
NOT APPROVED FOR PUBLIC RELEASE

Michael Wolf, MIT Lincoln Laboratory

11 September 2012

LLMORE: Mapping and Optimization
Framework

This work is sponsored by Defense Advanced Research Projects Agency (DARPA) under Air
Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations
are those of the author and are not necessarily endorsed by the United States Government.

Distribution Statement A: Approved for public release, distribution is unlimited.
(9/10/2012).

Michael Wolf - 2
MMW 09/11/2012

Overview of Mapping and Optimization Challenges

Challenges:
•  Realistic simulations of applications
•  Support for diverse languages/numerical libraries
•  Support for diverse devices and architectures

Supercomputers
Data warehouses

Small hybrid systems Clusters FPGA Chips A
rc

hi
te

ct
ur

es

A
pp

lic
at

io
ns

 SAR Secure Communication Cyber Database operations

Mapping and Optimization

Michael Wolf - 3
MMW 09/11/2012

•  LLMORE is MIT Lincoln Laboratory’s Mapping and Optimization
Runtime Environment

•  Parallel framework/environment for
–  Optimizing data to processor mapping for parallel applications
–  Simulating and optimizing new (and existing) architectures
–  Generating performance data (runtime, power, etc.)
–  Code generation and execution for target architectures

LLMORE

LLMORE:
multiple language support,
sparse/dense operations,

architecture model, executor,
parallel, robust software

pMapper:
Matlab, dense operations,
simple architecture model,

executor, serial

SMaRT/MORE:
Matlab, sparse operations

(limited data size),
architecture model, no executor, serial

LLMORE SMaRT/MORE pMapper

2012 2004 2006 2011

Three generations of mapping and optimization

pMapper patent issued: “Method and apparatus performing automatic mapping for multiprocessor system”

Michael Wolf - 4
MMW 09/11/2012

Key Features of LLMORE

•  Support for multiple languages and numerical libraries
•  Ability to solve large problems

– Written in C++ and runs in parallel
–  Fit larger problems into memory, reduces time to solution

•  Support for dense and sparse linear algebra operations
•  Production quality research software

– Easy to use interfaces
– Designed to support future algorithms/packages/languages

•  LLMORE is NOT an autoparallelizing compiler
–  Will not generate optimized parallel code for any set of (serial or

parallel) instructions
–  Data layouts optimized in context of maps

Michael Wolf - 5
MMW 09/11/2012

•  Motivation/Overview
•  Design and Usage

–  Usage 1: Map Optimization
–  Usage 2: Performance Evaluation

•  LLMORE and POEM
•  Preliminary POEM Results: 2D FFT
•  Next Steps and Summary

Outline

Michael Wolf - 6
MMW 09/11/2012

LLMORE Framework Overview

LLMORE input
LLMORE output

Architectural	
Model	

LLMORE	
Parameters	

User	 Code	
1. Set	 of	 op=mized	 maps	 	

or	
2.	 Performance	 data	

or	
3.	 Op=mized	 architecture(s)	

or	
4.	 Generated	 code	

or	
5.	 Results	 from	 run	 on	
target	 architecture	 Key/Novel Features

•  Application code to simulator
•  Data mapping optimization for user code
•  Support for multiple languages and libraries
•  Ability to solve large problems
•  Production quality software

LLMORE

Output:
One or more

Michael Wolf - 7
MMW 09/11/2012

LLMORE Design Overview

Core Functionality

Language Interface

Run=me	
Engine	

Code	
Generator	

Machine Interface

LLMORE
Input

LLMORE
Output

LLMORE
Output

Analyzer	 and	 Op=mizer	

Map Converter Parser

Parse	
Manager	

Map	
Manager	

Map	
Builder	

AST	
Builder	

AST = abstract syntax tree

Michael Wolf - 8
MMW 09/11/2012

•  Motivation/Overview
•  Design and Usage

–  Usage 1: Map Optimization
–  Usage 2: Performance Evaluation

•  LLMORE and POEM
•  Preliminary POEM Results: 2D FFT
•  Next Steps and Summary

Outline

Michael Wolf - 9
MMW 09/11/2012

LLMORE Usage 1: Map Optimization

LLMORE optimizes data mapping to improve parallel
performance of key computational kernels

