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Abstract 

  
 This paper describes the optimization strategies when porting traditional C/C++ algorithms 

which run on CPU's to parallel processing architectures found on Graphics Processing Units (GPUs).  The 

CUDA parallel programming architecture is also explored through the use of NVIDIA's Visual Profiler  for 

performance analysis.  Real time video feeds, such as from onshore surveillance cameras, offer limited 

visibility when fog, haze, smoke, or dust clouds are present.  In order to enhance the video, image 

processing algorithms such as the Adaptive Linear Filter (ALF) are performed.  However, algorithms such 

as the ALF require large computational time thus limiting the picture quality, size of the video, or number 

of video feeds being processed concurrently in real time.  The GPUs parallel processing computational 

power is exploited to attain speed ups so that image processing can be performed on the fly in real time.  

Thus, surveillance is enhanced by providing visual improvement for detection and classification of objects 

in low-visibility conditions using the ALF.  The ALF was selected to provide an image processing context 

for algorithm optimization on GPUs.  The optimization strategies being explored will be CUDA Host 

memory allocations, streams, and asynchronous memory transfers.  Performance results of the ALF 

running on the GPU and the GPU after optimization will also be reported.  As well, GPU limitations will 

also be briefly discussed in this paper as not every algorithm will benefit from execution on parallel 

processing architectures. 

 

1. Introduction 

 
 Graphics Processing Units (GPUs) have been in use in one form or another to display information 

to users since the 1980's.  GPUs continued to evolve from simple shape accelerators to performing more 

complex computations such as 3D rendering.  However, only as recently as 2007 did General Purpose 

Computing on Graphics Processing Units (GPGPU) become a viable option for high performance 

computing.  This availability is due to NVIDIA's Compute Unified Device Architecture (CUDA).  CUDA 

has provided a lot of the back end coordination required for managing the hundreds of parallel cores found 

on their GPUs.  As well, an added benefit of GPGPU is the ease with which GPUs can be added or 

upgraded to a standalone desktop machine for increased performance.  

 Using the large number of cores available on a single GPU, a desktop computer or even laptop can 

become a mobile HPC device.  This makes it ideal for military applications where mobility, package size, 

and energy requirements are important factors.  Remote drones or unmanned aerial vehicles (UAV) 

suddenly become possible applications.  With a  GPU installed on a UAV, data can be processed in near 

real-time on the aircraft instead of post processed at a remote site when time sensitive information is 

required.   

 Figure 1 shows how a set of data is segmented and processed in parallel using blocks and threads.  

A thread is a set of operations that processes data independent of order, thus allowing for parallel 

execution.  Multiple threads create a block and multiple GPU cores process multiple blocks at the same 

time.  With this architecture it can be easily seen that additional cores results in more data being processed 

in parallel.  Thus, overall computational time is reduced.  This makes it more efficient than a CPU that 

processes data sequentially.  However, there are limitations associated with GPGPU due to the fundamental 

differences between CPU and GPU cores.  The CPU core is much more robust and faster enabling it to 

handle a wider range of tasks when compared to a GPU core.  However, since CPU processors have orders 

of magnitude fewer cores than GPUs, when dealing with highly parallel computations the GPU 

outperforms the CPU in floating point operations per second (FLOPS).  As will be discussed later GPGPUs 

do have limitations. 



 
Figure 1. Parallel computation of data 

 

2. Methodology 

 
 In order to utilize the computational power of GPUs a standalone desktop was built with the 

following hardware: an Intel Core i7, 8GB of DDR3 RAM, 7200 RPM hard drive, 1000W power supply, 

two NVIDIA GTX 460 graphics cards (one for computer display and the other dedicated for processing).  

Software utilized included Windows 7 64bit Pro, CUDA Toolkit 4.2, University of Oregon's Tuning and 

Analysis Utilities (TAU) 2.20 timing software, NVIDIA's Visual Profiler, and Microsoft Visual Studio 

2008 Professional.  Figures 2 describes the CUDA enabled NVIDIA GTX 460 graphics card used for 

parallel processing.  It should be noted that NVIDIA offers much higher performance GPUs dedicated for 

general purpose computing, such as the Fermi-based GPGPUs.  The GTX 460 was selected due to its lower 

price point. It can be seen that the GTX 460 supports concurrent copy and execute with 1 copy engine.  

Other enterprise level cards have 2 copy engines allowing for greater host to device and device to host 

memory copying performance. 
 

