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Abstract—Large-scale 3D scene reconstruction using Structure
from Motion (SfM) continues to be very computationally chal-
lenging despite much active research in the area. We propose
an efficient, scalable processing chain designed for cluster com-
puting and suitable for use on aerial video. The sparse bundle
adjustment step, which is iterative and difficult to parallelize,
is accomplished by partitioning the input image set, generating
independent point clouds in parallel, and then fusing the clouds
and combining duplicate points. We compare this processing
chain to a leading parallel SfM implementation, which exploits
fine-grained parallelism in various matrix operations and is not
designed to scale beyond a multi-core workstation with GPU. We
show our cluster-based approach offers significant improvement
in scalability and runtime while producing comparable point
cloud density and more accurate point location estimates.

I. INTRODUCTION

Detailed 3D reconstructions can be automatically generated
from photos and video by inferring the geometry of the real-
world scene based on motion between multiple 2D viewpoints.
This process of creating Structure from Motion (SfM) of
imagery is a very active area of research, with many techniques
and applications being developed in recent years. The task is
especially challenging because determining each camera pose
and the matching points among the images represent an ex-
traordinarily large solution space requiring much computation
to converge on a reasonable estimate.

Solutions to the problem have gained traction in the past
decade in commercial and military applications, including
mapping [1], robotic navigation [2], and most prevalently, 3D
geo-registration of photos and video [3]–[5]. SfM techniques
are well-suited to geo-registration because they work with
low-cost sensors and platforms and are robust to outliers
in telemetry data, which could propagate errors in other
techniques.

Automated 3D reconstruction represents a considerable
computational challenge, exercising the state-of-the-art in
computer vision, optimization, and parallel computing. SfM
techniques rely on identifying and matching common fea-
tures from multiple images, a process whose runtime grows
quadratically with the input size. Moreover, a solution requires
an estimate of each camera’s parameters, which include both
extrinsics (e.g. location and pointing direction) and intrinsics
(e.g. focal length and lens distortion). Parameter estimation
presents a highly non-linear and non-convex optimization
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problem. Compounding the computational difficulties are large
data considerations and real-time processing requirements
imposed by certain applications. The volume of imagery at
high-resolution is quickly outpacing the current capability to
process it. Furthermore, building models with high density and
accuracy requires large photo sets, and computation quickly
becomes intractable without efficient, parallel techniques.
Hence, scalable and automated algorithms are required to
process aerial imagery in appropriate computing environments.

Attempts to improve SfM efficiency have been previously
proposed [6]–[8], and multi-core processors and Graphics
Processing Units (GPUs) have been employed to accelerate
computation [9]. However, while some work has consid-
ered SfM in a cluster environment [10], little attention has
been given to processing datasets relevant to wide-area geo-
registration, such as aerial video, on a large-scale computing
grid.

This paper focuses on the problem of computing SfM from
aerial video for the purpose of fully automated geo-registration
of objects in the video. Applications require large input
datasets to produce accurate results, so the implementation
must be able to scale to an appropriately sized cluster in
order to meet a real-time processing budget. For this study, we
consider a dataset collected by MIT Lincoln Laboratory over
the MIT campus in 2011. The GPS location of the sensor
is available for all frames, and video frames are sampled
at several rates to produce photo sets of various sizes. We
propose an SfM processing chain that uses state-of-the-art
SfM methodologies that can run on a large-scale cluster. We
compare this chain’s runtime and reconstruction quality with
a freely available parallel SfM implementation [9] designed
to run on a high performance desktop workstation. Results
are shown for the sequential baseline implementation, the
multi-core workstation processing chain, and our cluster-based
processing chain. Our contributions are a novel technique for
parallelizing SfM and an in-depth analysis on the impact of
two parallelization methods on 3D reconstruction results.

The remaining sections will focus on describing SfM in
more detail, presenting our proposed solution, and evaluating
performance and scalability. Sec. II begins with a brief review
of the SfM problem for geo-registration. The next section,
Sec. III is a survey that outlines specific SfM implementations
in the literature and on the internet. Sec. IV introduces our
cluster-based SfM processing chain, while Sec. V compares it
with the alternative parallel and sequential processing chains.
Finally, we conclude in Sec. VI.
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Fig. 1. (a) The baseline SfM processing chain consists of several steps of
varying computational complexity. (b) Key points based on SIFT are extracted
and matched among images. (c) Bundle adjustment creates a 3D point cloud
from the implicit scene geometry.

