Parallel Search of *k*-Nearest Neighbors with Synchronous Operations

Nikos Sismanis¹ Nikos Pitsianis^{1,2} Xiaobai Sun²

¹Dept. ECE Aristotle University, Greece ²Dept. CS Duke University, USA

September 11, 2012

Outline

- 2 Problem Statement
- 3 State-of-the-Art Solutions
- 4 Qualitative Performance Analysis
- 5 Quantitative Performance Analysis: Placing Landmarks
- 6 Multistage Streaming: Planning & Tuning

KNN search: Primitive and Prevalent Operation

Identification of most matching points from a large and high dimensional data space/corpus, according to a well defined distance measure

More applications with increased data acquisition for

- ⊢ machine learning and modeling
- \succ pattern matching and (speech, image) recognition
- ➢ filtering or localization in data analysis & mining

Facilitating various research areas: computer/machine vision, computer-human interaction, computational imaging, geometry, computational statistics

KNN Search for Image Queries

¹D. G. Lowe, Inter. J. Comp. Vis., 2004

²http://www.rocq.inria.fr/imedia/belga-logo.html

Sismanis, Pitsianis & Sun (AUTh & Duke) Parallel Search of *k*NN with Synch Ops

KNN Search for Image Queries

KNN search in SIFT feature space for image corpus & queries ¹

- > Preprocessed feature vectors for corpus images
- \succ Extraction of feature vectors for query images/subimages ²
- > High dimensional feature space (long feature vectors)
- > Similarity score, correlation or distance function over the space
- ⊢ KNN search to locate close matches for further classification

¹D. G. Lowe, Inter. J. Comp. Vis., 2004

²http://www.rocq.inria.fr/imedia/belga-logo.html

Fast KNN Search: Other Applications

The computation of the nearest neighbor for the purpose of feature matching is the most time-consuming part of the complete recognition and localization algorithm.

P. Azad, IROS, 2009

Fast KNN search will expedite

- ▷ Video segmentation M. Cooper, IEEE Trans. Multimedia, 2007
- Collaborative filtering X. Luo et al., Inter. J. Digit. Content Tech. Appl., 2011
- ▷ Image-data retrieval A. Joly and O. Buisson, ACM Multimedia 2009; P. Azad et al., IROS 2009
- ▷ GIS-moving objects in road networks C. Shahabi et al., SIGSPATIAL GIS, 2002
- ▷ Network intrusion detection L. Kuang and M. Zulkernine, ACM SAC, 2008
- ▷ Text categorization S. Manne et al., Inter. J. Comp. Appl., 2011

Outline

- 2 Problem Statement
- 3 State-of-the-Art Solutions
- 4 Qualitative Performance Analysis
- 5 Quantitative Performance Analysis: Placing Landmarks
- 6 Multistage Streaming: Planning & Tuning

The KNN Search Problem

Problem Statement

To each and every query, locate k nearest neighbors, according to a score function, among n corpus data points in a d-dim space

- *d*: the dimensionality of the search space such as the length of the SIFT feature vectors
- n: the number of corpus data points to query from
- q: the number of query points
- k: the number of nearest neighbors to locate for each query

Outline

- 2 Problem Statement
- 3 State-of-the-Art Solutions
- 4 Qualitative Performance Analysis
- 5 Quantitative Performance Analysis: Placing Landmarks
- 6 Multistage Streaming: Planning & Tuning

State-of-the-Art Solutions

Typical solution components

- > Search hierarchy for rapid elimination of far neighbors
 - ≻ Kd-trees ³, Balltrees ⁴, Metric trees ⁵
 - Total # of comparisons : linear in k and sub-linear in global corpus size N, e.g., O(log N)
- ▷ Exact KNN search in a corpus of reduced size *n*
 - \succ linear in k and n
- Approximate KNN search
 - ≻ Locality-sensitive hashing ⁶

Sismanis, Pitsianis & Sun (AUTh & Duke) Parallel

J. L. Bentley, Comm. ACM, 1975
S. Omohundro, Inter. Comp. Sci. Inst., TR, 1989
J. Uhlmann, Info. Proc. Lett., 1991
P. Indyk, 30-th ACM STOC, 1999

Sort-Select-KNN Triangle

- \succ sort-based KNN
- \succ select-based KNN
- mutual connection between sort and select
- devil in algorithm and architecture detail

