
A MATLAB-to-Target Development
Workflow using Sourcery VSIPL++

Stefan Seefeld, Faheem Sheikh, Brooks Moses

{stefan_seefeld, faheem_sheikh, brooks_moses}@mentor.com

Mentor Graphics, Inc.

Abstract - A hybrid MATLAB/C++ programming
model for high performance embedded computing
is presented. It is shown how the use of a common
data model and API can help not only to speed up
the development process, but also to keep the origi-
nal MATLAB model in sync with the evolving C++
code, and thus allowing it to remain a gold standard
for the project as it evolves.
Keywords: multi-language, scripting, VSIPL++, pro-
totyping, signal- and image-processing

1. Introduction

Prototyping is a common modeling technique used
in the early stages of the development cycle to validate
the feasibility of algorithmic/design choices. Implemen-
tors of signal and image processing, radar, control and
communication systems frequently rely on interactive
scripting environments like MATLAB[1] or Python[2]
to prototype their designs. Once validated, the prototype
is converted to a development environment suitable for
a target device. Typically, this requires a change in the
memory model and the data organization, and / or the
adaptation to a new set of APIs. In addition to being an
error-prone process, this transition often loses a lot of
valuable information, as the original prototype can not
be maintained as a reference, i.e., a gold standard, out-
side the development environment. Since it is difficult
to maintain and test two separate versions of the sys-
tem, the prototype version typically becomes stale and
isn't kept current with the evolving development ver-
sion. Keeping both the prototype and development ver-
sions current would be desirable. Even more beneficial
would be to keep the prototype involved as a reference
for verifying the development version.

Sourcery VSIPL++[3] is a high-level C++ imple-
mentation of the VSIPL++ specifications. It provides a
portable high performance computing library that sup-
ports a wide range of platforms, including x86 and Pow-
er Architecture CPUs, NVIDIA CUDA GPUs, and Cell
Broadband Engine processors. In addition to optimized
implementations of signal and image processing algo-
rithms, it offers a simple development workflow, mak-
ing it easy to develop code on a workstation and then
recompile with minimal effort for embedded platforms.

Development productivity can be further improved by
closely integrating this workflow with the interactive
scripting environments that were used for prototyping.

In this paper we present a workflow that bridges the
above gap by integrating the two environments closely,
allowing a more seamless transition from early proto-
typing to development to deployment. It even becomes
possible to write hybrid programs that combine code
written in MATLAB with code written in C++.

Design

● Develop a lgorithm
● Produce Gold S tandard

Build

● Implement a lgorithm
● Target production environment
● Optimize

Valida te & Tes t

● Match Gold S tandard

Figure 1. Typical development workflow

The MATLAB VSIPL Toolbox is an extension of
the MATLAB scripting environment. The toolbox al-
lows binding directly to the Sourcery VSIPL++ library,
using an API that resembles the VSIPL++ interface.
This feature results in the prototype developed with the
toolbox looking very similar to 'pure' MATLAB scripts
as well as the implemented code. Consequently, the cost
(effort) of translating the code from the scripting to pro-
duction code is significantly reduced.

Due to MATLAB's popularity and ubiquitous pres-
ence in the scientific community, there have been many
attempts in the past to assist developers through the use
of automatic code generation. For instance, the MAT-
LAB compiler for heterogeneous computing system [5]
generates C code based on user-supplied directives. It
also uses algebra schemes to overcome type ambigu-
ity. Other efforts to create an integrated development
environment with MATLAB include interfacing of a
TI DSP simulator to user scripts via MEX files [6]. In
this environment users can produce DSP software di-
rectly from prototypes. Another similar approach but in
a different domain has been adopted in [7] where an

AUTOSAR-compliant automatic code generation tool,
called Processor Expert (Freescale micro-controllers) is
integrated into Simulink. Programming of a NVIDIA
GPU within the MATLAB environment using MEX
files has been explored in [8] and has shown to increase
the simulation performance. Finally a multi-language
programming model has been presented in [9] where
user applications written in C++ are linked with a third
party library (FFTW) and MATLAB external interfaces
for SONAR signal processing applications.