II. REVIEW OF STRUCTURE FROM MOTION (SFM)

The SfM problem infers the 3D geometry of a scene based
on multiple 2D views of the same scene from different aspect
angles. SfM techniques and applications have been active areas
of computer vision research in recent years. In general, SfM
techniques follow this this series of steps: feature extraction,
feature matching, and bundle adjustment (Fig. 1) [11]. The
processing chain takes a series of photos as its input and it
outputs a 3D model (generally a point cloud) and the estimated
position and viewing frustum of each camera. In addition to
the 3D model, SfM identifies a graph connecting each 3D
point to a set of views corresponding to features in the input
photos.

Feature extraction relates to the identification of distinct
features in each photo that can be robustly matched to features
in the other photos. Identifying distinctive image features is a
difficult problem, with many SfM techniques relying on the
Scale-Invariant Feature Transform (SIFT) developed by David
Lowe, who offers an implementation that accepts an image as
input and returns a list of key points described by their location

in the image, scale, orientation, and a 128-byte identifying
vector [12]. The computational cost of the feature extraction
step grows linearly (O(N)) with the number of input photos.
Computation also increases with photo resolution, resulting
in the identification of more key points per photo. Feature
extraction is embarrassingly parallel, as each photos feature set
can be computed independently of the others. Additionally, the
filters and dense operations performed within feature matching
can be parallelized further or implemented to take advantage
of hardware acceleration.

Following feature extraction, features must be matched
between images. A matched feature indicates two photos
have captured views of the same real-world point. In the
case of SIFT, two features would ideally be considered a
match when their 128-byte feature vectors have a Euclidean
distance below some threshold. For efficiency, matching is
generally performed using Approximate Nearest Neighbor
(ANN) techniques to avoid computing the distance between all
combinations of extracted features. In either case, the features
from any given image must be matched against the features of
every other image. This nominally leads to quadratic growth
(O(N2)) of computation with respect to the number of input
images. Although this step is computationally intensive, it is
also easily parallelized, as the feature comparisons can be
performed simultaneously.

Then 3D geometry is iteratively estimated from the matched
(and often sparse) features in a process termed sparse bundle
adjustment. As more views of the same point are added to
the bundle of points, the 3D location of each point is re-
estimated in a least-squares sense. To first order, bundle adjust-
ment has O(N) complexity, but runtimes generally approach
O(N2) in reality. The process is iterative and is not trivially
parallelized. Nonetheless, the following section will discuss
several approaches for improving runtime performance. Upon
completion of bundle adjustment, a 3D point cloud has been
generated in an arbitrary 3D coordinate system. Compared
to a Cartesian geographic coordinate system, this coordinate
system has an unknown scale, rotation and translation.

Finally, many SfM implementations conclude with a step to
generate a denser point cloud by identifying likely surfaces in
the 3D model. This step results in appealing dense 3D models;
however, it generally does not maintain the graph relationship
between 3D points and features in the original photos. In the
remainder of this paper, we do not consider this step because
it is not relevant for most of our applications of interest.

III. IMPLEMENTATION SURVEY

Implementing SfM has been the focus of much research
aiming to improve the reconstruction quality and the compu-
tational efficiency of the processing chain. This section surveys
some notable work in the field but in no way constitutes
a complete list. We consider Bundler [13] as the baseline
SfM implementation. Bundler and its source code are freely
available on the web, and it has been cited in an abundance
of SfM papers. The tool makes no assumptions about its
input photo set; rather, it has been designed to handle a



completely unorganized collection, such as photos downloaded
from various sources on the web. Bundler runs all steps on a
single processor, but the feature extraction and matching steps
can be parallelized with relatively simple modifications to the
source code.

In recent years, many groups, including some of the authors
of Bundler, have proposed techniques for improving efficiency.
In [7] a sparse point cloud is formed using a “skeletal set”
of the most important points, and then subsequent points
are added after significantly reducing the solution space for
remaining camera parameters. Additionally, in [14], they pro-
pose matching features against a SIFT vocabulary database,
which realizes computational savings compared to matching
against the entire input data set. Most recently, [8] suggests
finding a coarse initial estimate using a Markov random field
formulation and refining the initial solution using Levenberg-
Marquardt.

