
General Purpose Computing on Graphics Processing Units:

Decomposition Strategy

Henry Au, Gregory Lum

Space and Naval Warfare Systems Center Pacific (SSC Pacific), Pearl City, HI

{henry.au, gregory.lum}@navy.mil

Abstract

 This paper describes the optimization strategies when porting traditional C/C++ algorithms

which run on CPU's to parallel processing architectures found on Graphics Processing Units (GPUs). The

CUDA parallel programming architecture is also explored through the use of NVIDIA's Visual Profiler for

performance analysis. Real time video feeds, such as from onshore surveillance cameras, offer limited

visibility when fog, haze, smoke, or dust clouds are present. In order to enhance the video, image

processing algorithms such as the Adaptive Linear Filter (ALF) are performed. However, algorithms such

as the ALF require large computational time thus limiting the picture quality, size of the video, or number

of video feeds being processed concurrently in real time. The GPUs parallel processing computational

power is exploited to attain speed ups so that image processing can be performed on the fly in real time.

Thus, surveillance is enhanced by providing visual improvement for detection and classification of objects

in low-visibility conditions using the ALF. The ALF was selected to provide an image processing context

for algorithm optimization on GPUs. The optimization strategies being explored will be CUDA Host

memory allocations, streams, and asynchronous memory transfers. Performance results of the ALF

running on the GPU and the GPU after optimization will also be reported. As well, GPU limitations will

also be briefly discussed in this paper as not every algorithm will benefit from execution on parallel

processing architectures.

1. Introduction

 Graphics Processing Units (GPUs) have been in use in one form or another to display information

to users since the 1980's. GPUs continued to evolve from simple shape accelerators to performing more

complex computations such as 3D rendering. However, only as recently as 2007 did General Purpose

Computing on Graphics Processing Units (GPGPU) become a viable option for high performance

computing. This availability is due to NVIDIA's Compute Unified Device Architecture (CUDA). CUDA

has provided a lot of the back end coordination required for managing the hundreds of parallel cores found

on their GPUs. As well, an added benefit of GPGPU is the ease with which GPUs can be added or

upgraded to a standalone desktop machine for increased performance.

 Using the large number of cores available on a single GPU, a desktop computer or even laptop can

become a mobile HPC device. This makes it ideal for military applications where mobility, package size,

and energy requirements are important factors. Remote drones or unmanned aerial vehicles (UAV)

suddenly become possible applications. With a GPU installed on a UAV, data can be processed in near

real-time on the aircraft instead of post processed at a remote site when time sensitive information is

required.

 Figure 1 shows how a set of data is segmented and processed in parallel using blocks and threads.

A thread is a set of operations that processes data independent of order, thus allowing for parallel

execution. Multiple threads create a block and multiple GPU cores process multiple blocks at the same

time. With this architecture it can be easily seen that additional cores results in more data being processed

in parallel. Thus, overall computational time is reduced. This makes it more efficient than a CPU that

processes data sequentially. However, there are limitations associated with GPGPU due to the fundamental

differences between CPU and GPU cores. The CPU core is much more robust and faster enabling it to

handle a wider range of tasks when compared to a GPU core. However, since CPU processors have orders

of magnitude fewer cores than GPUs, when dealing with highly parallel computations the GPU

outperforms the CPU in floating point operations per second (FLOPS). As will be discussed later GPGPUs

do have limitations.

Figure 1. Parallel computation of data

2. Methodology

 In order to utilize the computational power of GPUs a standalone desktop was built with the

following hardware: an Intel Core i7, 8GB of DDR3 RAM, 7200 RPM hard drive, 1000W power supply,

two NVIDIA GTX 460 graphics cards (one for computer display and the other dedicated for processing).

Software utilized included Windows 7 64bit Pro, CUDA Toolkit 4.2, University of Oregon's Tuning and

Analysis Utilities (TAU) 2.20 timing software, NVIDIA's Visual Profiler, and Microsoft Visual Studio

2008 Professional. Figures 2 describes the CUDA enabled NVIDIA GTX 460 graphics card used for

parallel processing. It should be noted that NVIDIA offers much higher performance GPUs dedicated for

general purpose computing, such as the Fermi-based GPGPUs. The GTX 460 was selected due to its lower

price point. It can be seen that the GTX 460 supports concurrent copy and execute with 1 copy engine.

Other enterprise level cards have 2 copy engines allowing for greater host to device and device to host

memory copying performance.

