
Synthetic Aperture Radar on Low Power
Multi-Core Digital Signal Processor

Dan Wang
Texas Instruments
Dallas, TX, USA

Murtaza Ali
Texas Instruments
Dallas, TX, USA

Abstract—Commercial off-the-self (COTS) components have
recently gained popularity in Synthetic Aperture Radar (SAR)
applications. The compute capabilities of these devices have
advanced to a level where real time processing of complex SAR
algorithms have become feasible. In this paper, we focus on
a low power multi-core Digital Signal Processor (DSP) from
Texas Instruments Inc. and evaluate its capability for SAR signal
processing. The specific DSP studied here is an eight-core device,
codenamed TMS320C6678, that provides a peak performance of
128 GFLOPS (single precision) for only 10 watts. We describe
how the basic SAR operations can be implemented efficiently
in such a device. Our results indicate that a baseline SAR
range-Doppler algorithm takes around 0.25 second for a 16 M
(4K × 4K) image, achieving real-time performance.

I. INTRODUCTION

Synthetic Aperture Radar (SAR) achieves high-resolution
remote sensing imagery by moving the radar platform to create
the effect of a large antenna. It involves advanced signal
processing techniques to analyze the phase shift information
and obtain fine resolution in the direction perpendicular to
the beam direction. SAR technique has been widely applied
in different areas including disaster observation and man-
agement, geological mapping, weather forecast, and strategic
surveillance of military sites. There are different operating
modes for the SARs, such as stripmap SAR, spotlight SAR,
interferometric SAR and bistatic SAR. Each mode is tailored
to the specific application requirements from the perspectives
of resolution, coverage area and geometry information types.

The formation of the SAR image from the defocused
received signal was originally obtained based on the principles
of Fourier optics [9] using laser beams and lenses. Although
producing well-focused images, the optical processor requires
precise alignment of high-quality lenses and leads to limited
dynamic range. Digital processor was first introduced by
Cumming to produce images from the Seasat-A SAR da-
ta [6], which demonstrated the advantages of signal processing
technology for efficient image formation. With decades of
research, the processing techniques have reached a mature
stage, while the remaining challenge is how to form a high
resolution image in real-time considering the involved intense
computational effort.

The signal processing procedures have been implemented
in different commercial off-the-shelf architectures (COTS).
Rudin [13] proposed to implement the polar formal algorithm
for SAR imaging on the IBM dual cell-based platform which

features high aggregate memory bandwidth and peak floating
point performance. The reported processing time for a 100-
Megapixel SAR image is 73.86 seconds. For comparison,
the work in [11] evaluated similar SAR implementations on
three generations of 64-bit Intel Quad Core CPUs. The Spiral
framework [12] was applied to automatically generate efficient
program achieving vectorization, parallelization and memory
hierarchy tuning. The test results show that the runtimes for
16-Megapixel and 100-Megapixel SAR images are 0.56 and
3.76 seconds respectively. More recently, the General-Purpose
Graphics Processing Unites (GPGPU) show great promises
to improve the SAR image formation speed due to their
increasing number of cores and larger vector widths. Bisceglie,
et al. [4] discussed the processing power of GPGPU for a
typical range-Doppler algorithm that consists of independent
and separable steps for massive parallel computation. The
execution time for a 132-Megapixel image is more than 8
seconds with near real-time performance. Due to the variations
of the algorithms implemented, it is difficult to have a fair
comparisons among architectures for SAR applications. These
results, however, provide a good view of the current status of
SAR implementations in various COTS architectures.

Besides the above mentioned hardware architectures, the
new generations of multi-core Digital Signal Processor (DSP)
is also a competitive platform for computational intensive
applications [10]. The focus of this paper is to study the im-
plementation of the SAR algorithm on the eight-core C6678-
Shannon from Texas Instruments Inc.(TI). Specifically, we
show the modularization of the SAR algorithm and mapping
the modules to C6678 architecture to achieve parallel com-
putation. Further, the profiling results for key modules are
demonstrated to evaluate the implementation quantitatively.

