To achieve good performance and to
scale to large problem sizes in our application, the eigensolver
package must allow us to implement efficient multiplication
of a vector by the symmetrized modularity matrix as in
(1). One eigensolver package that meets these criteria is
the Scalable Library for Eigenvalue Problem Computations
(SLEPc), a C library developed by the High Performance
Networking and Computing Group (GRyCAP) of Universitat
Politècnica de València (Spain) [8]. We used SLEPc for our
initial implementation, which we describe and for which we
present benchmarking results in this paper. Other suitable
eigensolver packages exist as well, such as Anasazi [9], and
we may evaluate and benchmark some of these other packages
for our application in the future.

SLEPc is layered on top of the Portable, Extensible Toolkit
for Scientific Computation (PETSc), developed by Argonne
National Laboratory [10]. SLEPc supports any PETSc matrix
type, including sparse distributed matrices and “matrix shells.”
PETSc sparse distributed matrices may be row-distributed
across multiple processes of an MPI program. (MPI is the
Message Passing Interface standard [11].) Computations on
these matrices are distributed among the processes according
to which data are local. PETSc “matrix shells” allow users
of the library to define matrices with non-standard storage
and operations. In our case, we used the matrix shell facility
to define a modularity matrix type that stores the sparse,
distributed graph adjacency matrix A, the distributed degree
vectors kin and kout, and the count of edges in the graph |E|;
and implements matrix-vector multiplication as defined in (1).
When we apply a SLEPc eigensolver to a modularity matrix,
SLEPc invokes the matrix-vector multiplication operation as
part of the eigensolver method, and the computation is dis-
tributed across the processes of the MPI program according

to the distribution of A, kin, and kout. As we show in
the experimental results, this distribution of storage and data
allows us to solve larger problems and solve problems faster
on a cluster than a single-workstation implementation.

In our implementation, we used the default PETSc and
SLEPc settings. In particular, we used the default SLEPc al-
gorithm for computing eigenvectors: the Krylov-Shur method
[12]. We also used SLEPc’s default stopping condition of

‖Bx− λx‖2/‖λx‖2 ≤ 10−8,

where B is the symmetrized modularity matrix for which
we are computing eigenvectors, x is a computed eigenvector,
and λ is the corresponding eigenvalue. (The condition must
hold for each computed eigenvector and its corresponding
eigenvalue).

IV. EXPERIMENTS

We benchmarked the modularity matrix eigen decomposi-
tion implementation described above on Lincoln Laboratory’s
LLGrid cluster for random graphs of various sizes. The
computing platform, data sets, and parameter space of the
experiments are described below.

A. Computing Platform

All experiments were run on Lincoln Laboratory’s LL-
Grid TX-2500 cluster [13]. This cluster has about 550 Dell
PowerEdge 2850 compute nodes, each with dual 3.2 GHz
Intel Xeon processors and 8 GB RAM. However, the system
scheduler limits jobs to no more than 64 nodes. To maximize
the amount of memory available for our jobs, we scheduled
our experiments so that a single MPI process would be mapped
to each node, and so that no other user jobs were allowed to
run on the nodes we used. LLGrid’s gigabit Ethernet network
was used by MPI for inter-node communications.

B. Data Sets

The random graphs for which which we performed eigen
decomposition of the modularity matrix were generated using
the R-MAT algorithm [14]. R-MAT produces graphs that are,
in many respects, similar to those that arise in real-world
situations. The R-MAT probability matrix used was(

0.5 0.125
0.125 0.25

)
.

The average in- (and out-) degree was slightly less than 8. (It
was not exactly 8 because we discarded edges that collided
with existing edges instead of trying to place them again.)
The number of vertices ranged from 220 to 230 (or about
one million to one billion). To simplify load balancing in the
eigenvector computation, we randomly permuted the vertex
labels of the generated graphs. This has the effect of more
uniformly distributing edges across the rows and columns of
the graph’s adjacency matrix, but has no effect on the graph’s
topology.