Figure 2. NVIDIA GTX 460 GPU Specifications

 The ALF algorithm was profiled using TAU 2.20, with special consideration taken to ensure that

functions which occur repeatedly, such as for loops, were profiled. The timing information from the ALF

TAU profile was then used to develop a decomposition strategy. It is important to keep in mind that

profiling a system that currently operates at near real time through CPU processing may not reveal

bottlenecks based only on timing. It is therefore important to understand the algorithm being profiled as

well as understand the timing profile created using TAU. Figure 3 below depicts the ALF algorithm

processing a 720x480 resolution image.

Figure 3. Left Original Image Vs. Right ALF Filtered Image

 The parallelizable code is then ported and another timing profile is conducted to determine the

increased performance. As well, some portions of serial code are also ported to the GPU and processed

serially in order to reduce memory transfers between the host and device. Determining whether

transferring the data or processing the data directly on the GPU requires the timing profile and a clear

understanding of the GPUs performance. Thus it is important to benchmark the performance of the system

before optimizing the host and device code.

3. Results and Discussion

3.1 Memory Declarations CPU and GPU

 When integrating CUDA C into existing C/C++ code there are three available methods to allocate

host memory: new, malloc, and cudaHostAlloc. The cudHostAlloc is similar to malloc except that it

allocates a buffer of page-locked host memory. Thus, the memory will not be paged out to disk and the

GPU can utilize its direct memory access (DMA) engine to copy data to and from the host. This is

especially important for performance enhancement because many memory copies between the host and

device will result in decreased performance. Figure 4 depicts the processing speed up achieved by using

cudaHostAlloc to page lock memory for data transfers between the host and device. However, overuse of

page locked memory can cause decreased system performance.

Processing Time Vs. Mega Bytes Data Processed

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

Data (MB)

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
)

New

Malloc

cudaHostAlloc

Figure 4. Data Processing Using: New Vs. Malloc Vs. cudaHostAlloc for Memory Allocation

3.2 Asynchronous Memory Transfers and Execution using Streams

 NVIDIA's programming guide recommends that streams be created to properly queue device

instructions to utilize the asynchronous memory copy and kernel executions. Asynchronous memory

transfers and kernel executions require a GPU with concurrent copy and execution available as well as the

memory being copied between host and device to be page-locked (host memory allocated using

cudaHostalloc). It is important to remember that asynchronous memory transfers and computations should

be utilized for portions of code which are independent of other memory transfers and computations. Figure

5 provides an example of an improperly queued stream which does not utilize the concurrent copy and

execute available on the GTX 460. Highlighted in red are instructions which have been queued for stream

0 and instructions queued on stream 1 in black.

cudaMemcpyAsync(dataA0, stream0, HostToDevice)

cudaMemcpyAsync(dataB0, stream0, HostToDevice)

kernel<<< blocks, threads, stream0>>>(result0, dataA0, dataB0)

cudaMemcpyAsync(result0, stream0, DeviceToHost)

cudaMemcpyAsync(dataA1, stream1, HostToDevice)

cudaMemcpyAsync(dataB1, stream1, HostToDevice)

kernel<<<blocks, threads, stream1>>>(result1, dataA1, dataB1)

cudaMemcpyAsync(result1, stream1, DeviceToHost)

Figure 5. NVIDIA Visual Profiler Results for Version 1 Stream Queuing (Time Taken 49.5ms)

 It can be seen in Figure 5 that by queuing the device instructions of stream 0 and stream 1 in a

serial manner the memory copies (tan) and computations (teal) are not overlapped and no performance

increase is achieved. The proper CUDA stream queue structure would be interleaving the two streams so

that as memory is being copied the kernel can be instructed to execute. Figure 6 demonstrates the proper

use of CUDA streams.

cudaMemcpyAsync(dataA0, stream0, HostToDevice)

cudaMemcpyAsync(dataA1, stream1, HostToDevice)

cudaMemcpyAsync(dataB0, stream0, HostToDevice)

cudaMemcpyAsync(dataB1, stream1, HostToDevice)

kernel<<< blocks, threads, stream0>>>(result0, dataA0, dataB0)

kernel<<<blocks, threads, stream1>>>(result1, dataA1, dataB1)

cudaMemcpyAsync(result0, stream0, DeviceToHost)

cudaMemcpyAsync(result1, stream1, DeviceToHost)

Figure 6. NVIDIA Visual Profiler Results for Version 1 Stream Queuing (Time Taken 49.4ms)

 However, when using the visual profiler we see that after the first asynchronous memory copy and

transfer the subsequent calls result in a serial behavior. Through testing it was found that when the kernel

execution of stream 0 is immediately followed by the stream 0 memory copy, and similarly for stream 1,

that full asynchronous copy and execution is achieved.