 
Figure 2. NVIDIA GTX 460 GPU Specifications 

 

 The ALF algorithm was profiled using TAU 2.20, with special consideration taken to ensure that 

functions which occur repeatedly, such as for loops, were profiled.  The timing information from the ALF 

TAU profile was then used to develop a decomposition strategy.  It is important to keep in mind that 

profiling a system that currently operates at near real time through CPU processing may not reveal 

bottlenecks based only on timing.  It is therefore important to understand the algorithm being profiled as 



well as understand the timing profile created using TAU.  Figure 3 below depicts the ALF algorithm 

processing a 720x480 resolution image.  

 

 
Figure 3.  Left Original Image Vs. Right ALF Filtered Image 

 

 The parallelizable code is then ported and another timing profile is conducted to determine the 

increased performance.  As well, some portions of serial code are also ported to the GPU and processed 

serially in order to reduce memory transfers between the host and device.  Determining whether 

transferring the data or processing the data directly on the GPU requires the timing profile and a clear 

understanding of the GPUs performance.  Thus it is important to benchmark the performance of the system 

before optimizing the host and device code. 

  

3. Results and Discussion 
 

3.1 Memory Declarations CPU and GPU 

 
 When integrating CUDA C into existing C/C++ code there are three available methods to allocate 

host memory: new, malloc, and cudaHostAlloc.  The cudHostAlloc is similar to malloc except that it 

allocates a buffer of page-locked host memory.  Thus, the memory will not be paged out to disk and the 

GPU can utilize its direct memory access (DMA) engine to copy data to and from the host.  This is 

especially important for performance enhancement because many memory copies between the host and 

device will result in decreased performance.  Figure 4 depicts the processing speed up achieved by using 

cudaHostAlloc to page lock memory for data transfers between the host and device.  However, overuse of 

page locked memory can cause decreased system performance. 
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Figure 4. Data Processing Using: New Vs. Malloc Vs. cudaHostAlloc for Memory Allocation 



3.2 Asynchronous Memory Transfers and Execution using Streams 

 
 NVIDIA's programming guide recommends that streams be created to properly queue device 

instructions to utilize the asynchronous memory copy and kernel executions.  Asynchronous memory 

transfers and kernel executions require a GPU with concurrent copy and execution available as well as the 

memory being copied between host and device to be page-locked (host memory allocated using 

cudaHostalloc).   It is important to remember that asynchronous memory transfers and computations should 

be utilized for portions of code which are independent of other memory transfers and computations.  Figure 

5 provides an example of an improperly queued stream which does not utilize the concurrent copy and 

execute available on the GTX 460.  Highlighted in red are instructions which have been queued for stream 

0 and instructions queued on stream 1 in black.   

 

cudaMemcpyAsync(dataA0, stream0, HostToDevice) 

cudaMemcpyAsync(dataB0, stream0, HostToDevice) 

kernel<<< blocks, threads, stream0>>>(result0, dataA0, dataB0) 

cudaMemcpyAsync(result0, stream0, DeviceToHost) 

cudaMemcpyAsync(dataA1, stream1, HostToDevice) 

cudaMemcpyAsync(dataB1, stream1, HostToDevice) 

kernel<<<blocks, threads, stream1>>>(result1, dataA1, dataB1) 

cudaMemcpyAsync(result1, stream1, DeviceToHost) 

 
Figure 5.  NVIDIA Visual Profiler Results for Version 1 Stream Queuing (Time Taken 49.5ms) 

  

 It can be seen in Figure 5 that by queuing the device instructions of stream 0 and stream 1 in a 

serial manner the memory copies (tan) and computations (teal) are not overlapped and no performance 

increase is achieved.   The proper CUDA stream queue structure would be interleaving the two streams so 

that as memory is being copied the kernel can be instructed to execute.  Figure 6 demonstrates the proper 

use of CUDA streams.   

 
cudaMemcpyAsync(dataA0, stream0, HostToDevice) 

cudaMemcpyAsync(dataA1, stream1, HostToDevice) 

cudaMemcpyAsync(dataB0, stream0, HostToDevice) 

cudaMemcpyAsync(dataB1, stream1, HostToDevice) 

kernel<<< blocks, threads, stream0>>>(result0, dataA0, dataB0) 

kernel<<<blocks, threads, stream1>>>(result1, dataA1, dataB1) 

cudaMemcpyAsync(result0, stream0, DeviceToHost) 

cudaMemcpyAsync(result1, stream1, DeviceToHost) 

 
Figure 6.  NVIDIA Visual Profiler Results for Version 1 Stream Queuing (Time Taken 49.4ms) 

  

 However, when using the visual profiler we see that after the first asynchronous memory copy and 

transfer the subsequent calls result in a serial behavior.  Through testing it was found that when the kernel 

execution of stream 0 is immediately followed by the stream 0 memory copy, and similarly for stream 1, 

that full asynchronous copy and execution is achieved.   