While Bundler has been designed for unstructured photo
sets, we are considering images from a video source. In this
case, one can assume the camera travels at a reasonable speed,
thereby limiting the change in camera location and pose from
frame to frame. It has been demonstrated that feature matching
can be reduced to O(N) complexity by applying these video
constraints [3].

Another freely available tool, VisualSFM, is a highly op-
timized, parallel implementation of SfM that runs on multi-
processor workstations and can use a GPU if available [9].
VisualSFM is particularly efficient at SIFT feature extraction.
While Lowe’s implementation operates using a single pro-
cessor, VisualSFM can take advantage of a GPU to greatly
accelerate extraction [15]. The tool also performs multi-
threaded matching and uses Multi-Core Bundle Adjustment
(MCBA) [16], which also uses a GPU if available, to generate
point clouds with considerable speed-up compared to Bundler.
MCBA uses a different approach for solving the non-linear
least squares problem underlying bundle adjustment, and it
exploits the fine-grained parallelism in the bottleneck matrix
operations (e.g. computation of the Jacobian matrix and several
matrix-vector multiplications).

Out-of-Core Bundle Adjustment [10] partitions the set of
feature matches using graph analysis techniques. The al-
gorithm then runs several bundle adjustment processes in
parallel on different machines to create multiple point clouds.
The point clouds are then combined into a single model by
exploiting common points between the clouds. In addition
to offering speed-up via parallelization, this implementation
offers more scalability than VisualSFM because each bundle
adjustment process is on a separate machine, thereby allowing
the computation of large-scale point clouds that require more
memory than available to a single system. Our solution is
similar to [10], but we utilize the assumptions about the aerial
video to partition the image set and fuse the resulting point
clouds using different techniques, which achieve very high
point accuracy for our particular input data constraints.

Fig. 2. Camera locations and pointing directions for N aerial video samples
forming SfM input image set x0, x1, ..., xN−1. The sensor continuously
points at a ground point of interest while the platform completes one full
revolution.

IV. CLUSTER-BASED SFM

We seek to efficiently generate 3D reconstructions from
large-scale datasets of aerial video frames on a compute
cluster. We assume an aerial platform captures the video while
completing a full revolution around a single ground point of
interest, continuously fixing the camera on the ground point, as
shown in Fig. 2. Given these data constraints and the available
SfM implementations (detailed in the previous section), this
section describes our scalable cluster-based approach.

A cluster is defined to be a collection of commodity Linux-
based machines connected via Ethernet. For the purposes of
this paper, communication between processes is available only
through a shared file system. A master node submits tasks
to worker nodes, which are managed by a central scheduler.
This computing model is scalable to thousands of nodes.
In general, an algorithm may share the cluster with other
processes. Therefore, the processing chain is constrained to use
a maximum number of processors, Np, specified as a runtime
parameter. The algorithm is implemented in a custom software
framework that dispatches each step on a set of cluster
nodes, enforcing barrier synchronization between steps. Input
imagery, intermediate results, and the final reconstruction are
persisted in a common database, enabling results to be re-used
by other processing chains.

The proposed processing chain is shown in Fig. 3. Cluster-
based SfM can begin as soon as aerial video from a complete
revolution becomes available for ground processing. The video
is sampled at a constant rate to form a collection of N
images. Each image, along with its GPS metadata, is sent to
the processing chain input. Feature extraction and matching
follow the same technique as [13], but use modified scripts and
binaries to run in parallel. The feature matching step produces
a graph G = (V,E) whose vertices are the SIFT key points



Fig. 3. Cluster-based SfM processing chain is comprised of multiple steps,
each dispatched on the number of CPUs shown above. Barrier synchronization
is enforced between each step.

(i.e. vertex vi,j ∈ V corresponds to the jth SIFT point found
in image xi). Edge vmvn exists if SIFT points vm and vn
were found to match in the feature matching step.