 In figure 7 it can be seen that asynchronous memory copy and kernel executions overlap when

queuing device instructions in this form. Thus, a portion of the memory transfer overhead is hidden during

the kernel execution. For the GTX 460 only one copy engine is available. If two copy engines are

available performance would increase even more as less overhead is required for memory copies.

cudaMemcpyAsync(dataA0, stream0, HostToDevice)

cudaMemcpyAsync(dataA1, stream1, HostToDevice)

cudaMemcpyAsync(dataB0, stream0, HostToDevice)

cudaMemcpyAsync(dataB1, stream1, HostToDevice)

kernel<<< blocks, threads, stream0>>>(result0, dataA0, dataB0)

cudaMemcpyAsync(result0, stream0, DeviceToHost)

kernel<<<blocks, threads, stream1>>>(result1, dataA1, dataB1)

cudaMemcpyAsync(result1, stream1, DeviceToHost)

Figure 7. NVIDIA Visual Profiler Results for Version 3 Stream Queuing (Time Taken 41.1ms)

Figure 8 depicts the increase in performance when comparing proper use of streams with no streams

(streams queued in serial). As more data is processed the effect of proper stream queuing becomes more

evident. Thus, utilizing streams lends to scalability and performance increase in the future for larger data

structures.

Processing Time Vs. Mega Bytes Data Processed

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14

Data (MB)

T
im

e
 (

m
s
)

Version 1

Version 2

Version 3

Figure 8. No Stream, Stream, and Modified Stream Queue Structure Processing Results

 However, asynchronous memory copies and concurrent kernel executions utilized by proper

device stream queuing does not always result in a performance increase. This is the result of the overhead

associated with creating, synchronizing, and destroying streams . Thus it is important to profile the device

code to ensure that a sufficient amount of processing time occurs during computations of the kernels and

not during the memory copying process. Figure 9 depicts these results revealing that when computation

time is low in comparison to copying time, concurrent copy and computation results in degraded

performance.

Figure 9. Visual Profile of Serial Device Copy-Compute-Copy and Concurrent Copy-Compute

3.3 GPU Processing Results

 The ALF algorithm was ported to the GPU and profiled. Using the timing profile of the CPU and

GPU processing times the code was then optimized by determining which data structures should be page-

locked and thus able to be streamed for asynchronous memory copy and kernel execution. Table 1 presents

the ALF algorithm processing time for a single frame of varying image resolutions. It can be seen that after

optimization an increase in frames per second (FPS) is achieved.

Table 1. Complete ALF Algorithm Execution Time

Resolution
ALF: GPU+CPU

(FPS)

ALF: GPU+CPU
Optimized

(FPS)

Speed Up
(FPS)

720x480 7.59 17.81 10.22

1440 x 960 5.06 8.78 3.72

2160 x 1440 3.24 4.52 1.28

4. Conclusion

 This paper has demonstrated that simple optimization strategies such as using page-locked host

memory, asynchronous memory copies and concurrent kernel executions, and proper stream coordination

results in a decrease in processing time. However, it has also been demonstrated that utilizing streams to

hide the latency from device to host and host to device memory copies does not always result in increased

performance. Hiding the memory copy latency works best when the computation times are comparable to

memory copy times so that the stream creation, synchronization, and destruction overhead does not add

more latency than it is able to hide.

 Thus, developing a decomposition strategy in conjunction with benchmarked CUDA overhead

requirements will help develop an optimization strategy to utilize the full computational power available

through GPUs. This paper has shown that a speed up of ~2x is achieved for the ALF algorithm operating

on an 720x480 resolution image.

 As described previously the GPUs have their limitations, such as the large overhead associated

with memory copies between host and device and vice versa. However, for image processing GPUs can be

an asset. The GPUS's size-to-performance also makes it the ideal technology for a range of military

applications such as UAV onboard data processing and mobile HPCs for forward operating bases.

Acknowledgements

 This work has been funded by SPAWAR System Center Pacific Internal Applied Research (IAR)

program (Dave Rees Program Manager). We would like to thank David Buck for allowing us to use his

ALF algorithm. As well, if not for the support from our Department Manager, George McCarty, Code H

Business Deputy, Neal Miyake, H5600 Division Head, Alan Umeda and H56D0 Branch Head, Justin Lee

we would not have had this great opportunity. Last, and definitely not least, we would like to thank Nick

Kamin and Dr. Randy Shimabukuro for mentoring us throughout the course of this applied research.

References

CUDA C Best Practices Guide Ver 4.0, 5/2011.

NVIDIA CUDA Programming Guide Ver 4.0, 5/6/2011.

Jason Sanders, Edward Kandrot. CUDA By Example, An Introduction to General-Purpose GPU Programming.

Addison-Wesley. Copyright NVIDIA Corporation 2011.

