
1

CUDA Implementation of an Optimal Online
Gaussian-Signal-in-Gaussian-Noise Detector

Nir Nossenson and Ariel J. Jaffe

Abstract—We address the computationally demanding task of
real time optimal detection of a Gaussian Signal in Gaussian
Noise. The mathematical principles of such a detector were
formulated in 1965, but a full real-time implementation of these
principles was not possible for decades mainly due to techno-
logical barriers. We present a CUDA based implementation of
such an optimal detector and study its decision making speed (or
throughput) as function of target signal duration and signal filter
length. We also compare the throughput results to those of a CPU
based design. We report on detection rates ranging from 3.5 KHz
for a target duration of 10756 samples up to 15.6 KHz for target
duration of 92 samples. The CUDA based detector running on
384 parallel cores had a superior throughput comparing to a
pure CPU implementation when target duration was longer than
600 samples.

Index Terms—Gaussian Signal in Gaussian Noise, Detection,
CUDA, parallel computing, Radar, Sonar, Electrophysiological
Signals.

I. INTRODUCTION

GAussian signal in Gaussian noise is a scientific model
which is used to describe a large number of real world

phenomena, including radar signals [1], sonar signals [2],
neural signals [3], seismological signals [4] and more (see e.g.
Basseville and Nikiforov [4]). In all of the aforementioned
applications, it is often required to construct an automated
detector that could monitor the incoming data and sequentially
decide between the presence and absence of the signal-of-
interest with a minimal number of errors (i.e. an optimal
detector). Often, the incoming signal is acquired at a rate
of several Kilohertz or more, and the detection throughput is
required to meet this speed. An example of a Gaussian signal
in Gaussian Noise and the output the optimal online signal-of-
interest-detector is presented in Figure 1. The implementation
of the optimal detector, and its practical computational limits
are at the focus of this paper.

The mathematical basis for deducing an optimal detection
rule for a Gaussian signal in Gaussian noise was stated in the
pioneering work of Schweppe [5], but the technology at that
time could not support the realization of such a detector due
to lack of computational power. As an illustrative example,
Schweppe developed a simplified implementation supporting
only white Gaussian samples and a target signal that lasts
4 samples. Since then, several works examined detector re-
alizations that could support longer Gaussian target signals

Nir Nossenson is a research associate in the Complex Dynamic Systems
and Control Laboratory at Northeastern University, Boston, MA, USA. e-mail:
nir.nossenson@gmail.com;n.nossenson@neu.edu.

Ariel Jaffe is with the department of mathematics and computer
science at the Weizmann Institute of Science, Rehovot, Israel. e-
mail:ariel.jy@gmail.com;ariel.jaffe@weizmann.ac.il.

Fig. 1: An example of a Gaussian Signal in Gaussian Noise (bottom
signal), together with a clear cut decision of the optimal detector (top
black signal). The second signal from the top is the log likelihood
ratio (LLR) produced by the optimal detector. The clear cut decision
is set on when the LLR is above the dashed threshold line. To watch
the multimedia demonstrating a short part of the online operation,
click on the picture.

but incorporated non-optimal simplifications (see Scharf and
Nolte [6], Therrien [7], Farina and Russo [8], Aloisio et al.
[9], Michels et al. [10], Kulikova [11]). Specifically, these
designs lacked the computationally demanding building block
consisting of many chained Kalman filters which are required
in the general case of long target duration with correlated sig-
nal samples. Recently, Nossenson and Messer [3] presented a
full realization of a Gaussian-Signal-in-Gaussian-Noise detec-
tor which supports optimal detection of a target with correlated
consecutive samples and target duration of several thousands
samples. The detection performance of the latter detector was
tested using artificial and real data [3, 12], and was shown to be
substantially superior at very low probabilities of false alarm.
However, the focus of those studies [3, 12] was detection
quality, and the questions of the required computational power
and decision throughput limit were not discussed.