Following feature matching, the N input images
(x0, x1, ..., xN−1) are partitioned into M sets
(P0, P1, ..., PM−1), each to undergo independent bundle
adjustment in parallel. M cannot exceed Np (the maximum
number of processors available), but we apply the additional
constraint that N/M ≥ 25 such that each partition has
enough images to ensure a reconstruction of reasonable
quality. Images are partitioned in a block-cyclic pattern with
C cycles. Photos are partitioned such that xi ∈ Pj , where:

j =

⌊
i

bN/(M + C)c

⌋
mod M (1)

Generally, C > 12 for large datasets (N � 12M ) to limit
the maximum aspect angle between consecutive photos in the
same partition to no more than 30◦, which promotes SIFT
matching.

We then perform parallel bundle adjustment by running the
Bundler binary independently on each partition. This results
in M point clouds each in its own arbitrary 3D coordinate
system. The point clouds can be described by the matrices
X0,X1, ...,XM−1, each comprised of 3D points such that:

Xi =

 x0 x1 xNi−1
y0 y1 ... yNi−1
z0 z1 zNi−1

 (2)

where Ni is the size of the particular point cloud and each
column contains the coordinates for a 3D point.

In order to combine them, we first must identify correspond-
ing points among the partitions. Each reconstructed 3D point
has a view list, A ⊂ V , which is the set of SIFT points used
to determine its location. View lists from different partitions
will always be disjoint because each photo—and thus each
SIFT point—belongs to only one partition. However, point
correspondences can be determined by using the match graph
G. Two 3D points from different partitions with view lists A
and B, respectively, are considered corresponding if:

|Γ(A) ∩B| > 0 (3)

where Γ(A) is the neighborhood of set A.
Given the point correspondences among the partitions, we

can transform the point clouds to a common 3D space. Each
point cloud is transformed to the coordinate system of the first
partition by solving the orthogonal Procrustes problem to find
the rotation matrix, Ri, scale, si, and translation, ti, between
the corresponding points in X0 and Xi. The transformation is
then applied to all points in the cloud Xi to form X′i for all
i > 0:

X′i = siRiXi + ti11×Ni (4)

The point correspondences also indicate redundant key
point observations. Prior to combining the point clouds, we
must identify and remove duplicate points. Bundle adjustment
iteratively improves the estimate of each point’s position,
x = {x, y, z}. Thus, we can combine the d duplicate points
to form an improved estimate, x′, using weight, w, equal to
the number of views in the view list (i.e. wi = |A|):

x′ =

d∑
i=1

w2
i xi

d∑
i=1

w2
i

(5)

The duplicate points are removed from all containing clouds
except one, such that each duplicate x0 is replaced by its x′.
The point clouds are then combined.

Finally, the last step transforms the point cloud into Uni-
versal Transverse Mercator (UTM) coordinates. We again esti-
mate rotation, scale and translation between the arbitrary SfM
coordinate space and UTM, this time using the estimated cam-
era locations from bundle adjustment and the known camera
GPS locations converted to Cartesian UTM coordinates. Poor
camera position estimates are removed using a RANSAC-
based technique. We then apply the transformation to the
cloud, resulting in a single point cloud in UTM coordinates.
This technique coarsely geo-registers the point cloud with
error contributions from the GPS and SfM camera placement
estimates. For applications requiring precise geo-registration,
a subsequent step would match the point cloud against reliable
reference data, such as LIDAR or satellite imagery, using this
coarse geo-registration as an initial estimate.

V. RESULTS

We compare two parallel SfM processing chains against the
sequential baseline implementation [13]. The first chain is Vi-
sualSFM [9], which is freely available online and optimized to
use a multi-core processor and GPU (see Sec. III). The second
chain is the novel cluster-based technique described in Sec.
IV. We run each chain for various numbers of input images,
evaluating the chains in terms of runtime and reconstruction
quality. The cluster-based chain is also run for various numbers
of compute cores.



The input image sets are comprised of extracted frames from
video of one aerial revolution around the MIT Stata Center.
The platform flew an approximate circle of two-mile radius at
an altitude of roughly 7500 ft. Each image is 1280×720 pixels
with latitude, longitude and altitude available as metadata. The
camera remained fixed on the ground target with a constant
field-of-view capturing the entire building and some immediate
surroundings.