Fig. 1. Experiment Parameter Space

C. Parameter Space

Figure 1 shows the parameter space explored in the exper-
iments. The number of processors ranged from 1 to 64 in
powers of 2. As mentioned earlier, we were limited to using
64 processors by LLGrid’s scheduler. The number of graph
vertices ranged from 220 (approximately one million) to 230

(approximately one billion) in powers of 2. For each number of
processors and number of vertices, we attempted to compute
the eigenvectors corresponding to the 1, 10, and 100 largest
magnitude eigenvalues. Although the number of eigenvectors
computed is a small fraction of the total, computing even
a small number of leading eigenvectors can be useful in
graph analysis. A number of the experiments failed due to
insufficient memory on the computing hardware. For example,
we were only able to process the billion-vertex data set on
64 processors, and were unable to compute more than 2
eigenvectors in that case. Again, the average in- (and out-)
degree of the vertices was approximately 8, so the number of
edges in the graphs in our experiments was approximately 8
times the number of vertices.

V. RESULTS

This section briefly presents a few of the experimental
results, focusing on comparison of our SLEPc implementation
to a Matlab implementation on a single compute node, how
performance scales as compute nodes are added, and how our
implementation performs when running on 64 compute nodes,
the maximum allowed by our cluster’s scheduler.

A. Comparison to Matlab

To determine whether our SLEPc implementation has rea-
sonable performance in the single-processor case, we com-
pared its performance to Matlab’s on a single processor.
Our Matlab implementation makes use of the eigs function,
passing a function implementing efficient multiplication by
the symmetrized modularity matrix, as in (1), to eigs instead
of computing and passing the modularity matrix to eigs
directly. We also set the tolerance to 10−8 to mirror our

Fig. 2. Running time of SLEPc and Matlab implementations computing a
single eigenvector of various size graphs using a single compute node

SLEPc stopping condition. Thus, our Matlab implementation
is computationally similar to our SLEPc implementation. We
also used this Matlab implementation as a reference to verify
that our SLEPc implementation was outputting the correct
results.

A comparison of the performance of our Matlab and SLEPc
implementations for computing a single eigenvector on a
single processor is shown in Figure 2. Running time averaged
across number of trials is on the vertical axis, and number of
vertices is on the horizontal axis. For the SLEPc implemen-
tation, the number of iterations of the Krylov-Shur method
needed to converge is indicated by the parenthetical numbers
next to the data points. (Number of iterations was not reported
by the Matlab implementation.) Both axes have a log2 scale.
Neither implementation was able process a graph with greater
than 16M nodes on a single processor. The performance of
the SLEPc and Matlab implementations is nearly identical;
SLEPc is typically a few seconds faster. This holds true for
10 and 100 eigenvalues as well. The main takeaway from
this experiment is that the Matlab and SLEPc implementations
perform similarly for the single processor case.

B. Scaling the Number of Processors

Figure 3 shows how running on different numbers of com-
pute nodes affects the time required to compute the leading
eigenvector of a 16M vertex graph. As one might expect,
nearly linear speedup is achieved compared to the single
processor case when the processor count is low, but speedup
begins to tail off for greater numbers of processors as the
fraction of running time required for inter-processor commu-
nication increases. For graphs with 223 or more vertices, we
found that the best performance was always obtained running
on 64 nodes (the maximum allowed in our system). For
smaller graphs, better performance was often achieved running
on fewer nodes, depending on the number of eigenvectors
computed. For example, when computing only the leading
eigenvector of a 220 vertex graph, we observed the best
performance running on 4 compute nodes. This is because the
savings from distributing the computation among more nodes

Fig. 3. Running time for calculating a single eigenvector of a 16M vertex
graph using different numbers of compute nodes

Fig. 4. Running time for computing 1, 10, and 100 eigenvectors on various
size graphs using 64 compute nodes

does not offset the additional time required for inter-processor
communications in this case.