•  LLMORE produces set of optimized maps for parallel variables
specified in user code

•  Matrix-vector product example
–  LLMORE computes map for dense matrix
–  LLMORE computes map for two vectors

= A x y = A x y LLMORE

Michael Wolf - 10
MMW 09/11/2012

Map Optimization: Input

y=Ax

= A x y

Input from application: user code for dense matrix-vector product

Dense Matrix-Vector Product

LLMORE

Optimized
Maps

Analyzer and Optimizer

Mapper

Mapped
AST

Parser User
code

User Code:

AST

Michael Wolf - 11
MMW 09/11/2012

Map Optimization: AST Representation

Parser converts user code into abstract syntax tree (AST),
which is input language/numerical library neutral

SB

MV

PVar: A PVar: x PVar: y

AST

y=Ax

LLMORE

Optimized
Maps

Analyzer and Optimizer

Mapper

Mapped
AST

Parser

AST	
User
code

Dense Matrix-Vector Product

Michael Wolf - 12
MMW 09/11/2012

Map Optimization: Mapping

LLMORE computes map for each parallel variable in AST

SB

MV

PVar: A PVar: x PVar: y

Vector Map
P0: {0,1}
P1: {2,3}

Vector Map
P0: {0,1}
P1: {2,3}

Matrix Map
P0: {0,1}
P1: {2,3}

LLMORE

Optimized
Maps

Analyzer and Optimizer

Mapper

Mapped
AST

Parser

AST	
User
code

Dense Matrix-Vector Product

Michael Wolf - 13
MMW 09/11/2012

Map Optimization: Output

A y x

•  LLMORE output: optimized maps for parallel variables
•  New maps used to redistribute vector and matrix data
•  Optimized matrix-vector product calculated with new data

distributions

A y x

LLMORE

Optimized
Maps

Analyzer and Optimizer

Mapper

Mapped
AST

Parser

AST	
User
code

Optimized y=Ax

= A y x

Dense Matrix-Vector Product

Michael Wolf - 14
MMW 09/11/2012

•  Motivation/Overview
•  Design and Usage

–  Usage 1: Map Optimization
–  Usage 2: Performance Evaluation

•  LLMORE and POEM
•  Preliminary POEM Results: 2D FFT
•  Next Steps and Summary

Outline

Michael Wolf - 15
MMW 09/11/2012

LLMORE Usage 2: Performance Evaluation

LLMORE simulates user code on specified architecture to
produce performance evaluation metrics

= A x y

30
40

50
60

70
80

90 2
3

4
5

6
7

8

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Memory: Static Power(W)

GFLOPs/W Nehalem Model − Dense

Processor: Static Power(W)

Performance data

LLMORE

M2 P1 P2 M1

Michael Wolf - 16
MMW 09/11/2012

Performance Evaluation: Input

y=Ax

= A x y

LLMORE

Performance
Data

Analyzer and Optimizer

Mapper

Mapped
AST

User Code,
Arch. Model

Parser
AST	

Performance
Evaluator

MI Code
Generator

MI code

Simulator

MI = Machine Independent
M2 P1 P2 M1

Dense Matrix-Vector Product

Input from application: user code for dense matrix-vector product,
architecture model

User Code:

Architecture Model:

Michael Wolf - 17
MMW 09/11/2012

Performance Evaluation: AST Representation

y=Ax

LLMORE

Performance
Data

Analyzer and Optimizer

Mapper

Mapped
AST

User Code,
Arch. Model

Parser
AST	

Performance
Evaluator

MI Code
Generator

MI code

Simulator

MI = Machine Independent

SB

MV

PVar: A PVar: x PVar: y

AST

Dense Matrix-Vector Product

Parser converts user code into abstract syntax tree (AST),
which is input language/numerical library neutral