The above-mentioned works that attempt to bridge
the prototyping and implementation gap either com-
plicate the problem (, like writing a new compiler) or
offer solutions that are only practical for domain-spe-
cific scenarios. Our motivation for this work comes
from hybrid programming models such as Boost.Python
[4].This particular model supports combining C++ with
Python in a single development and deployment envi-
ronment.

Along similar lines we present an object-oriented
interface to MATLAB scripting using the same data
model and API as VSIPL++. This not only makes the
transition from MATLAB to C++ seamless and natural,
it also allows one to combine the two environments into
a single application, which has useful applications from
testing to visualization and profiling.

Section 2 introduces a simple pulse compression al-
gorithm that is used as reference algorithm throughout
the paper. It also shows how the initial "raw" MATLAB
code is converted to use the MATLAB VSIPL Toolbox.
Section 3 talks about the process of rewriting the same
algorithm in C++ , reusing bits from scripts to help in
testing. Section 4 discusses how to bind the MATLAB
VSIPL Toolbox API to the implementations from the
Sourcery VSIPL++ library. Section 5 then concludes
with an outlook into what else may be possible as this
methodology is further refined.

2. Prototyping Using MATLAB And The
VSIPL Toolbox

2.1. Reference Algorithm: Radar Pulse Com-
pression

Pulse compression is a technique used to reach a
compromise between a radar's transmitted signal ener-
gy and its range resolution. A moderately long pulse is
emitted to keep the signal-to-noise ratio low. Frequen-
cy modulation then allows to improve the resolution
by overlapping multiple pulses. Pulse compression then
consists of correlating the measured signal with the ini-
tial signal, which allows to identify objects at a much
higher resolution than the pulse length would normally
support.

A linear frequency-modulating pulse -- also called
a chirp signal -- is often used to achieve these pulse com-
pression objectives. It can be expressed as

(1)

where is the pulse duration, is the rate of instanta-
neous frequency change and is the base frequency of
the pulse.

Assuming the above pulse is reflected by a
number of objects at different locations with attenua-
tions , the measured signal is a sum of shifted and
scaled pulses :

(2)

where corresponds to additive noise. To dis-
cover the echos , the measured signal is
cross-correlated with the time-reversed original pulse

. For efficient computation, a frequen-
cy-domain implementation of the correlation is used for
this purpose:

(3)

where is the pulse-compressed signal, and
, and are the frequency domain represen-

tation of and respectively.

 represents the inverse Fourier transformation.
If the sampling frequency is known, the exact location
of pulses can be determined using a simple threshold
detection scheme as follows:

(4)

Here, is the detection threshold obtained by aver-
aging the sampled data.

function symbols = \
 pulse_compress(signal, chirp, M)

 filter = flipud(chirp')';
 corr_fft = fft(filter,N).*fft(signal);
 out = abs(ifft(corr_fft));

 %ignore the lag
 filtered = zeros(1,N);
 filtered(1:N-L) = out(L+1:end);

 sampled = filtered(1:M:end);
 symbols = sampled >= mean(sampled);

Figure 2. Pulse compression script in MATLAB

Figure 2 shows a code snippet expressing (3) and
(4) in a MATLAB script, operating on simulated inputs.

For this work, a MATLAB simulator has been de-
veloped that generates test inputs like the ones used in
the snippet above and also models the transmitter, chan-
nel and receiver of a radar.

The pulse-compression simulator models ten pulse
durations in the life span of a particular radar detection
session. A test script supplies sample radar echo loca-
tions, corresponding attenuation factors for these echoes
and a signal-to-noise ratio (SNR) parameter to config-
ure the Additive White Gaussian Noise (AWGN) chan-
nel. A second script is responsible for synthesizing input
measurements. It produces a reference linear frequency
modulated signal with a center frequency of 1MHz, a
pulse duration of 1 microsecond and an instantaneous
frequency sweep rate of 3.1013. Based on echo loca-
tions and attenuation factors, a time-multiplexed signal
of echoes (each of which is a shifted and scaled copy
of the reference signal) is generated (See Figure 3, top
graph). The multiplexed signal is processed through an
AWGN channel to produce a noisy signal, where the
variance of the noise is configured from the given SNR
parameter. The middle graph shows a signal with a SNR
of 10dB below the multiplexed signal.