Inner and Outer KNNs

≻ Outer KNN

- massive corpus data
- quick reduction or decomposition
- exploit data sparsity or clusters with heap data structure and operations

⊢ Inner KNN

- reduced corpus
- utilize hardware architectures
- exploit multiple queries
- exploit relationship between query and corpus data
- fast multi-dimension array operations

State-of-the-Art Solutions

More to be desired

- ▷ Synchronization on SIMD/SIMT processors such as GPUs
- ▷ Response latency for a single query
- ▷ Throughput rate for multiple queries
- Autotuning of performance
- ▷ Benchmarking at different integration scopes

KNN Search on GPUs: some other works

DataSet	Alg	Speedup		Parameter range			
(references)		Х	base	n	d	k	q
kdd-cup ⁷	exact	50	CPU	262,144	65	7	12,000
uci adult ⁸	exact	15	ANN	30,956	123	16	1,605
inria holidays ⁹	exact	64	ANN	65,536	128	20	1,024
nasa images ¹⁰	exact	2	Sort	120,000	254	32	any
recom system ¹¹	exact	160	CPU	80,000	256	100	any
labelme ^{12 13}	aprox.	40	lshkit	100,000	512	500	any

⁷ S. Liang et al., IEEE Symp. Web. Soc., 2010
⁸ Q. Kuang and L. Zhao, ISCSCT, 2009
⁹ V. Garcia et al., ICIP, 2010
¹⁰ R. J. Barientos et al., Euro-Par, 2011
¹¹ K. Kato and T. Hosino, CCGRID, 2010
¹² http://www.labelme.csail.mit.edu
¹³ J. Pan and D. Manocha, GIS, 2011
Sismanis. Pitsianis & Sun (AUTh & Duke)

Outline

- 2 Problem Statement
- 3 State-of-the-Art Solutions
- 4 Qualitative Performance Analysis
- 5 Quantitative Performance Analysis: Placing Landmarks
- 6 Multistage Streaming: Planning & Tuning

Performance Analysis: Qualitative Factors

I. Architecture independent

- ▷ complexity in comparisons
- longest dependency path/depth
- > variation in concurrency breadth

II. Architecture dependent

- effective concurrency breadth and dependency depth
- ▷ data locality: computation-communication ratio
- ▷ synchronization cost on GPUs

How well do we know the architectural impact quantitatively ?

Outline

- 2 Problem Statement
- State-of-the-Art Solutions
- 4 Qualitative Performance Analysis
- Quantitative Performance Analysis: Placing Landmarks
 - 6 Multistage Streaming: Planning & Tuning

Performance Assessment : Quantitative References

Explore the two-ways relationship between SORT and SELECT

\circ SORT \Longrightarrow SELECT

> select or truncate *after* a complete ascending sort

≻ truncated sort :

truncate as early as possible *during* an ascending sort process

as reference landmarks for quantitative performance assessment, or even as competitive candidates

$\circ \; \mathsf{SELECT} \Longleftarrow \mathsf{SORT}$

(omitted from this talk)

Sismanis, Pitsianis & Sun (AUTh & Duke) Parallel Search of *k*NN with Synch Ops

Truncated Sort Algorithms : Brief Summary

Algorithm	Serial	Parallel (length)	Truncation Approach
BubbleSort 14	nk	$k(\log n - \log k + 1)$	k reversal passes
InsertionSort	nk	$k(\log n - \log k + 1)$	length-k array
HeapSort	n log k	$k(\log n - \log k + 1)$	max-heap of size <i>k</i>
MergeSort ¹⁵	n log k	$k(\log n - \log k + 1)$	elimination by "half"
QuickSort ^{12, 16}	nk	$k(\log n - \log k + 1)$	elimination by "half"
RadixSort ^{12, 13}	nlog _r c	log _r c	reverse radix (MSB)
BitonicSort 17	n log² k	log k log n	length-k bitonic

Sismanis, Pitsianis & Sun (AUTh & Duke) Parallel Search of k

NN with Synch Ops Septembe

 ¹⁴ C. E. Leiserson, Carnegie-Mellon Univ. Dep. of Comp. Sci., TR, 1979
¹⁵ D. E. Knuth, The Art of Comp. Prog. 3, Addison-Wesley, 1973
¹⁶ D. M. W. Powers, PACT, 1991
¹⁷ K. E. Batcher, AFIPS, 1968