Michael Wolf - 18
MMW 09/11/2012

Performance Evaluation: Mapping

LLMORE computes map for each parallel variable in AST

SB

MV

PVar: A PVar: x PVar: y

Vector Map
P0: {0,1}
P1: {2,3}

Vector Map
P0: {0,1}
P1: {2,3}

Matrix Map
P0: {0,1}
P1: {2,3}

LLMORE

Performance
Data

Analyzer and Optimizer

Mapper

Mapped
AST

User Code,
Arch. Model

Parser
AST	

Performance
Evaluator

MI Code
Generator

MI code

Simulator

MI = Machine Independent

Dense Matrix-Vector Product

Michael Wolf - 19
MMW 09/11/2012

Performance Evaluation: Machine Independent Code

Mapped AST and architecture model used to generate machine independent code

LLMORE

Output

Analyzer and Optimizer

Mapper

Mapped
AST

Input
Parser
AST	

Performance
Evaluator

MI Code
Generator

MI code

Simulator

Mapped
AST

SB

MV

PVar: A PVar: y
Vector Map

P0: {0,1}
P1: {2,3}

PVar: x
Vector Map

P0: {0,1}
P1: {2,3}

Matrix Map
P0: {0,1}
P1: {2,3}

MI Code

read A1,1	
read A0,0	
 read x0	
 read y0	

y0 = A0,0x0	

read A0,1	

y0 += A0,1x1	

write y0	

send x1	
send x0	

read x1	
 read y1	

y1 = A1,1x1	

read A1,0	

y1 += A1,0x0	

write y1	

MI = Machine Independent

M2 P1 P2 M1

Architecture Model

MI Code
Generator

Michael Wolf - 20
MMW 09/11/2012

Machine Independent Code

rows = 2
processors = 2

read A1,1 read A0,0 read x0 read y0

y0 = A0,0x0

read A0,1

y0 += A0,1x1

write y0

send x1 send x0

read x1 read y1

y1 = A1,1x1

read A1,0

y1 += A1,0x0

write y1

Machine independent code for matrix-vector product

P0

P1

Computation

Memory access

Communication

Flow graph of
operations

Michael Wolf - 21
MMW 09/11/2012

Performance Evaluation: Output

Simulation of user code on target architecture

LLMORE

Performance
Data

Analyzer and Optimizer

Mapper

Mapped
AST

Input
Parser
AST	

Performance
Evaluator

MI Code
Generator

MI code

Simulator

MI Code

read A1,1	
read A0,0	
 read x0	
 read y0	

y0 = A0,0x0	

read A0,1	

y0 += A0,1x1	

write y0	

send x1	
send x0	

read x1	
 read y1	

y1 = A1,1x1	

read A1,0	

y1 += A1,0x0	

write y1	

30
40

50
60

70
80

90 2
3

4
5

6
7

8

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Memory: Static Power(W)

GFLOPs/W Nehalem Model − Dense

Processor: Static Power(W)

Performance
Data

Simulator

Michael Wolf - 22
MMW 09/11/2012

•  Motivation/Overview
•  Design and Usage

–  Usage 1: Map Optimization
–  Usage 2: Performance Evaluation

•  LLMORE and POEM
•  Preliminary POEM Results: 2D FFT
•  Next Steps and Summary

Outline

Michael Wolf - 23
MMW 09/11/2012

POEM

Architecture Design Application Analysis

POEM will bridge the gap between innovations in chip-scale photonics and
fielded military-critical systems. It will offer a complete architecture design

and analysis for numerous real-world military-critical applications.

Photonic Innovation

Fielded Systems

P hotonically
O ptimized
E mbedded
M icroprocessor

Handheld DNA
Sequencing Device UAV Surveillance

Ring Resonator
Technology

Photonics Layered
on Silicon

Photonic Switching
Technology

Handheld PDA
Field Devices

Proposed
Photonic
Architectures

Processing Chains for
Military-Critical Applications

Simulation,
Mapping, and
Optimization

Framework

Architecture Parameter
Characterization

Michael Wolf - 24
MMW 09/11/2012

LLMORE’s Role in POEM Program

Architecture Design

LLMORE used to study chip-scale photonics and its impact on
applications

Photonic Innovation

Fielded Systems

Handheld DNA
Sequencing Device UAV Surveillance

Ring Resonator
Technology

Photonics Layered
on Silicon

Photonic Switching
Technology

Handheld PDA
Field Devices

Proposed
Photonic
Architectures

Architecture Parameter
Characterization

Application Analysis

P hotonically
O ptimized
E mbedded
M icroprocessor

Processing Chains for
Military-Critical Applications

Simulation,
Mapping, and
Optimization

Framework

Michael Wolf - 25
MMW 09/11/2012

LLMORE and POEM: Applications

•  LLMORE provides framework for analyzing POEM applications
–  LLMORE supports many key numerical kernels (FFT, sparse

matrix-vector product, vector updates, etc.)
– Applications supported through composition of these kernels
– Easy to extend to analyze new applications