Figure 3. Pulse compression simulation results for -10dB SNR

2.2. The VSIPL Toolbox API

To bring the scripting and implementation environ-
ments close together, one really needs to establish a
common data model and API that can be used across
language boundaries. The VSIPL Toolbox provides an
object-oriented API that is directly derived from VSI-
PL++, and only differs in certain areas to respect MAT-
LAB-specific idioms. For example, MATLAB indices
start with 1, while in VSIPL++ indices start with 0, etc.

At the heart of this toolbox are common view types
for vectors, matrices, and tensors, which provide the

same high-level data model as their VSIPL++ counter-
parts.

classdef Vector
 % View which appears as a one-dimensional,
 % modifiable vector.

 properties
 size
 block
 ...
 end

 methods
 % constructors
 function self = Vector(size, type) ...
 ...

 % accessors
 function r = subsref(self, s) ...
 ...
 % support functions
 function r = disp(self) ...
 function r = plot(self) ...
 ...
 % elementwise operations
 function r = plus(self, other) ...
 ...
 end % methods
end % classdef

Figure 4. Excerpt from the Vector class of the VSIPL Toolbox

The pulse compression script can thus be rewrit-
ten to use vsip.Vector and vsip.Matrix objects instead of
builtin MATLAB arrays.

function symbols = \
 pulse_compress(signal, chirp, M)

 L = chirp.size;
 N = signal.size;

 filter = vsip.Vector(N, 'double', 0);
 filter(1:L) = chirp(L:-1:1);
 fft = vsip.Fft(N,'double',1);
 inv_fft = vsip.Fft(N,'double',0);
 corr_fft = fft(filter).*fft(signal);
 out = vsip.mag(inv_fft(corr_fft));

 %ignore the lag
 filtered = vsip.Vector(N,'double', 0);
 filtered(1:N-L) = out(L+1:end);

 sampled = filtered(1:M:end);
 symbols = sampled >= vsip.meanval(sampled);

Figure 5. Pulse compression script using the VSIPL Toolbox

The complete logic to test this algorithm requires
functions to generate the chirp pulse, as well as synthe-
size the measured signal that would result from a specif-
ic set of targets. Using the VSIPL Toolbox, these func-
tions all operate on vsip.Vector and vsip.Matrix argu-

ments. The test application thus takes a set of target lo-
cations, together with attenuation coefficients, and re-
turns the detected target locations. The detected target
locations are compared to the expected result to validate
the algorithm.

Figure 6. Composite structure of a test
application for the pulse compression algorithm

3. Translating The Prototype Into C++

Once the algorithm prototype in MATLAB has sta-
bilized, it is time to translate it into C++. The required
effort is considerably reduced by the fact that a common
data model and API are being used. Not only is it easi-
er to translate an algorithm, but the similarity down to
the syntactic levels really makes this an almost trivial
exercise. A lot of statements can be translated almost
literally:

Vector<float>
pulse_compress(Vector<float> signal,
 Vector<float> chirp, length_type M)
{
 typedef Fft<const_Vector, float,
 complex<float>, 0> fwd_fft_type;
 typedef Fft<const_Vector, complex<float>,
 float, 0> inv_fft_type;

 length_type L = chirp.size();
 length_type N = signal.size();

 fwd_fft_type fft(N, 1.0);
 inv_fft_type inv_fft(N, 1.0 / N);

 Vector<float> filter(N,0.0);
 filter(Domain<1>(0,1,L)) =
 chirp(Domain<1>(L-1,-1,L));

 Vector<float> out =
 mag(inv_fft(fft(filter) * fft(signal)));

 // Ignore the lag
 Vector<float> filtered(N,0.0);
 filtered(Domain<1>(N-L)) =
 out(Domain<1>(L, 1, out.size()-L));

 Vector<float> sampled =
 filtered(Domain<1>(0,M,N/M));

 return sampled >= meanval(sampled);
}

Figure 7. Pulse compression using the VSIPL++ API

Once the algorithm itself has been rewritten, the test
logic needs to be translated too. It is at this point that
the two sides typically start to diverge. Once the algo-
rithm is translated, it is very difficult, if not impossible,
to go back and compare the C++ version to the original
MATLAB version. Thus, as the C++ code evolves fur-
ther, the original MATLAB prototype is neglected and
becomes obsolete.