The paper is organized as follows. Sec. II briefly reviews the
basic algorithms for SAR image formation. Sec. III introduces
the architecture of the eight-core C6678 platform. Sec. IV-D
discusses the modularization and mapping strategy of the SAR
algorithm, followed by profiling results shown in Sec. V.
Finally, Sec. VI concludes the paper with conclusions and
discussions.

II. SAR GEOMETRY AND SIGNAL PROCESSING

SAR utilizes a single physical antenna to gather signals
reflected from the targets at different positions at different
times. The radar is carried by a spaceborne or an airborne

platform moving with a certain speed along a desired trajec-
tory. The relative motion between the radar and the targets
encodes the targets’ information, which is processed to form
a focused image of the surface area. At each radar position, the
antenna system transmits a short chirped waveform. Then the
reflected echoes from the earth surface are collected, digitized
and stored by the antenna for later processing.

Fig. 1 shows the SAR geometry model of the radar location
and the target surface. The pulse repetition time is the inverse
of the Pulse Repetition Frequency (PRF). The acquisition
geometry makes the SAR image processing a two dimension
operation. The first dimension is called range (or cross track)
that measures the “line-of-sight” distance from the radar to
the target, shown as slant range along the radar sight or
ground range along the ground in Fig. 1. Range resolution is
determined by the transmitted pulse width, so narrow pulses
yield finer range resolution. The second dimension is azimuth
aligned with the relative platform velocity vector. Azimuth
resolution depends on the actual radar antenna length. The
angle between the slant range and the closest approach is
called squint angle, as shown in Fig. 1.

For the most commonly used pulse with linear FM char-
acteristic, the received signal from a single point target after
baseband demodulation is (we follow the nomenclature and
descriptions as given in [7] in this paper)

s0(τ, η) = wr(τ − 2R(η)/c)× wa(η − ηc) (1)
×exp{−j4πf0R(η)/c}

×exp{jπKr(τ − 2R(η)/c)2}

where the symbols are defined according to Table I. The SAR
image generation corresponds to the process of focusing on
each target point by weighting, phase shifting and summation
the phase histories of the responses. The phase change in
exp{−j4πf0R(η)/c} in Eq. 1 due to radar-to-target distance
variations introduces Doppler frequency which determines the
target’s azimuth position, while the second exponential in
Eq. 1 consists of the information of the range location.

Different methods have been proposed to form a well-

Fli
gh
t tr
ack

1/P
RF

R

R0

R0

Point target
Ground range

Az
im
uth

Slant range

Closest approach

Squint angle

Fig. 1. SAR data acquisition geometry.

τ fast time along range direction
η slow time along azimuth direction
wr range envelope (rectangular function)
wa azimuth envelope (sinc-squared function)
R(η) instant range distance
c speed of light
ηc beam center crossing time
Kr pulse chirp rate
R0 range of the closest approach
Vr effective radar velocity

TABLE I
DEFINITION OF SYMBOLS.

focused image from the raw data. This generation operation is
often referred to as focusing or compression. The major two
classes of algorithms are Range-Doppler (RD) algorithm and
ω − k 2D algorithm.

The ω − k algorithm [5][8] uses a special operation in the
2D frequency domain to correct the range dependence and
azimuth frequency dependence, relying on the assumption that
the platform velocity is constant. This method is preferred
to deal with data acquired over wide azimuth apertures or
high squint angles but can only handle limited range swathes.
The comparison of RD and ω − k algorithms can be found
in [1][2]. This paper implements the RD algorithm for its high
processing simplicity and efficiency.

A. RD Algorithm

The RD algorithm [6][3][14] is the first developed digital
SAR processor. This algorithm achieves block processing
efficiency by taking the advantage of the approximate sepa-
rability of processing in range and azimuth dimensions. Such
separability is enabled by the large difference in time scales
of the two directions and the use of Range Cell Migration
Correction (RCMC). The main steps involved in the RD
method are outlined in Fig. 2.