•  Initially analyzing synthetic aperture radar (SAR) application

LLMORE enables the analysis of many applications on many
different architectures (existing and proposed)

SAR Secure Communication Cyber Database operations

LLMORE

Michael Wolf - 26
MMW 09/11/2012

LLMORE and POEM: Architectures

•  LLMORE supports simulation of applications on POEM
architectures (e.g., electronic mesh and photonic bus)

•  Framework for simulating user code
–  LLMORE simulator for understanding big picture trends
–  Interface to third party simulators (e.g., PhoenixSim) for higher

fidelity performance data

LLMORE enables the analysis of many applications on many
different architectures (existing and proposed)

LLMORE

Electronic Mesh

Photonic Bus

Application

Michael Wolf - 27
MMW 09/11/2012

LLMORE and POEM: Optimization of Maps

Optimization of maps
– Good application data to processor mapping crucial to

achieving peak parallel performance on target machines
– Not difficult for SAR applications (simple maps sufficient)
– Challenging for applications with irregular communication

(DNA sequence analysis and sparse matrix computations)

LLMORE provides automatic map optimization

= A x y = A x y LLMORE

Michael Wolf - 28
MMW 09/11/2012

•  Motivation/Overview
•  Design and Usage

–  Usage 1: Map Optimization
–  Usage 2: Performance Evaluation

•  LLMORE and POEM
•  Preliminary POEM Results: 2D FFT
•  Next Steps and Summary

Outline

Michael Wolf - 29
MMW 09/11/2012

LLMORE and Performance Evaluation

LLMORE

LLMORE
output

Analyzer and Optimizer

LLMORE
input

Mapper

Mapped AST

Performance
Evaluator

MI Code
Generator

MI code

Simulator
Performance data:
time (s), GFLOPS

Architectural	
Model	

User	 Code	

LLMORE used to produce performance evaluation data for 2D
FFT, an important kernel in SAR processing chain

Parser

AST

Michael Wolf - 30
MMW 09/11/2012

POEM Architecture Models

LLMORE framework allows direct comparison of electronic
mesh and photonic bus architectures

M2 P1
LM

P2
LM

P3
LM

P11
LM

P10
LM

P9
LM

P7
LM

P6
LM

P5
LM

P4
LM

P8
LM

P12
LM

P13
LM

P14
LM

P15
LM

P16
LM

M1

M3 M4

P1
LM

P2
LM

P3
LM

P11
LM

P10
LM

P9
LM

P7
LM

P6
LM

P5
LM

P4
LM

P8
LM

P12
LM

P13
LM

P14
LM

P15
LM

P16
LM

M1 M2 M3 M4

Electronic Mesh Photonic Bus

•  Two architectures modeled (electronic mesh and photonic bus
•  Processors same, shared memory same
•  Network parameters (latency, bandwidth) set to allow for apple

to apples comparison between networks

P=processor/core
M=Shared memory
LM=local memory

Michael Wolf - 31
MMW 09/11/2012

Preliminary POEM Simulations

Read
FFT
Write

Read
FFT
Write

Read
Transposed Write

Read
FFT

Read
FFT
Write

SCA Write

FFT

CT

FFT

2D FFT: FFT, CT, FFT 2D FFT: FFT, SCA, FFT

FFT

CT

FFT

Architectures simulated: EM Architectures simulated: PB EM=Electronic mesh
PB=Photonic bus
SCA = Synchronous
 coalesced access

1D FFT for each row
of dense matrix

1D FFT for each column
of dense matrix

For data locality
of FFT

•  Initially, simulated 2D FFT kernel
•  Important kernel for SAR applications

Michael Wolf - 32
MMW 09/11/2012

•  Utilizes distance independence to rapidly
re-organize spatially separate data

•  Large gains in efficiency even when
bandwidth is equalized

•  SCA write
–  Synthesizes matrix row-to-column

transpose/write into a single transaction by
interleaving data from spatially separate
data producers