 In figure 7 it can be seen that asynchronous memory copy and kernel executions overlap when 

queuing device instructions in this form.  Thus, a portion of the memory transfer overhead is hidden during 

the kernel execution.  For the GTX 460 only one copy engine is available.  If two copy engines are 

available performance would increase even more as less overhead is required for memory copies.   



 

cudaMemcpyAsync(dataA0, stream0, HostToDevice) 

cudaMemcpyAsync(dataA1, stream1, HostToDevice) 

cudaMemcpyAsync(dataB0, stream0, HostToDevice) 

cudaMemcpyAsync(dataB1, stream1, HostToDevice) 

kernel<<< blocks, threads, stream0>>>(result0, dataA0, dataB0) 

cudaMemcpyAsync(result0, stream0, DeviceToHost) 

kernel<<<blocks, threads, stream1>>>(result1, dataA1, dataB1) 

cudaMemcpyAsync(result1, stream1, DeviceToHost) 

 
Figure 7. NVIDIA Visual Profiler Results for Version 3 Stream Queuing (Time Taken 41.1ms) 

 
Figure 8 depicts the increase in performance when comparing proper use of streams with no streams 

(streams queued in serial).  As more data is processed the effect of proper stream queuing becomes more 

evident.  Thus, utilizing streams lends to scalability and performance increase in the future for larger data 

structures. 

 

Processing Time Vs. Mega Bytes Data Processed

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14

Data (MB)

T
im

e
 (

m
s
)

Version 1

Version 2

Version 3

 
Figure 8. No Stream, Stream, and Modified Stream Queue Structure Processing Results 

 
 However, asynchronous memory copies and concurrent kernel executions utilized by proper 

device stream queuing does not always result in a performance increase.  This is the result of the overhead 

associated with creating, synchronizing, and destroying streams .  Thus it is important to profile the device 

code to ensure that a sufficient amount of processing time occurs during computations of the kernels and 

not during the memory copying process.  Figure 9 depicts these results revealing that when computation 

time is low in comparison to copying time, concurrent copy and computation results in degraded 

performance.   

 

 
Figure 9.  Visual Profile of Serial Device Copy-Compute-Copy and Concurrent Copy-Compute 



3.3 GPU Processing Results  

 
 The ALF algorithm was ported to the GPU and profiled.  Using the timing profile of the CPU and 

GPU processing times the code was then optimized by determining which data structures should be page-

locked and thus able to be streamed for asynchronous memory copy and kernel execution.  Table 1 presents 

the ALF algorithm processing time for a single frame of varying image resolutions.  It can be seen that after 

optimization an increase in frames per second (FPS) is achieved.   
 

Table 1. Complete ALF Algorithm Execution Time 

Resolution 
ALF: GPU+CPU 

(FPS) 

ALF: GPU+CPU 
Optimized 

(FPS) 

Speed Up 
(FPS) 

720x480 7.59 17.81 10.22 

1440 x 960 5.06 8.78 3.72 

2160 x 1440 3.24 4.52 1.28 

 

4. Conclusion 

 
 This paper has demonstrated that simple optimization strategies such as using page-locked host 

memory, asynchronous memory copies and concurrent kernel executions, and proper stream coordination 

results in a decrease in processing time.  However, it has also been demonstrated that utilizing streams to 

hide the latency from device to host and host to device memory copies does not always result in increased 

performance.  Hiding the memory copy latency works best when the computation times are comparable to 

memory copy times so that the stream creation, synchronization, and destruction overhead does not add 

more latency than it is able to hide. 

 Thus, developing a decomposition strategy in conjunction with benchmarked CUDA overhead 

requirements will help develop an optimization strategy to utilize the full computational power available 

through GPUs.  This paper has shown that a speed up of ~2x is achieved for the ALF algorithm operating 

on an 720x480 resolution image. 

 As described previously the GPUs have their limitations, such as the large overhead associated 

with memory copies between host and device and vice versa.  However, for image processing GPUs can be 

an asset.  The GPUS's size-to-performance also makes it the ideal technology for a range of military 

applications such as UAV onboard data processing and mobile HPCs for forward operating bases. 
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