
STINGER: High Performance Data Structure
for Streaming Graphs

David Ediger Rob McColl Jason Riedy David A. Bader
Georgia Institute of Technology

Atlanta, GA, USA

Abstract—The current research focus on “big data”
problems highlights the scale and complexity of analytics
required and the high rate at which data may be changing.
In this paper, we present our high performance, scalable
and portable software, Spatio-Temporal Interaction Net-
works and Graphs Extensible Representation (STINGER),
that includes a graph data structure that enables these
applications. Key attributes of STINGER are fast inser-
tions, deletions, and updates on semantic graphs with
skewed degree distributions. We demonstrate a process
of algorithmic and architectural optimizations that enable
high performance on the Cray XMT family and Intel
multicore servers. Our implementation of STINGER on the
Cray XMT processes over 3 million updates per second on
a scale-free graph with 537 million edges.

I. INTRODUCTION

The growth of social media, heightened interest in
knowledge discovery, and the rise of ubiquitous com-
puting in mobile devices and sensor networks [1] have
motivated researchers and domain scientists to ask com-
plex queries about the massive quantity of data being
produced. During a recent Champions League football
match between Barcelona and Chelsea, Twitter processed
a record 13,684 Tweets per second [2]. Facebook users
posted an average of 37,000 Likes and Comments per
second during the first quarter of 2012 [3]. Google’s
Knowledge Graph for search clustering and optimization
contains 500 million objects and 3.5 billion relation-
ships [4].

In the massive streaming data analytics model, we
view the graph as an infinite stream of edge insertions,
deletions, and updates. Keeping complex analytics up to
date at these high rates is a challenge that requires new
algorithms that exploit opportunities for partial recom-
putation, new data structures that maximize parallelism
and reduce locking, and massive multithreaded compute
platforms. In most cases, the new information being
ingested does not affect the entire graph, but only a
small neighborhood around the update. Rather than re-
computing an analytic from scratch, it is possible to react
faster by only computing on the data that have changed.
Algorithms that take advantage of this framework need
a flexible, dynamic data structure that can tolerate the
ingest rate of new information.

Online social networks, such as Facebook and Twitter,

as well as many other human and biological networks,
display a “scale-free” property [5]. These graphs typ-
ically have low diameters and a power-law distribu-
tion in the number of neighbors. To cope with this
skewed degree distribution, a graph data structure must
be able to simultaneously accommodate vertices with
highly varying degree. STINGER [6] is a dynamic graph
data structure that exposes large amounts of parallelism,
supports fast updates, and is well-suited to scale-free
graphs. In this paper, we demonstrate the performance of
STINGER on commodity Intel multicore servers as well
as the Cray XMT family of supercomputers. STINGER
is a high performance and scalable, portable, open source
package that can handle graphs with over 2 billion edges
and update rates in excess of 3 million updates per
second.

In prior work, we designed and implemented parallel
algorithms for processing edge insertions and deletions
while tracking clustering coefficients [7] and connected
components [8]. These algorithms exploit the locality
of each edge update and avoid full recomputation by
updating the metrics appropriately. With clustering coef-
ficients, a new edge insertion or deletion affects only the
neighbors of the endpoints. Using a series of set inter-
sections, the triangle counts that make up the clustering
coefficient are updated. Connected components can be
be tracked for edge insertions using only the mapping
between vertices and component labels. A number of
heuristics are proposed (including triangle finding and
spanning tree traversal) to avoid recomputation in the
case of edge deletions.

In the following section, we will describe STINGER,
the data structure for streaming graphs. In Section III,
we give an overview of the two different multithreaded
platforms being used in our experiments: an Intel multi-
core server and the Cray XMT family. We describe the
microbenchmark used for performance evaluation and
the synthetic graph generator that produces our input
data sets. Section IV presents a number of optimizations
to the STINGER insert and remove procedure to increase
performance from 12,000 updates per second to over 1.8
million updates per second on an Intel multicore system,
and from 950 updates per second to 3.16 million on the
Cray XMT.



II. STINGER

STINGER (Spatio-Temporal Interaction Networks and
Graphs Extensible Representation) is a community-
specified, high performance, extensible data structure for
dynamic graph problems [6]. The data structure is based
on linked lists of blocks. The number of vertices and
edges can grow over time by adding additional vertex
and edge blocks. Both vertices and edges have types,
and a vertex can have incident edges of multiple types.

Edges incident on a given vertex are stored in a linked
list of edge blocks. An edge is represented as a tuple of
neighbor vertex ID, type, weight, and two timestamps.
All edges in a given block have the same edge type.
The block contains metadata such as the lowest and
highest timestamps and the high-water mark of valid
edges within the block.

