
CUDA and OpenCL Implementations of 3D CT 
Reconstruction for Biomedical Imaging 

Saoni Mukherjee, Nicholas Moore, James Brock 
and Miriam Leeser 

 

September 12, 2012 

 

1 



 Introduction to CT Scan, 3D reconstruction 

  Algorithm for CT reconstruction- Feldkamp Algorithm 

  Pros and Cons of the reconstruction method 

  How we resolved the issues? 

  Results 

  Future Work 

  Conclusions 

2 

Outline 



Introduction to 3D Computer Tomography Scan 

3 

sinogram: a line for 
every angle 

reconstruction routine 

reconstructed cross-
sectional slice 

data 

Klaus Mueller, Introduction to Medical Imaging, Lecture 6: X-Ray Computed Tomography, Computer Science Department, Stony Brook University 

3D 
reconstructed 
volume 



Feldkamp Cone beam CT reconstruction 

4 

• Feldkamp, Davis and Kress (FDK)1 
developed in 1984.  
 
• Most commercial CT scanners use 
FDK. 
 
• The raw projections P1, P2,..., PK are 
individually weighted and ramp 
filtered. Weighting includes cosine 
weighting and short-scan weighting. 
 
• The filtered projections are 
reconstructed to get the final volume. 
 

1: http://www.eecs.umich.edu/~fessler/irt/irt 



5 

• Feldkamp, Davis and Kress (FDK)1 
developed in 1984.  
 
• Most commercial CT scanners use 
FDK. 
 
• The raw projections P1, P2,..., PK are 
individually weighted and ramp 
filtered. Weighting includes cosine 
weighting and short-scan weighting. 
 
• The filtered projections are 
reconstructed to get the final volume. 
 

1: http://www.eecs.umich.edu/~fessler/irt/irt 

Feldkamp Cone beam CT reconstruction 



6 

• Feldkamp, Davis and Kress (FDK)1 
developed in 1984.  
 
• Most commercial CT scanners use 
FDK. 
 
• The raw projections P1, P2,..., PK are 
individually weighted and ramp 
filtered. Weighting includes cosine 
weighting and short-scan weighting. 
 
• The filtered projections are 
reconstructed to get the final volume. 
 

1: http://www.eecs.umich.edu/~fessler/irt/irt 

Feldkamp Cone beam CT reconstruction 



Feldkamp CT reconstruction geometry- 1 

1. Weighted Projection: Weighted and ramp filtered raw data 

produce filtered projections Q1,Q2, ...,QK, collected at an angle θn 
where 1 ≤ n ≤ K.  

 di = distance between the volume origin and the source.  
 F(x, y, z) = value of voxel (x, y, z) in volume F 
 Volume F in xyz space and Projections are in uv space. 

7 

filtered 
projections 

reconstructed 
3D volume X-ray source 



Feldkamp CT reconstruction geometry- 2 

2. Backprojection: The volume F is reconstructed using the following equations: 

 
 

Co- 
ordinates 

Weight value, 

8 



Pros and Cons of cone beam CT 

9 

Advantage 
  
•  Reduced X-ray exposure 
 
•  Image accuracy 

- more accurate than MRI! 
 
Disadvantage 
 
• The longer time it takes to reconstruct the volume! 
 - Interruption in treatment/ diagnosis.  

Philips Brilliance CT Scanner 



Time spent in single-threaded code 

10 

Programming 
paradigm 

Time to run 
Backprojection 

Total time 

MATLAB 2h 20m 40s 2h 20m 43s 

C 1h 32m 36s 1h 32m 39s 

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

MATLAB C 

R
u

n
ti

m
e

 in
 S

e
co

n
d

 

Backprojection time 

Total time 



GPUs provides faster way to compute 

11 Felipe A. Cruz, Tutorial on GPU computing with an introduction to CUDA, University of Bristol, Bristol, United Kingdom 

GPU computing key ideas: 
 
• Massively parallel  
 
• Hundreds of cores 
 
• Thousands of threads 
 
• Cheap 
 
• Highly available 

G
FL

O
P

S 



Goal - GPU as an accelerator in CBCT 

12 

• Backprojection is the most computationally intensive part and takes the most 
of the time, but it is highly parallelizable.  
 
• Different voxels are independent and can be processed simultaneously. 
 
 
 
 
 
• Fessler’s image reconstruction toolbox1 provide an implementation of 
Feldkamp CBCT in MATLAB. Widely used in Academia. 
 
• Our goal is to implement Feldkamp CT in a faster way that is compatible with 
the toolbox. 

1: http://www.eecs.umich.edu/~fessler/irt/irt 



GPU implementation of Feldkamp CBCT 

13 

• Processing divided into three steps: 
weighting, filtering and backprojection. 
 
• Each step executed in each kernel. 
 
• Non-blocking kernel calls, but executed 
in series. Each step finishes before the 
next can begin. 
 
• Minimization of expensive memory 
transfers by transferring the whole data 
to GPU before start of computation and 
transferring back after final volume 
reconstruction. 



GPUs used to test the implementations  

14 

NVIDIA TESLA C2070 
  
• Maximum 1536 resident threads in each 
multiprocessor 
• 14 streaming multiprocessors 
• Theoretical limit on the number of 
threads in flight at once is 21,504.  