Range Compression
Range compression is to compress the received pulse along the
range direction to concentrate the main energy into a narrower
duration. It is performed with a fast convolution between the
raw data and a reference signal in the frequency (range) - time
(azimuth) domain. Therefore, FFT along the range direction is
first performed, followed by matched filter multiplication and
range IFFT.

RCMC
Range migration is caused by the range variations due to

the platform movement. Fig. 3(a) shows the trajectories for
three targets with a same closest range distance to the radar in
the original time domain. Fig. 3(b) shows the corresponding
trajectories in the range-Doppler domain, where the three lines
collapse into one trajectory. The correction is to rearrange the
data in the memory to straighten the trajectory as shown in

Range

compression

Azimuth

FFT
RCMC

Azimuth

compression

Raw data Image data

Fig. 2. Main steps in RD algorithm.

Range time
A

zi
m

u
th

 t
im

e
Range time

A
zi

m
u

th
 fr

e
q

u
e

n
cy

Range/azimuth

domain

Range/Doppler

domain

Range time

A
zi

m
u

th
 fr

e
q

u
e

n
cy

Range/Doppler domain

after correction

(a) (b) (c)

Fig. 3. RCMC for a set of target points with the same range distance.

Fig. 3(c), such that azimuth compression can be conducted
along each parallel azimuth line. Note that the migration
for the whole family of targets with a same range distance
is corrected simultaneously in this range-Doppler domain
method.

Mathematically, the amount of cell migration is given by

δRη =
V 2
r η

2

2R0
(2)

This equation calculates the displacement of each target as
a function of azimuth time η and range R0. RCMC can
be achieved by a range interpolation operation based on an
interpolation kernel, such as sinc function or spline [7].

Azimuth compression
Azimuth compression is to compress the spread energy in

the trajectory to a single cell in the azimuth direction. This
procedure is similar to range compression except that the
azimuth reference function is range dependent. In other words,
the azimuth reference function at each range line is different,
which leads to a more complicate procedure compared to the
range compression. Similar to RCMC, azimuth compression
is also performed in range Doppler domain. The final image is
obtained by transforming the azimuth compressed signal back
to the time domain, followed by some post-processing steps.

The basic RD algorithm achieves high accuracy and can
be easily implemented in a pipeline architecture. However, it
needs to incorporate a secondary range compression (SRC) to
handle the range-azimuth coupling problem when it comes to
data with a moderate amount of squint. For simplicity, this
paper focuses on the basic RD algorithm that is implemented
in a multi-core DSP, as discussed in Sec. IV.

III. TMS320C6678 ARCHITECTURE

The TMS320C6678 DSP is an eight core high performance
DSP with both fixed and floating point capabilities [15]. The
individual cores are called C66x [16]. This device can run
at a core speed of up to 1.25 GHz. For our analysis here, we
have analyzed a 1 GHz device which dissipates 10 W of power.
Fig. 4 shows the functional block diagram of the device. It has
a rich set of industry standard peripherals. The PCIe interface
could be used to communicate with a CPU host. The serial
rapid I/O (SRIO) running at 20 Gbps is useful to communicate
among multiple DSP devices.

The C66x core is based on Very Long Instruction Word
(VLIW) architecture. The instruction set also includes Single
Input Multiple Data (SIMD) operating on up to 128-bit vec-
tors. The core can support 4 single precision multiplications
and additions in a single cycle. With 8 cores running at 1
GHz, the TMS320C6678 thus has the peak performance of
128 single precision GFLOPS (12.8 GFLOPS/watt).

From the memory perspective, in addition to 32KB of L1
program and data cache, c6678 integrates 512KB of dedicated
memory per core that can be configured as mapped RAM
or cache. The device also has 4096KB of multi-core shared
memory that can be used as a shared L2 SRAM and/or shared
L3 SRAM. All L2 memories incorporate error detection and
error correction. The external memory is accessed via a 64 bit
DDR3 interface running at 1330 MHz. The total addressable
space for external memory is 8 GB with paging.