C. Results on 64 Compute Nodes

Figure 4 shows average running times when running on
64 compute nodes and computing 1, 10, and 100 eigenvec-
tors. Recall that the eigenvector computation has complexity
O((m|E| + m2|V | + m3)h), where m is the number of
eigenvectors and h is the number of iterations of the method
required to converge. In our experiments |E| = 8|V |, so one
would expect the running time to scale approximately linearly
with increasing graph size for a given number of eigenvec-
tors, (depending on the number of iterations required). When
running on 64 compute nodes, we observe that the average
running time scales approximately linearly across much of the
range of graph sizes we tested, but the average running time
scales less than linearly for the smallest graphs, and greater
than linearly for the largest graphs. Most likely, running time
scales less than linearly for the smaller graphs because the
ratio of computation to communication is relatively high for
the smaller graph sizes. (Note that we do not see this effect
in the single processor case.) More investigation is required to
determine why the running time scales greater than linearly for

the larger graphs; one potential explanation is cache effects.
We also observe that execution time increases much more

dramatically when moving from 1 eigenvector to 10 eigenvec-
tors than when moving from 10 eigenvectors to 100 eigenvec-
tors. This is because, for our data sets, the number of iterations
of the method required when computing 10 eigenvectors was
between 19 and 37, compared to 2 iterations required to
compute 1 eigenvector, and 6 to 8 iterations required to
compute 100 eigenvectors. It is difficult to make any general
conclusions about how our implementation scales with the
number of eigenvectors, given that we only gathered a few
data points in this dimension, and given that the number
of eigenvectors was small compared to the graph sizes. The
number of iterations is dependent on the eigenvalues of the
matrix; specifically, the gap between consecutive eigenvalues.
Thus, a formula for the iteration count is too complicated to
express in terms of numbers of vertices and edges. The number
of iterations increased when computing 10 eigenvectors versus
1 because for our data sets, the difference in magnitude
of the first and second eigenvalue was much greater than
the difference in magnitude of subsequent eigenvalues. For
example, the 10 leading eigenvalues in the 64M vertex case
were:

λ1 = 85.403845

λ2 = 41.146193

λ3 = 41.093851

λ4 = 40.993092

λ5 = 40.963347

λ6 = 40.907482

λ7 = 40.854489

λ8 = 40.824815

λ9 = 40.765026

λ10 = 40.735158.

One plausible explanation for the number of iterations de-
creasing when computing 100 eigenvectors versus 10 is that
the number of matrix-vector multiplications scales as O(mh).
So, even though there are fewer iterations, there are more
multiplications, which drive the algorithm toward convergence.

Although not shown in Figure 4, we were also able to
compute 2 eigenvectors of a 1 billion vertex graph when
running on 64 compute nodes. This computation required 49
iterations of the method, and took about 32,500 seconds (or
about 9 hours). Running on more than 64 nodes, we would
have been able to compute more eigenvectors, and running
times would have been lower for the larger graph sizes.

VI. CONCLUSION AND FUTURE WORK

In this paper we have described an implementation of
eigen decomposition of a directed graph modularity matrix
that uses the freely available SLEPc library, and presented
benchmarking results for that implementation. We have shown
that, using this implementation, it is feasible to apply the
algorithms described in [1]–[3] to very large graphs, at least

up to 1 billion vertices and 8 billion edges, on commodity
cluster hardware. We have demonstrated that our SLEPc-based
implementation scales fairly well, and believe that we could
scale to larger problems than the experiments we describe here
by running on more than 64 compute nodes.