With the appearance of the CUDA parallel computing
platform [13], several authors (e.g. [14, 15]) explored the suit-
ability of the CUDA platform for realizing detection schemes
suited for other probabilistic signal models. However, for the
problem of a Gaussian target signal in Gaussian noise, the

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

detector_movie_new2.mp4
Media File (video/mp4)

2

feasibility and throughput of a full realization of an optimal
online detector has not been studied before. Thus, it is not
clear whether optimal online detection of a Gaussian target
signal is feasible at realistic target durations and acquisition
rates.

The purpose of this paper is to asses the throughput capa-
bilities of a fully optimal online Gaussian-Signal-in-Gaussian-
Noise detector using the CUDA platform. We present a
detailed CUDA implementation of the optimal Gaussian signal
detector by Nossenson and Messer [3] and test its throughput
limitation. We also compare our results to those achieved by
a design based solely on an Intel 64 CPU.

The rest of this paper is as follows: In Section II we
formulate the problem and present the basic principle of an
optimal online detector. In Section III we describe the structure
and realization of the detector using the CUDA technology.
In Section IV, we shortly describe the method by which we
assessed the throughput results. In Section V we report the
speed performances of our CUDA realization as well as the
speed of the reference CPU based design.

II. PRELIMINARIES: THE GAUSSIAN SIGNAL IN GAUSSIAN
NOISE DETECTION PROBLEM

In the Gaussian signal in Gaussian Noise detection problem,
the observed signal, r[jTs], consists of discrete incoming
samples which are monitored and processed by the detector at
a rate fs = 1/Ts. The observed signal r[jTs], is a Gaussian
random process, i.e. it can have many possible forms, but some
waveform sequences are more probable than others, and the
exact probability of each sequence has a Gaussian bell shape
whose multi-dimensional center and radius are determined by
the mean (a vector) and the covariance matrix. The acquired
signal r[jTs], is further modeled as resulting from the sum of
two Gaussian sources:

r[jTs] = x[jTs] + n[jTs] (1)

The signal n[jTs] is an additive stationary Gaussian noise
with a known covariance matrix, and zero mean. The signal
x[jTs] results from the target of interest. It is also a zero
mean Gaussian signal, but its covariance matrix depends on the
target latest appearance time, ttarget. Had target appearance
times been known, the Gaussian signal r0, r1..., rt would have
a known covariance matrix Σr(t1, t2|ttarget) which reflects
the increased variance that the signal exhibits during target
presence periods (see also Fig. 1). It is also known that
after M samples from its appearance, the target is long gone
and the variance of the observed signal Σr(t1, t1) returns
to its baseline level. The target may reappear again at an
unknown time in the future, and in such case the variance
is expected to rise again. Ideally, the detector should raise the
detection flag for Ns samples starting from target appearance
time, and should not raise the detection flag at all at other
times. However, because of the inherent ambiguity of the
observed signal, such an ideal detection is not possible. The
optimal detector is designed such that the duration of the
detection flag during target presence is as close as possible
to Ns for any given average-number of false assertions of the

detection flag. The basic principle of the optimal Gaussian-
Signal-in-Gaussian-Noise detector is to sequentially calculate
the probabilities of many hypotheses regarding the offset of the
target signal given past to present observations, {P1(ttarget =
now|r0...rt), P2(ttarget = t − Ts|r0...rt), ..., PM (ttarget =
M samples ago or more|r0...rt)}. The first hypothesis corre-
sponds to target imminent appearance (ttarget = t = now).
The second hypothesis corresponds to the appearance of the
target Ts seconds ago, and so forth. The last hypothesis is
the M th hypothesis which assumes that the target appeared
M · Ts or more seconds ago. The detection flag is raised by
the detector if the sum of probabilities corresponding to target
presence is larger than the sum of probabilities corresponding
to target absence, times some constant threshold value.

To calculate the probabilities {P1(ttarget = now|r0...rt),...,
PM (ttarget = M samples ago or more|r0...rt)}, we make use
of algorithms by Kalman [16] and Schweppe [5], which facil-
itate sequential updating of these probabilities based on their
current values and the recent incoming sample. The sequential
updating procedure requires to first present the covariance
matrices of the signals x[jTs] and n[jTs] in terms of auxiliary
and a-priori known constant matrices and vectors of finite size:
A, {Σr,1|M ,Σr,2|1, ...,Σr,M |M−1}, and {K1,K2, ...KM}. A
brief description regarding the sizes and the meaning of these
auxiliary vectors and matrices is given in Table I. Throughout
the paper we assume these quantities are already known1.