These enhancements make c6678 a suitable architecture for
computationally demanding applications, such as SAR.

A. DSP Programming

TI’s DSPs run a lightweight real time operating system
called SYS/BIOS. Since SYS/BIOS can be used in a wide va-
riety of processing and memory constraints, it was designed to
be highly configurable. TI also provides an eclipse based Inte-
grated Development Environment (IDE) for code development,
including a C/C++ compiler. The compiler is C89 compliant
and virtually every C89 compliant code can be ported with no
additional effort. The compiler also allows the use of pragmas
and intrinsic operators to fully exploit the core architecture
and extract all the potential performance without resorting to
assembly programming. TI provides standard libraries which
contain highly tuned often used signal processing and imaging
functions. The implementation in this paper has heavily used
the FFT/IFFT functions supplied with TI’s DSPLib.

The compiler supports openMP 3.0 [18] that allows rapid
porting of existing multi-threaded codes to multi-core DSP.
TI’s C66x compiler translates the openMP into multi-threaded
code with calls to a custom runtime library. In the evaluation
section, we have used the openMP framework to instantiate
individual threads across multiple cores.

IV. MODULARIZATION OF RD ALGORITHM

This section addresses the modularization of the RD al-
gorithm, mapping it to the c6678 architecture and detailed
implementation of each module. The unique features of c6678
are utilized to achieve parallel computing within each core and
among multiple cores.

Fig. 5 shows the flowchart of the involved modules suited
to process data with relatively small squint angles and short
aperture lengths. Each block in Fig. 2 is now further broken
down into smaller functional units. The following subsections
describe the implementation of each module.
A. Batch Compression with DMA

The range/azimuth compression step consists of FFT on
both the data and the range reference function, complex
multiplication, and IFFT on the compressed data. The large

Range

reference

(time, time)

FFT Range

reference

(freq., time) Range

comp.

(freq.,

time)

IFFT
Range

comp.

(time,

time)

Corner

turning

FFT

Azimuth

reference

(time, time)

FFT

Azimuth

data

(time, freq.)

Azimuth

reference

(time, freq.)

RCMC

(time, freq.)

Azimuth

comp.

(time,

freq.)

Azimuth

comp.

(time,

time)

IFFT Post-

proces

sing

Raw data

(time, time)

FFT Raw data

(freq., time)

Batch data

loading

Fig. 5. Implementation flowchart of the proposed design.

Fig. 4. Architecture of c6678.

chunk of raw data is first stored in the external DDR3
memory of c6678. To efficiently load/write the data between
the external memory and internal memory (L2), the enhanced
direct memory access (EDMA3) [17] is applied to service
data transfer. EDMA3 is a unique design of TI’s architec-
ture. It features fully orthogonal transfer on three dimensions
with synchronization on two dimensions, flexible transfer

Raw data

in DDR3

Input buffer

in L2

Output

buffer in L2

Processed

data in DDR3

DMA read Process DMA write

p

i

n

g

p

o

n

g

Fig. 6. Pingpong DMA reading and writing.

initialize DMA;

first DMA load;

for each patch data

wait for DMA load completion;

prepare for next DMA load;

DMA load;

data compression;

wait for DMA write completion;

prepare for next DMA write;

DMA write;

end

wait for last DMA write completion;

close DMA;

Fig. 7. Pseudocode of ping-pong DMA operation and processing.

definitions, multiple DMA channels, and memory protection
support. More detailed can be found in TI user manual [17].

Fig. 6 shows the ping-pong strategy for achieving parallelis-
m among DMA loading, data processing and DMA writing
steps. Two input buffers are allocated in the local L2 memory
to store the latest two batches of raw data, while the two
output buffers in L2 are used to hold the processed data
before being written to the external memory. Data processing
can take place while the DMA operation is on-going to
avoid unnecessary stalling. Fig. 7 provides the pseudocode
for the batch compression program with DMA operations. The
reference function and twiddle factors are placed in the shared
memory of c6678, so they are visible to all cores.