- higher # pairwise comparisons
- inherently synchronous *free of hashing or branching*
 - high data locality within practical range of k
 - regular structures data access, program

- higher # pairwise comparisons
- inherently synchronous *free of hashing or branching*
 - high data locality within practical range of k
 - regular structures data access, program

- higher # pairwise comparisons
- inherently synchronous *free of hashing or branching*
- high data locality within practical range of k
- regular structures data access, program

- higher # pairwise comparisons
- inherently synchronous *free of hashing or branching*
- high data locality within practical range of k
- regular structures data access, program

- higher # pairwise comparisons
- inherently synchronous *free of hashing or branching*
- high data locality within practical range of k
- regular structures data access, program

- higher # pairwise comparisons
- inherently synchronous free of hashing or branching
- high data locality within practical range of k
- regular structures data access, program

- higher # pairwise comparisons
- inherently synchronous *free of hashing or branching*
- high data locality within practical range of k
- regular structures data access, program

- higher # pairwise comparisons
- inherently synchronous *free of hashing or branching*
- high data locality within practical range of k
- regular structures data access, program

- higher # pairwise comparisons
- inherently synchronous *free of hashing or branching*
- high data locality within practical range of k
- regular structures data access, program

- higher # pairwise comparisons
- inherently synchronous *free of hashing or branching*
- high data locality within practical range of k
- regular structures data access, program

- higher # pairwise comparisons
- inherently synchronous *free of hashing or branching*
- high data locality within practical range of k
- regular structures data access, program

- higher # pairwise comparisons
- inherently synchronous *free of hashing or branching*
- high data locality within practical range of k
- regular structures data access, program

- higher # pairwise comparisons
- inherently synchronous free of hashing or branching
- high data locality within practical range of k
- regular structures data access, program

THRUST::SORT vs Truncated Bitonic Sort

Inclusion of Score Evaluation

Exclusion of Score Evaluation

Truncated Sorting Interleaved with Scoring

Truncated BitonicSort & MGPU RadixSelect ¹⁸

Here, thrust::sort used as a common base for comparison

18 www.moderngpu.com

Sismanis, Pitsianis & Sun (AUTh & Duke) Parallel Search of kNN with Synch Op

Outline

- 2 Problem Statement
- 3 State-of-the-Art Solutions
- 4 Qualitative Performance Analysis
- 5 Quantitative Performance Analysis: Placing Landmarks
- 6 Multistage Streaming: Planning & Tuning

KNN Search in Multistage Streaming on GPUs

- transporting and buffering large corpus data in batches (batch size n)
- merging KNNs between the previous and the current corpus batches
- inclusion of score evaluation and pre/post computation tasks (separated or interleaved)
- multiple queries (as desirable in certain applications)

MultiStage KNN Profile on GPUs: Single Query

Profile in total execution time

- Left bars: Truncate after sorting using thrust::sort in percentile: data transfer dominant when the batch size n is large
- Right bars: Truncated Bitonic normalized against the left bars

KNN Search Profile on GPUs: Multiple Queries

- Left bars: Truncate after sorting using thrust::sort
- Right bars: Truncated Bitonic normalized against the left bars

KNN Search in Multistage Streaming on GPUs

- 16,777,216 vectors of 128 dimensions
- Overlapping data transfer and computations
- Up to ×1.75 speed-up from using only 1 GPU stream

SIFT Feature Matching :

- VLFeat, a CV Library ^a
 - sequential implementation of feature extraction (with SIFT) and KNN search ^b
 - approximate k-NN using tree space partition
- Speed-up over VLFeat
 - 60X with 128 queries
 - $\blacktriangleright~$ 180 \sim 250X with 512 queries

a http://www.vlfeat.org

^bParallel SIFT vector extraction available on GPUs: http://www.cs.unc.edu/ ccwu/siftgpu/

Summary

We have

- > addressed response latency & throughput issues
- explored the SORT-SELECT relationship
- exposed the synchronization cost on GPUs & provided references for quantitative performance assessment (relevant for approximate KNN search as well)
- suggested options and opportunities to better exploit GPUs for rapid KNN search queries
- \triangleright codes and test data available at http://autogpu.ee.auth.gr

NVIDIA academic research equipment support Marie Curie International Reintegration Program, EU National Science Foundation (CCF), USA