Parallelism exists at many levels of the data structure.
Each vertex has its own linked list of edge blocks that
is accessed from the logical vertex array (LVA). A “for
all vertices” loop is parallelized over these lists. Within
an edge block, the incident edges can be explored in a
parallel loop. The size of the edge block, and therefore
the quantity of parallel work to be done, is a user-defined
parameter. In our experiments, we arbitrarily set the edge
block size to 32.

The edge type array (ETA) is a secondary index that
points to all edge blocks of a given type. In an algorithm
such as connected components that is edge parallel, this
additional mode of access into the data structure permits
all edge blocks to be explored in a parallel for loop.

To assist the programmer in writing a graph
traversal, our implementation of STINGER provides
parallel edge traversal macros that abstract the
complexities of the data structure while still
allowing compiler optimization. For example, the
STINGER_PARALLEL_FORALL_EDGES_OF_VTX
macro takes a STINGER data structure pointer and a
vertex ID. The programmer writes the inner loop as if
he or she is looking at a single edge. Edge data is read
using macros such as STINGER_EDGE_TYPE and
STINGER_EDGE_WEIGHT. More complex traversal
macros are also available that limit the edges seen based
on timestamp and edge type.

Although most analytic kernels will only read from
the data structure, the STINGER must be able to respond
to new and updated edges. Functions are provided that
insert, remove, increment, and touch edges in parallel.
The graph can be queried as to the in-degree and out-
degree of a vertex, as well as the total number of vertices
and edges in the graph.

STINGER is written in C with OpenMP and Cray
MTA pragmas for parallelization. It compiles and runs
on both Intel and AMD x86 platforms and the Cray XMT
supercomputing platform, with experimental support for

Python and Java on x86 systems. The code is available
under BSD license at http://www.cc.gatech.edu/stinger.

III. EXPERIMENTAL SETUP

We will examine STINGER implementations and
performance on two multithreaded systems with large-
scale memories. The first is a 4-socket Intel multicore
system (mirasol) employing the Intel Xeon E7-8870
processor at 2.40 GHz with 30 MiB of L3 cache per
processor. Each processor has 10 physical cores and
supports HyperThreading for a total of 80 logical cores.
The server is equipped with 256 GiB of 1066 MHz
DDR3 DRAM.

The second system is the Cray XMT (and the next
generation Cray XMT2) [9]. The Cray XMT is a
massively multithreaded, shared memory supercomputer
designed specifically for graph problems. Each proces-
sor contains 128 hardware streams and can execute
a different stream at each clock tick. Low-overhead
synchronization is provided through atomic fetch-and-
add operations and full-empty bit memory semantics.
Combined, these features enable applications with large
quantities of parallelism to overcome the long latency
of irregular memory access. The Cray XMT system at
Pacific Northwest National Lab (cougarxmt) has 128
Threadstorm processors with 1 TiB main memory. The
Cray XMT2 system at the Swiss National Supercomput-
ing Centre (matterhorn) has 64 processors and 2 TiB
main memory.

Due to a variety of concerns, e.g. privacy, company
proprietary and data set size, it is often difficult to
obtain data sets from social media and other sources at
the scale of billions of edges. We substitute synthetic
graphs to approximate the behavior of our algorithms
at scale. For these experiments, we utilize the popular
RMAT [10] synthetic graph generator, which produces
scale-free graphs with a power-law distribution in the
number of neighbors.

Our experiments begin with an initial graph in mem-
ory from the RMAT generator (we use RMAT parame-
ters a = 0.55, b = 0.1, c = 0.1, d = 0.25). The graph
size is given by two parameters: scale and edgefactor .
The initial graph has 2scale vertices and approximately
2scale∗edgefactor edges. After generation, we make the
graph undirected.

After generating the initial graph, we generate addi-
tional edges – using the same generator and parameters
– to form a stream of updates. This stream of updates is
mostly edge insertions. With a probability of 6.25 per-
cent, we select some of these edge insertions to be placed
in a deletion queue. With the same probability, we take
an edge from the deletion queue and add it to the stream
as an edge deletion.

The insert/remove microbenchmark builds a
STINGER data structure in memory from the generated

2



initial graph on disk. Next, a batch of edge updates
is taken from the generated edge stream. The number
of edge updates in the batch is variable. We measure
the time taken to process each edge update in the data
structure. We measure several batches and report the
performance in terms of updates per second.