B. Corner Turning

Corner turning is essentially to rearranges the compressed
data such that it can be read in azimuth line order for process-
ing along the azimuth direction. Fig. 8 illustrates the process
of the adopted corner turning approach. The range compressed
data stored in memory cells are grouped into blocks. Squared
size is preferred because DMA access achieves higher effi-
ciency when the row size of the loading/writing data is no
less than the number of rows. Block size is bounded by the

Azimuth

R
a
n
g
e

block cell

A
zi
m
u
th

Range

Range ordered

data in DDR3

Input

buffer in

L2

Output

buffer

in L2

Azimuth orderd

data in DDR3

DMA read

Transpose

DMA write

Fig. 8. Corner turning with ping-pong DMA operations.

available L2 memory space. Similar to batch compression, the
ping-pong strategy is applied on the DMA operations. The
boundary cells (colored area on the right and on the bottom
in Fig. 8) are processed in separate loops for transposing. An
alternative strategy is to pre-process the raw data, such that
the image size is of exact multiple times of block size. Then,
processing on the boundary cells can be avoided to save online
computation time.
C. RCMC

RCMC is carried out in the range-Doppler domain, so FFT
along the azimuth direction is required before the migration
correction. Data is fetched with ping-pong DMA from the
DDR3 to the L2 memory. Each block corresponds to a certain
number of range bins and Doppler frequency bins. Ideally, the
migration amount is both range and azimuth dependent. For
implementation efficiency, we assume that the migration is
only azimuth dependent within each block. Across different
blocks, the migration amount is both range and azimuth
dependent.

The integer part of the migration amount is used for range
sample shift, while the fractional part is used for interpolation.
In this implementation, the 16-set 8-tap sinc filter is adopted as
the interpolation filter. The coefficients of the 16 sets of filters
are stored as constant number. The index of which filter should
be selected is determined by the fractional part. The same filter
is used for each range cell. The c6678 unique double-float
load, write and arithmetic instructions are utilized to improve
the interpolation computation efficiency.

D. Multi-core Mapping

The parallel implementation using the eight cores on the
c6678 platform can be achieved by letting each core process a
different portion of the data. Fig. 9 demonstrates how the task
is assigned to each core. The data in the external memory
is divided into eight portions. Each core retrieves the data
according to the start point of the allocated location through
DMA. Within each core, the above mentioned compression
and corner turning steps can be implemented accordingly using
local memory devices (L2 and L1). The access to the DDR3
memory among multiple cores is scheduled by the DMA
controller.

0 1 2 3 4 5 6 7

DMACH

L2

L1

DMACH

DMACH

L2

L1

DMACH

DMACH

L2

L1

DMACH

DMACH

L2

L1

DMACH

DMACH

L2

L1

DMACH

DMACH

L2

L1

DMACH

DMACH

L2

L1

DMACH

DMACH

L2

L1

Core 0 Core 7

2 3 4 5 6 70 1

Raw data in DDR3

Processed data in DDR3

DMACH

DMA

controller

Fig. 9. Mapping on eight cores.

Since the DDR3 memory space is shared fully across all
cores, the above division of computation across cores can
be easily achieved through openMP constructs. The openMP
runtime on the multi-core DSP will run multiple threads (one
thread per core) with their own allocated data portion.

V. EVALUATION

In order to evaluate the performance of the SAR implemen-
tation on c6678, five key modules are profiled to estimate the
execution time. Specifically, we evaluated the execution time
for range compression, corner turning, azimuth FFT, RCMC
and azimuth compression. Based on the available literature
of similar implementations, two typical examples of image
sizes of 2048 by 2048 and 4096 by 4096 are utilized for
verification. This results in 2048 (4096) FFTs and IFFTs with
2048 (4096) points in each transformation. The actual FFT
size varies widely for different SAR applications. Very small
FFT may be necessary for auto-focusing algorithms and very
large FFT size may be needed specially in azimuth direction
for full resolution SAR image formation. It is also feasible to
divide the large image into 2-D patches and use smaller FFT
sizes with some sort of overlap-add processing.