Here we follow a different route, to keep the MAT-
LAB code engaged. Using the original MATLAB code
as a reference during testing avoids having to reimple-
ment even the testing logic. It also bridges the above
gap, encouraging the developer to keep the two in sync
even as the algorithm evolves further.

Using a common data model with language bind-
ings for C++ (VSIPL++) as well as MATLAB (the
VSIPL Toolbox described here), it becomes possible
to transfer objects across language boundaries. For ex-
ample, the following code embeds a MATLAB session
within a C++ application to plot a VSIPL++ vector:

// define a vector...
vsip::Vector<> vector = ...

matlab::Engine engine;
// ...pass it into Matlab...
engine.define("v", vector);
// ...and plot it.
engine.eval("plot(v);");
engine.eval("title('Demo vector plot');");
engine.eval("xlabel('index');");
engine.eval("ylabel('value');");

Figure 8. Executing MATLAB from within C++

A similar approach can be used to compare a C+
+ algorithm with the equivalent gold standard reference
implementation from MATLAB, in order to test the C
++ implementation. Taking the data flow for the pulse
compression prototype (Figure 6), this corresponds to
the following test logic:

Figure 9. Testing of the new C++
implementation against the gold standard

In fact, even large complex algorithms can be test-
ed or further prototyped using such a hybrid technique,
i.e., where C++ and MATLAB building blocks are com-
bined freely.

A slightly different approach is being used in [10],
where the gold standard of an algorithm is componen-
tized. Individual components of their Scalable Node Ar-
chitecture (SNA) platform are prototyped in MATLAB,
and then compiled into a shared library using the MAT-
LAB compiler.

Thus for a given component there exist two ver-
sions: one implemented using the MATLAB VSIPL
Toolbox, the other directly implemented with Sourcery
VSIPL++. As both meet the same abstract component
requirements, they can be used interchangeably.

4. Integrating MATLAB With C++

By using the above technique it allows one to em-
bed MATLAB scripts into C++ applications. It is also
possible to do the inverse, and embed C++ code into
MATLAB. Specifically, the VSIPL Toolbox we have
been using to prototype VSIPL++ applications is in fact
also implemented on top of Sourcery VSIPL++. Vector
and Matrix objects are thin wrappers around Sourcery
VSIPL++ views and blocks, and all major operations
map to implementations from the Sourcery VSIPL++
library.

MATLAB makes this possible by providing a C
API to define operations. Figure 10 shows a skeleton of
such a "MEX-function" that executes a binary operation
implemented in Sourcery VSIPL++:

void
mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, mxArray const *prhs[])
{
 if (nrhs != 2)
 mexErrMsgTxt("two arguments expected");

 if (!mxIsClass(prhs[0], "vsip.Vector") ||
 !mxIsClass(prhs[1], "vsip.Vector"))
 mexErrMsgTxt("wrong argument types");

 mxArray *a1 =
 mxGetProperty(prhs[0], 0, "block");
 mxArray *a2 =
 mxGetProperty(prhs[1], 0, "block");
 mxArray *lhs;
 // evaluate binary operation on
 // a1 and a2 into lhs
 ...
 // construct a View wrapping the new array
 mexCallMATLAB(1, plhs, 1, &lhs, "vsip.Vector");
}

Figure 10. MEX-function implementing a binary operation

Such a setup provides many advantages. Being
able to execute the same code as the development en-
vironment significantly reduces risks associated with
porting the code from MATLAB to C++. In addition,
Sourcery VSIPL++ provides implementations for ac-

celerated platforms (including GPUs), which the MAT-
LAB VSIPL Toolbox can take advantage of.