A. Runtime Benchmarks

Bundler and VisualSFM benchmarks were run on a quad-
core Intel Xeon (2.4GHz) workstation with 6GB RAM and an
nVIDIA Quadro FX 1800 GPU (64 compute cores) for math
kernel acceleration. Cluster-based benchmarks were run on
various numbers of compute cores, where each cluster machine
contained dual-socket Intel Xeon processors (3.2GHz) with
8GB RAM and was interconnected by gigabit Ethernet.

Fig. 4 shows runtime as a function of the number of input
images, for the baseline Bundler processing chain, VisualSFM,
and cluster-based SfM. Feature matching and bundle adjust-
ment dominate runtime, with feature extraction barely visible
at the bottom of (a) and (b). VisualSFM offers significant
speed-up of the bundle adjustment step. However, cluster-
based SfM ultimately offers much faster runtime, in particular
by scaling feature matching to more processing nodes. In (c),
for input sizes 100, 200, 300 and 400, M values of 4, 8, 12,
and 16 were used respectively.

Fig. 5 shows cluster-based SfM speed-up for various cluster
sizes. For small image set sizes, the overhead of the processing
chain actually increases runtime. However, for beyond 100
input images, cluster-based SfM provides significant speed-
up. For the largest set sizes and cluster sizes evaluated (top
right corner of plot) speed-up has converged to approximately
26x for a 64-node cluster. Speed-up is less than linear for
two primary reasons: in some cases M < Np, and in all
cases additional processing is required to fuse the point clouds
generated in parallel.

B. Reconstruction Quality

We have demonstrated the significant runtime acceleration
achieved by both processing chains in the previous section.
However, parallelization does not come without trade-offs in
reconstruction quality. Generally, it is desirable to run SfM
on large data sets because the number of reconstructed 3D
points grows superlinearly with the size of the input image set.
Moreover, bundle adjustment is an iterative process that refines
the location of each point incrementally as more matched
features are evaluated.

Fig. 6 shows the growth in the point cloud size as a
function of image set size. Point cloud density for both parallel
implementations grow at slower rates than the baseline. Here
we see a clear trade-off of point cloud density for runtime
speed-up.

Although parallelization compromises point cloud density,
Table I shows that cluster-based SfM provides better con-
vergence to the baseline point locations than VisualSFM.
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Fig. 6. Point cloud density increases with larger input image set size.

This is likely a result of the different optimization problem
formulation employed by VisualSFM to improve parallelism
and runtime efficiency. Error was calculated for each point
cloud by comparing the 3D point location to that found by the
baseline implementation. Corresponding points in the clouds
produced by each processing chain were identified based on
intersecting SIFT points in each points view list. Error is
defined the distance (in meters) between the Bundler point

TABLE I
RMS ERROR OF RECONSTRUCTED POINTS (METERS)

Input size (N ) 100 200 300 400
VisualSFM 0.20 7.15 1.05 0.44

Cluster-based
SfM

M = 4 0.10
M = 8 0.27 0.26 0.25
M = 12 0.26
M = 16 0.24
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Fig. 4. Processing chain runtime (broken down by step) vs. number of input images for (a) Bundler, (b) VisualSFM and (c) cluster-based SfM (shown here
for Np = 32).

location and the corresponding point after scaling the clouds
using the coarse geo-registration technique described in Sec.
IV. Finally, RMS error is calculated for each point cloud
generated.

VI. CONCLUSION

We have introduced a scalable, parallel SfM processing
chain suitable for use with aerial video of a single ground point
of interest. We have compared our technique to an alternative
parallel implementation and evaluated both in terms of runtime
efficiency and reconstruction quality. Practical SfM applica-
tions require scalable processing chains that can compute 3D
reconstructions for very large data sets in a fixed processing
time budget. We conclude that cluster-based SfM offers better
scalability than VisualSFM. Our cluster-based approach can
scale to run on a much larger system than VisualSFM, which
is restricted to the number of CPU and GPU cores than
can be integrated into a single machine and memory address
space. The fine-grained parallelization exploited by multi-
core bundle adjustment offers very impressive speed-up, but
ultimately it is the feature matching step that poses the biggest
bottleneck to both chains. Future work will focus on feature
matching optimizations for different types of input data sets.
Additionally, integration of fully automated precise point cloud
geo-registration could be made possible by matching point
clouds with reference data such as LIDAR or satellite imagery.
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