1MB of the shared memory is set as non cached to avoid the
cache incoherence problem among the eight cores. For each
core, part of the L2 memory is set as L2 SRAM (384 KB)
and the rest is used as cache (128 KB). Intermediate ping-pong
buffers are allocated in the L2 SRAM. The batch size, i.e., the
number of rows loaded from DDR3 each time (as shown in
Fig. 6) is determined by the available L2 SRAM. For the 2048
and 4096 point FFT, it is set to be two and one, respectively.
The squared block size during corner turning is set as 64×64.

Table II and Table III show the results of profiling the
five modules with different image sizes on a TMS320C6678
based evaluation module (EVM). Results with varying number
of cores being active within the device are presented in
the table. The unit for measurement is millisecond. First of
all, comparing the results under the two different cases, the
computation time scales well with the image size. As expect-
ed, the timing required for range compression and azimuth
compression scales very well with the increase of the number
of operational cores. On the other hand, the corner turning

of range corner azimuth RCMC azimuth total
active comp. turn FFT comp.
cores (ms) (ms) (ms) (ms) (ms) (ms)

1 142 17 34 46 44 283
4 36 6 9 13 11 74
8 18 6 7 12 6 50

TABLE II
EXECUTION TIME FOR KEY STEPS OF THE SAR PROCESSOR IN SINGLE

CORE AND MULTI-CORE CASES, WITH IMAGE SIZE OF 2K BY 2K.

of range corner azimuth RCMC azimuth total
active comp. turn FFT comp.
cores (ms) (ms) (ms) (ms) (ms) (ms)

1 573 100 199 269 263 1404
4 144 33 50 71 66 363
8 72 34 45 66 33 251

TABLE III
EXECUTION TIME FOR KEY STEPS OF THE SAR PROCESSOR IN SINGLE

CORE AND MULTI-CORE CASES, WITH IMAGE SIZE OF 4K BY 4K.

0

10

20

30

40

50

60

70

80

Range

compression

Transpose Azimuth FFT RCMC Azimuth

compression

T
im
e
(m
s
e
c
)

29%

14%

18%

27%

13%

Fig. 10. Time consumption percentages for key steps with a 4k by 4k image.

timing, RCMC and azimuth FFT saturates at around 4 cores.
This is due to the fact that these steps are memory I/O bound.
Once it saturates the DDR3 bandwidth, increasing the number
of operational cores does not help. For the total execution time,
the acceleration factor with 8 cores relative to a single core is
around 6.

Fig. 10 shows the percentage of required processing time
for each step in the case of 4096 by 4096 data set. We
can see that range compression and RCMC are the most
computationally intensive steps. The sum of portions for
azimuth FFT and azimuth compression is similar to that of the
range compression step. Overall, it takes around 0.25 second
to process the whole 4096 by 4096 image using 8 cores in
parallel. Given that this processing is done with a 10 W device,
the above demonstrated result makes c6678 very competitive
among other alternatives, such as GPGPU, CPU and Cell, as
discussed in the introduction part. The processing time for
range compression, RCMC and azimuth compression Further,
since the SAR processing is embarrassingly parallel, multiple
devices can be employed to further improve the throughput.

VI. CONCLUSION

The performance per power efficiency of the multi-core
DSP, TMX320C6678, makes it a good choice for various
computationally intensive applciations. This device is wide-
ly used in various embedded applications including cellular
base-stations, radio controllers and industrial/medical imaging

devices. In this paper, we have presented benchmarking results
of the key SAR processing modules and showed that real
time SAR processing is feasible at high power efficiency
using this multi-core DSP device. The scalability of SAR
operations across multiple devices also suits well for DSPs to
provide embedded platforms for the wide variations in SAR
applications.