IV. OPTIMIZATIONS

Applications that rely on STINGER typically receive
a constant stream of new edges and edge updates. The
ability to react quickly to new edge information is a core
feature of STINGER. When an update on edge 〈u, v〉 is
received, we must first search all of the edge blocks of
vertex u for neighbor v of the given edge type. If the
edge is found, the weight and timestamp are updated
accordingly. If the edge is not found, an empty space
must be located or an empty edge block added to the
list.

In an early implementation of STINGER, each new
edge was processed in this manner one at a time. This
approach maximized our ability to react to a single edge
change. On an Intel multicore system with a power law
graph containing 270 million edges, inserting or updating
one at a time yielded a processing rate of about 12,000
updates per second, while the Cray XMT achieved
approximately 950 updates per second. The Cray XMT
performance is low because single edge updates lack
concurrency required to achieve high performance.

On systems with many thread contexts and memory
banks, there is often insufficient work or parallelism
in the data structure to process a single update at a
time. To remedy this problem, we began processing
edge updates in batches. A batch amortizes the cost of
entering the data structure and provides a larger quantity
of independent work to do.

A later implementation of STINGER first sorts the
batch (typically 100,000 edge updates at a time) such
that all edge updates incident on a particular vertex are
grouped together with deletions separated from inser-
tions. For each unique vertex in the batch, we have at
least one work item that can be performed in parallel.
Deletions are processed prior to insertions to potentially
make room for the new edges. Updates on a particular
vertex are done sequentially to avoid synchronization.

This approach to updates yields a 14x increase on
the Intel multicore system. We can process 168,000
updates per second. The Cray XMT implementation
reaches 225,000 updates per second, or a 235x increase
in performance.

In a scale-free graph, however, a small number of
vertices will face many updates, while most will only
have a single update or no updates at all. This workload
imbalance limits the quantity of parallelism we can
exploit and forces most threads to wait on a small
number of threads to complete.

To solve this problem, we skip sorting the edges
and process each edge insertion independently and in
parallel. However, processing two edge updates incident
on the same vertex introduces race conditions that must
be handled with proper synchronization. The Cray XMT
is a perfect system for this scenario. The additional
parallelism will increase machine utilization and its fine-
grained synchronization intrinsics will enable a simple
implementation.

There are three possible scenarios when inserting an
edge into a vertex’s adjacency list in STINGER. If the
edge already exists, the insert function should increment
the edge weight and update the modified timestamp. If
the edge does not exist, a new edge should be inserted in
the first empty space in an edge block of the appropriate
type. If there are no empty spaces, a new edge block
containing the new edge should be allocated and added
to the list.

The parallel implementation guarantees these out-
comes by following a simple protocol using full-empty
semantics on the Cray XMT or using an emulation
of full-empty semantics built on atomic compare-and-
swap instructions on x86. Since multiple threads reading
and writing in the same place in an adjacency list is a
relatively uncommon occurrence, locking does not dras-
tically limit performance. When an edge is inserted, the
linked list of edge blocks is first checked for an existing
edge. If the edge is found, the weight is incremented
atomically. Otherwise the function searches the linked
list a second time looking for an empty space. If one
is found, the edge weight is locked. Locking weights
was chosen to allow readers within the first search to
continue past the edge without waiting. If the edge space
is still empty after acquiring the lock, the new edge is
written into the block and the weight is unlocked. If the
space is not empty but has been filled with the same
destination vertex as the edge being inserted, the weight
is incremented and the weight is unlocked. If another
edge has been written into the space before the lock
was acquired, the weight is unlocked and the search
continues as before. If the second search reaches the
end of the list having found no spaces, the “next block”
pointer on the last edge block must be locked. Once
it is locked it is checked to see if the pointer is still
null indicating the end of the list. If so, a new block is
allocated and the edge is inserted into it before linking
the block into the list and unlocking the previous “next”
pointer. If the pointer is not null, it is unlocked, and
the search continues into the next block. In this way,
we guarantee that all insertions are successful, that all
destination vertices are unique, that no empty space is
wasted, and that no new blocks are needlessly allocated.
Deletions are handled by a similar algorithm.

Implemented in this way, the Cray XMT reaches 1.14

3



Fig. 1. Updates per second on an RMAT graph with 16 million vertices (SCALE 24) and 270 million edges with a batch size of 100,000 edge
updates.

Fig. 2. Increasing batch size results in better performance on the 128-processor Cray XMT. The initial graph is an RMAT graph with 67
million vertices (SCALE 26) and 537 million edges.

4



million updates per second on the scale-free graph with
270 million edges. This rate is 1,200x faster than the
single update at a time approach. With this approach,
we also have sufficient parallelism such that the per-
formance scales to our full system of 128 processors.
Figure 1 compares the performance of the Cray XMT,
Cray XMT2, and an Intel multicore system on the same
problem.