Sourcery VSIPL++ also provides various profiling
and diagnosing capabilities to monitor the execution and
performance of applications. Combining these with in-
teractivity offered by a scripting environment, such as
MATLAB, can be invaluable, for example when certain
algorithmic choices may depend on detailed knowledge
of how the code maps to the available hardware.

5. Conclusion And Future Directions

In this paper, we have described the development
of a new MATLAB VSIPL Toolbox providing an API
modeled after the VSIPL++ specification, implement-
ed with bindings to Sourcery VSIPL++. It is being used
successfully in a hybrid environment where the inter-
active and rapid prototyping capabilities of MATLAB
are combined with the performance and portability of
Sourcery VSIPL++. The unified modeling environment
not only helps to transition the prototype into ready to
deploy software, it also allows developers to keep the
original MATLAB version alive as a gold standard for
validating the target C++ version.

There are a number of directions in which to ex-
plore this work further. For example, When the VSIPL+
+ model for parallelism was originally developed, the
same paradigm was used to provide parallel computing
capabilities for MATLAB, resulting in the pMATLAB
package[11]. The above work on a VSIPL Toolbox pro-
vides a unique opportunity to reimplement the pMAT-
LAB package with Sourcery VSIPL++, to integrate par-
allel compute capabilities into the VSIPL Toolbox.

MATLAB

(Desktop)
Seria l C++

(Embedded)

Para lle l C++
(Embedded)

Para lle l C++
(Cluste r)

Seria l C++
(Desktop)

Parallel MATLAB

(Cluste r)

Figure 11. Integrated development workflow from prototyping
to deployment, using MATLAB and Sourcery VSIPL++

Another area of possible improvement is that of au-
tomated code generation. While the use of a unified data
model and API vastly simplifies the task of transitioning
from prototype to final code, the process still involves
manually rewriting code. It may eventually be possible
to automate this transition, and generate optimized C++
code using the Sourcery VSIPL++ API.

References
[1] URL: http://www.mathworks.com.

[2] URL: http://www.python.org.

[3] URL: http://go.mentor.com/vsiplxx.

[4] David Abrahams and Ralf W. Grosse-Kun-
stleve. Building Hybrid Systems with Boost.Python.
2003-03-19. URL: http://www.boostpro.com/writ-
ing/bpl.html.

[5] P.Banerjee, N.Shenoy, A.Choudhary, S.Hauck,
C.Bachmann, M.Haldar, P.Joisha, A.Jones, A.Kanhare,
A.Nayak, S.Periyacheri, M.Walkden, D.Zaretsky,
“A MATLAB compiler for distributed heteroge-
neous, reconfigurable computing systems” Field-Pro-
grammable Custom Computing Machines, 2000 IEEE
Symposium on , pp. 39-48, 2000

[6] David P.Magee, “Matlab extensions for the devel-
opment, testing and verification of real-time DSP soft-
ware” In Proceedings of the 42nd annual Design Au-
tomation Conference (DAC '05). ACM, New York, NY,
USA, 603-606

[7] R. Bartosinski, Z. Hanzalek, P. Struzka, L.
Waszniowski, “Integrated Environment for Embedded
Control Systems Design” IEEE International Paral-
lel & Distributed Processing Symposium, WPDRTS07,
March 26–30, USA, 2007

[8] M. Fatica, W. Jcong, “Accelerating MATLAB with
CUDA” , IEEE HPEC 2007

[9] I. Aleksi, D. Kraus, Z. Hocenski, “Multi-language
programming environment for C++ implementation of
SONAR signal processing by linking with MATLAB
External Interface and FFTW”, ELMAR, 2011 Proceed-
ings, pp.195-200, 14-16 Sept. 2011.

[10] DDS vs. DDS4CCM, Teton SNA Core Team,
Northrop Grumman

[11] Nadja Travinin, Robert Bond, Jeremy Kepner,
Hahn Kim pMatlab: High productivity, high perfor-
mance scientific computing, 2005

http://www.mathworks.com
http://www.python.org
http://go.mentor.com/vsiplxx
http://www.boostpro.com/writing/bpl.html
http://www.boostpro.com/writing/bpl.html