There are a number of potential directions for future work.
As mentioned in Section III, SLEPc is just one of many
freely available eigensolvers. Evaluating the performance of
some other eigensolver libraries—in particular the Anasazi
library—is a potential next step. Running our experiments on
larger clusters so that we can scale to larger problem sizes
is another potential next step. To do this, we would have
to change our implementation somewhat, since we currently
use 32-bit numbers to represent node vertex labels, and we
are approaching graph sizes where the number of vertices
cannot be represented in a 32-bit number. Another potential
direction for future work is to further tailor our implementation
to application. For example, our current implementation uses
SLEPc’s standard sparse matrix data structure to represent
the adjacency matrix. This data structure stores a double-
precision value for each edge in the graph, even though that
value is 1 for every edge (since our graph is unweighted).
Using a specialized data structure to represent our adjacency
matrix would allow us to eliminate this unnecessary storage
and potentially scale to larger problem sizes. Other possible
avenues of investigation include incorporating preconditioners
for applying these methods to other graph problems, such
as finding the eigenvectors with smallest magnitude in the
graph Laplacian, and considering more efficient partitioning
schemes.

ACKNOWLEDGMENTS

The authors thank Nadya Bliss for her guidance and support
as the Lincoln Laboratory manager of this effort. We also
thank the LLGrid team for their support in running our
experiments.

REFERENCES

[1] M. E. J. Newman, “Finding community structure in networks using the
eigenvectors of matrices,” Phys. Rev. E, vol. 74, no. 3, pp. 036 104–(1–
19), Sep 2006.

[2] B. Miller, N. Bliss, and P. Wolfe, “Toward signal processing theory for
graphs and non-Euclidean data,” in Proc. ICASSP, 2010, pp. 5414–5417.

[3] B. A. Miller, N. T. Bliss, and P. J. Wolfe, “Subgraph detection using
eigenvector L1 norms,” in Advances in NIPS, J. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds., 2010, pp.
1633–1641.

[4] B. A. Miller, N. Arcolano, M. S. Beard, J. Kepner, M. C. Schmidt,
N. T. Bliss, and P. J. Wolfe, “A scalable signal processing architecture
for massive graph analysis,” in Proc. ICASSP, 2012.

[5] S. White and P. Smyth, “A spectral clustering approach to finding
communities in graphs,” in Proc. SIAM Int. Conf. Data Mining, 2005.

[6] E. A. Leicht and M. E. J. Newman, “Community structure in directed
networks,” Phys. Rev. Lett., vol. 100, no. 11, pp. 118 703–(1–4), Mar
2008.

[7] C. Campos, J. E. Roman, E. Romero, and A. Tomas, “A
survey of software for sparse eigenvalue problems,” Universitat
Politècnica de València, Tech. Rep. STR-6, 2009, available at
http://www.grycap.upv.es/slepc.

[8] V. Hernandez, J. E. Roman, and V. Vidal, “SLEPc: A scalable and
flexible toolkit for the solution of eigenvalue problems,” ACM Trans.
Math. Software, vol. 31, no. 3, pp. 351–362, 2005.

[9] C. G. Baker, U. L. Hetmaniuk, R. B. Lehoucq, and H. K. Thornquist,
“Anasazi software for the numerical solution of large-scale eigenvalue
problems,” ACM Trans. Math. Software, vol. 36, no. 3, pp. 13:1–13:23,
Jul. 2009.

[10] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Web page,”
2012, http://www.mcs.anl.gov/petsc.

[11] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable parallel
programming with the message-passing interface, 2nd ed. Cambridge,
MA, USA: MIT Press, 1999.

[12] V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal, “Krylov-Schur
methods in SLEPc,” Universitat Politècnica de València, Tech. Rep.
STR-7, 2007, available at http://www.grycap.upv.es/slepc.

[13] A. Reuther, B. Arc, T. Currie, A. Funk, J. Kepner, M. Hubbell,
A. McCabe, and P. Michaleas, “TX-2500 – An interactive, on-demand
rapid-prototyping HPC system,” in Proc. High Performance Embedded
Computing Worhshop, 2007.

[14] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in Proc. SIAM Int. Conf. Data Mining, 2004.