On the 4-socket Intel multicore system, this method
achieves over 1.6 million updates per second on the
same graph with a batch size of 100,000 and 1.8 million
updates per second with a batch size of 1,000,000. This
is 133x faster than the single update at a time approach
and nearly 10x faster than the batch sorting approach.
The scalability of this approach is linear to 20 threads,
but falls off beyond that mark due to limitations imposed
by the use of atomics across multiple sockets.

While the Intel system performs well, the problem size
is constrained by memory. As we increase the scale of
the problem, only the Cray XMT can accommodate the
larger problem sizes. Hence, Figure 2 only includes Cray
XMT results.

With a larger graph (67 million vertices and 537
million edges), the performance remains flat at 1.22
million updates per second. Increasing the batch size
from 100,000 updates to one million updates further
increases the available parallelism. In Figure 2, the
increased parallelism from increasing batch sizes results
in better scalability. The Cray XMT reaches a peak of
3.16 million updates per second on 128 processors for
this graph.

The Cray XMT2, which has a 4x higher memory
density than the Cray XMT, can process batches of one
million updates on a scale-free graph with 268 million
vertices and 2.15 billion edges at 2.23 million updates
per second. This quantity represents a 44.3x speed-up
on 64 processors over a single processor. The graph in
memory consumes approximately 313 GiB.

V. CONCLUSIONS

Future applications will continue to generate more
data and demand faster response to complex analytics.
Through algorithmic, compiler, and architectural opti-
mizations and transformations, STINGER is a scalable,
high performance graph data structure capable of meet-
ing current and future demand for massive streaming
data analytics. As graph sizes swell to billions of vertices
and edges, large shared memory systems with many
hardware threads and many memory banks will be a
practical system solution to these problems. In the best
cases, the Intel x86 platform achieves a peak of 1.8
million updates per second and the Cray XMT platforms
achieves 3.16 million updates per second. STINGER
demonstrates that scalable graph codes can be success-

fully implemented in a cross-platform manner without
loss of performance.

ACKNOWLEDGMENTS

This work was supported in part by the Pacific North-
west National Lab (PNNL) Center for Adaptive Su-
percomputing Software for MultiThreaded Architectures
(CASS-MT). This work is also partially supported by the
Intel Labs Academic Research Office through the Par-
allel Algorithms for Non-Numeric Computing Program.
We thank PNNL, the Swiss National Supercomputing
Centre, Cray, and Intel for access to these systems.

REFERENCES

[1] C. L. Borgman, J. C. Wallis, M. S. Mayernik, and
A. Pepe, “Drowning in data: digital library architec-
ture to support scientific use of embedded sensor
networks,” in Proceedings of the 7th ACM/IEEE-
CS joint conference on Digital libraries, ser. JCDL
’07, 2007, pp. 269–277.

[2] Twitter, “#Goal,” April 2012, http://blog.uk.twitter.
com/2012/04/goal.html.

[3] Facebook, “Key facts,” May 2012, http://newsroom.
fb.com/content/default.aspx?NewsAreaId=22.

[4] Google, “Introducing the knowledge
graph: things, not strings,” May 2012,
http://insidesearch.blogspot.com/2012/05/
introducing-knowledge-graph-things-not.html.

[5] M. Newman, “The structure and function of com-
plex networks,” SIAM Review, vol. 45, no. 2, pp.
167–256, 2003.

[6] D. A. Bader, J. Berry, A. Amos-Binks,
D. Chavarría-Miranda, C. Hastings, K. Madduri,
and S. C. Poulos, “STINGER: Spatio-Temporal
Interaction Networks and Graphs (STING)
Extensible Representation,” Georgia Institute of
Technology, Tech. Rep., 2009.

[7] D. Ediger, K. Jiang, J. Riedy, and D. A. Bader,
“Massive streaming data analytics: A case study
with clustering coefficients,” in 4th Workshop
on Multithreaded Architectures and Applications
(MTAAP), Atlanta, Georgia, Apr. 2010.

[8] D. Ediger, E. J. Riedy, D. A. Bader, and H. Mey-
erhenke, “Tracking structure of streaming social
networks,” in 5th Workshop on Multithreaded Ar-
chitectures and Applications (MTAAP), May 2011.

[9] P. Konecny, “Introducing the Cray XMT,” in Proc.
Cray User Group meeting (CUG 2007). Seattle,
WA: CUG Proceedings, May 2007.

[10] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-
MAT: A recursive model for graph mining,” in
Proc. 4th SIAM Intl. Conf. on Data Mining (SDM).
Orlando, FL: SIAM, Apr. 2004.

5