–  Novel ISA construct enabled by a highly
synchronous photonic waveguide

Photonic Synchronous Coalesced
Access Network (PSCAN)

R R

R R

R R

R R

R R

R R

R R

R MI
M1

PSCAN leverages the differences between electronic and photonic
interconnect to achieve large efficiency gains in critical operations

0 0 0 0 1 1
Address info driven by proc 3

0
0

0

0

1
1

Data is not driven

1

DRAM
P-CLK

DRIVE3
DRIVE2

DRIVE1

DRIVE0

time

Credit: Dave Whelihan, MITLL

Michael Wolf - 33
MMW 09/11/2012

Preliminary LLMORE Results

Experiment:
•  Number of memory controllers: 4
•  Matrix size: 4096 x 4096
•  Equalize bandwidth to memory in

photonic and electronic models
•  Run traditional 2D FFT with block

transpose for electronic mesh
•  Run 2D FFT with SCA for PSCAN
•  Scale number of processors

Examine performance of photonics and
electronics in an increasingly work-

starved environment

PSCAN architecture with SCA yields significant speed-up over electronic
mesh architectures using block transpose

4 8 16 32 64 128 256 512 1024 2048 4096
109

1010

1011
Performance of 2D FFT Operation

Number of Cores

G
O

PS

Electronic
PSCAN
Ideal

43% of
Ideal

Michael Wolf - 34
MMW 09/11/2012

Data Reorganization Bottleneck in
Modern Manycore Systems

As the number of cores in modern CMPs
grows, the data reorganization becomes an

increasing performance bottleneck.
Performance is limited by the inability to

keep processors supplied with data.

FFT

CT

FFT

Read
FFT
Write

Read
Transpose
Write

Read
FFT
Write

Block
Transpose

FFT

FFT

CT

SCA

Read
FFT

SCA
Read

FFT
Write

SCA operation performs data reorganization step of 2D FFT more efficiently as
number of processors grows, alleviating traditional block transpose bottleneck

4 8 16 32 64 128 256 512 1024 2048 4096
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Cores

Pe
rc

en
ta

ge

Time Spent Reorganizing Data for 2D FFT

Block Transpose
SCA

D
at

a
R

eo
rg

an
iz

at
io

n

Michael Wolf - 35
MMW 09/11/2012

•  Motivation/Overview
•  Design and Usage

–  Usage 1: Map Optimization
–  Usage 2: Performance Evaluation

•  LLMORE and POEM
•  Preliminary POEM Results: 2D FFT
•  Next Steps and Summary

Outline

Michael Wolf - 36
MMW 09/11/2012

•  Extend architecture model, LLMORE simulator
–  Support memory hierarchy
–  Model network contention more accurately

•  Support for external simulators
–  E.g., PhoenixSim (Columbia), SST (Sandia)
–  Needed for higher fidelity simulations

•  Better power modeling (e.g., dynamic power)
•  Additional parallel numerical library/language support

–  Additional languages: Matlab, Python
–  Additional libraries: e.g., VSIPL++/PVTOL
–  Additional kernels: e.g., Sparse matrix operations

•  Code generator and runtime engine for execution/emulation on
target architectures

LLMORE Next Steps

Michael Wolf - 37
MMW 09/11/2012

•  LLMORE: Parallel framework/environment for
–  Optimizing data to processor mapping for parallel applications
–  Simulating and optimizing new (and existing) architectures

•  LLMORE used to compare photonic and electronic architectures
of interest to POEM project
–  Support for many applications (through composition of kernels)
–  Support for different architectures

•  Preliminary results for 2D FFT kernel
–  Support thesis that photonics can improve performance for these

applications
–  SCA instruction mitigates performance impact of corner turn in 2D

FFT operation

Summary

LLMORE allows for exploration of architecture design
space in context of real application constraints

Michael Wolf - 38
MMW 09/11/2012

•  LLMORE
–  Michelle Beard
–  Anna Klein
–  Sanjeev Mohindra
–  Julie Mullen
–  Eric Robinson
–  Nadya Bliss (Manager)
–  Minna Song (MIT student intern)

•  POEM
–  Dave Whelihan
–  Jeff Hughes
–  Scott Sawyer

Acknowledgements