AMD Radeon HD 5870 
 
• Can run up to 31,744 threads 
concurrently 
• Similar generation as Tesla C2070. 



Sample Projections 

Mathematical phantom 
Input: 64 × 60 pixels with 72 projections 
final volume: 64 × 60 × 50 voxels 

Mouse scan 
Input: 512 × 768 pixels with 361 projections 
final volume: 512 × 512 × 768 voxels 

15 



Architectures and Languages used 

16 

Host Device Language 

 
Intel Core i7 quad-core 
processor with @ 3.4 GHz  

 
MATLAB 
MATLAB PCT 

 
Intel Xeon W3580 quad-
core processor @ 3.33 GHz  

 
NVIDIA Tesla C2070 

 
C 
C with OpenMP 
CUDA 
 

Intel Xeon CPUs E5520  @ 
2.27GHz 

AMD Radeon HD5870 OpenCL 



Results on phantom data 

17 

Programming paradigm Time to run 
Backprojection (sec) 

Total time (sec) 

MATLAB 17.02 17.09 

C 1.36 1.44 

C with OpenMP (4 thrds) 0.32 0.33 

OpenCL (NVIDIA) 0.01 0.11 

OpenCL (AMD) 0.1 0.16 

CUDA 0.01 0.1 

R
u

n
ti

m
e 

in
 s

ec
o

n
d

s 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

MATLAB C C+OpenMP OpenCL-NVIDIA OpenCL-AMD CUDA 

Backprojection time 

Total time 

Backprojection time 

Total time 



Speedups for phantom data 

18 

Programming 
Paradigm 

Speedup over 
single threaded 
MATLAB 

Speedup over 
single threaded 
C 

Speedup over 
multi-threaded 
C 

C with OpenMP 50x 4x - 

OpenCL (NVIDIA) 1700x 136x 32x 

OpenCL (AMD) 170x 13x 3x 

CUDA 1700x 136x 32x 

Comparisons are based on the time taken by Backprojection 



Results – comparing NVIDIA vs. AMD 

19 

GPU Kernel Time 
(millisecond) 

Total time 
(millisecond) 

NVIDIA Weighting 
Filtering 
Backprojection 

2.25 
89.62 
14.07 

 
105.94 

AMD Weighting 
Filtering 
Backprojection 

14.70 
123.23 
19.68 

 
157.61 

 

0 

20 

40 

60 

80 

100 

120 

140 

Weighting Filtering Backprojection 

NVIDIA timings 

AMD timings 

NVIDIA timings 

AMD timings 



Results on mouse scan data 

20 

Programming paradigm Hardware Time to run 
Backprojection (sec) 

Total time (sec) 

MATLAB Intel Core i7 2h 20m 40s 2h 20m 43s 

MATLAB PCT (8thrds) Intel Core i7 1h 32m 36s 1h 32m 39s 

C Intel Xeon W3580 1h 14m 37 1h 14m 43s 

C with OpenMP (4thrds) Intel Xeon W3580 32m 9s 32m 12s 

OpenCL NVIDIA Tesla 2070 1m 7s 1m 31s 

CUDA NVIDIA Tesla 2070 42s 55s 

Memory was an 
issue for AMD GPU! 



Speedups for mouse scan data 

21 

Programming 
Paradigm 

Speedup over 
single threaded 
MATLAB 

Speedup over 
multi-threaded 
MATLAB 

Speedup over 
single threaded 
C 

Speedup over 
multi-threaded C 

MATLAB PCT 1.5x - - - 

C with OpenMP 4x - 2x - 

OpenCL (NVIDIA) 125x 80x 70x 30x 

CUDA 200x 130x 100x 45x 

Comparisons are based on the time taken by Backprojection 



Future Work 

22 

• The next bottleneck- Weighted Filtering. Was not earlier! 
 
• More configurations to be tested with auto-tuning- 
number of kernels to be launched, number of threads. 
 
• Streaming for bigger datasets. 
 
• Overlapping computation and communication. 



Conclusions 

23 

• A faster way to 3D reconstruct cone beam projections in a GPU-
enabled system based on the FDK method.  
• Compatible with Fessler’s image reconstruction tool box. 
• Compared the performance of CUDA and OpenCL, to serial and 
multithreaded C and MATLAB implementations. 

- Tested on two types of hardware platforms: CPU and a 
combination of CPU and GPU, two types of GPUs- NVIDIA and AMD. 

         - CUDA code takes 43 seconds to backproject mouse scan. 
 around 200x faster than the single-threaded implementation 
in MATLAB,  
around 100x faster than the single-threaded implementation 
in C, 
around 45x faster than the multi-threaded implementation C + 
OpenMP. 



24 

This work was supported in part by the National Science 
Foundation Engineering  Research Centers Innovations Program, 
Biomedical Imaging Acceleration Testbench (Award Number EEC-
0946463).  

This work is funded in part by a gift from 
Mathworks. 

We thank Drs. Ralph Weissleder and Sarit 
Sekhar Agasthi, Massachusetts General 
Hospital for providing the mouse scan data. 

Thanks to NUCAR group at Northeastern University 
for letting us use the Medusa cluster. 

Saoni Mukherjee, saoni@coe.neu.edu 
RCL lab, http://www.coe.neu.edu/Research/rcl/index.php 