Our future activity includes demonstrating the full SAR
imaging using one of the PCIe based boards with multiple TM-
S320C6678 DSPs. We plan to include parameter estimation
and auto-focus algorithm to make the design higher precision
and more robust. We also intend to profile compression scheme
with various FFT sizes to account for different application
needs of SAR processing.

REFERENCES
[1] R. Bamler, “A Systematic Comparison Of Sar Focusing Algorithms”,

International Geoscience and Remote Sensing Symposium, IGARSS, vol.
2, pp. 1005-1009, 1991.

[2] R. Bamler, “A Comparison of Range-Doppler and Wavenumber Domain
SAR Focusing Algorithms”, IEEE Transactions on Geoscience and Re-
mote Sensing, vol. 30(4), pp. 706-713, 1992.

[3] J. R. Bennett and I. G. Cumming, “A Digital Processor for the Production
of SEASAT Synthetic Aperture Radar Imagery”, SURGE Work-shop,
1979.

[4] M. D. Bisceglie, M. D. Santo, C. Galdi, R. Lanari, N. Ranaldo, “Syn-
thetic Aperture Radar Processing with GPGPU”, IEEE Signal Processing
Magazine, vol. 27(2), pp. 69-78, 2010.

[5] C. Cafforio, C. Prati, and F. Rocca, “SAR data focusing using seismic
migration techniques”, IEEE Transactions on Aerospace and Electronic
Systems, vol. 27(2), pp. 194-207, Mar. 1991.

[6] I. G. Cumming and J. R. Bennett, “Digital Processing of SEASAT SAR
Data”, IEEE International Conference on Acoustics, Speech and Signal
Processing, Washington, D.C., 1979.

[7] I. G. Cumming and F. H. Wong, “Digital Processing of Synthetic Aperture
Radar Data: Algorithms and Implementation”, Norwood, MA: Artech
House, 2005.

[8] G. Franceschetti and G. Schirinzi, “A SAR processor based on two-
dimensional FFT codes”, IEEE Transactions on Aerospace and Electronic
Systems, vol. 26(2), pp. 356-366, 1990.

[9] J. W. Goodman, “Introduction to Fourier Optics”, McGraw-Hill. New
York, 1968.

[10] L. J. Karam, I. AlKamal, A. Gatherer, G. A. Frantz. D. V. Anderson, B.
L. Evans, “Trends in Multi-core DSP Platforms”, IEEE Signal Processing
Magazine, vol. 26(6), pp. 38-49, 2009.

[11] D. S. McFarlin, F. Franchetti, M. Pschel, and J. M. F. Moura, “High-
performance synthetic aperture radar image formation on commodity mul-
ticore architectures”, in Proc. Society of Photo-Optical Instrumentation
Engineers (SPIE) Conf. Series, vol. 7337, May 2009.

[12] M. Puschel, J. M. F. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B.
W. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W.
Johnson, and N. Rizzolo, “Spiral: Code generation for DSP transforms”,
Proc. IEEE, vol. 93(2), pp. 232-275, Feb. 2005.

[13] J. Rudin, “Implementation of polar format SAR image formation on
the IBM cell broadband engine”, in Proc. High Performance Embedded
Computing(HPEC), 2007.

[14] A. M. Smith, “A New Approach to Range Doppler SAR Processing”,
International Journal of Remote Sensing, vol. 12(2), pp. 235-251, 1991.

[15] TMS320C6678 Multicore Fixed and Floating-Point
Digital Signal Processor, Data Manual. Available at :
http://www.ti.com/lit/ds/sprs691c/sprs691c.pdf

[16] TMS320C66x DSP CPU and Instructions Set Reference Guide. Avail-
able at : http://www.ti.com/lit/ug/sprugh7/sprugh7.pdf

[17] Enhanced Direct Memory Access (EDMA3) Controller User Guide.
Available at: http://www.ti.com/lit/ug/sprugs5a/sprugs5a.pdf

[18] OpenMP Application program Interface: version 3.0, May 2008. Avail-
able at http://www.openmp.org/mp-documents/OpenMP3.1.pdf