TABLE I: Summary of the problem variables and parameters.

Name Description

r[jTs]
The incoming data sample at time t = jTs. The
signal r streams in constantly and may include
several target appearance events.

Ts

The time interval between consecutive samples. The
incoming data rate is the inverse of this number:
fs = 1/Ts.

M

The total number of samples from target appearance
until it is long gone. M is also the total number of
offset hypotheses. After its disappearance, the target
may re-appear at an unknown time.

Ns

The duration of an ideal detection flag assertion
from target appearance, given in number of sam-
ples.

A
A constant matrix of size 2 · Q × 2 · Q which
contains the autoregressive terms of the state space
representation of the processes x[jTs] and n[jTs].

K1...KM
M constant vectors (Kalman gain vectors) each of
size 2 ·Q× 1.

Σr,1|0,
Σr,2|1,...
Σr,M|M−1

M constant scalars, each representing the variance
of the next sample given all past-to-present data but
under a different target appearance time hypothesis.
The design includes logarithmic and inverse ver-
sions of these values.

Q

The number of recursion equations required to
accurately describe the target signal process and the
independent noise process (the dimension of the so
called "space state"). The total size of the space
state matrix A is therefore 2Q× 2Q.

1An example for constructing space state matrices for Gaussian neural
signals exists in Nossenson and Messer [3].

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

3

III. DETECTOR STRUCTURE AND ITS REALIZATION

A. Operation Overview and General Architecture

As illustrated in Fig. 2, the detector implementation pre-
sented in this paper is based on a system that includes a
host-CPU (central processing unit), together with a CUDA-
GPU card [13] that is controlled by the CPU. The key idea
of the design is the use of a GPU based parallel computation
to calculate the probabilities of many hypotheses regarding
target appearance time, as illustrated by text box 2 in Fig. 2.
The CPU then uses these probabilities to produce a clear cut
decision regarding target presence.

Fig. 2: Detector high level implementation

The detection process is performed online, ideally, at the
rate of which the data enters the system. On the entry of
every new data sample, a detection cycle begins, and the CPU
sends the incoming data sample along with kernel activation
commands to initiate the calculations of the hypotheses proba-
bilities. The activation process by the CPU, and the calculation
of the probabilities by the GPU are marked in Fig. 2 by text
boxes 1 and 2, respectively. In the third step, the CPU reads the
resulting probabilities. In the fourth and last step, the CPU uses
the hypotheses probabilities to generate the log-likelihood ratio
(LLR) as well as a hard decision regarding target’ presence.
The CPU has an additional role of calculating the probabilities
of two target-offset-hypotheses that are not calculated by the
GPU. The results of these calculations by the CPU are partly
reflected in Fig. 2 by text box 0, and will be addressed in more
depth in the next sections. Steps 0-4 are executed repeatedly,
in the order implied by the text box number, as long as the
data flows in.

Figure 3 depicts a more detailed block diagram of the
design. The dotted green blocks are segments executed by the
CPU, whereas the blue blocks are executed by the GPU using
parallel computations. The core element of the design depicted
in Fig. 3 is the CUDA kernel labeled as GPU kernel-1 which
calculates the probabilities of many hypotheses regarding the
target temporal offset given past-to-present observations. The

number of parallel hypotheses (threads) is M − 2 and it
depends on the number of possible temporal offsets that the
target may have. This kernel is described in more detail
in Section III-B. The remaining elements are calculated by
the CPU and are marked in Fig. 3 in dotted green. These
computations mainly concern : a) The summation of M
hypotheses probabilities into two probabilities corresponding
to target presence and absence, and b) The generation of
the likelihood ratio and a clear cut decision regarding target
presence. These CPU operations are explained in more detail
in Section III-C.

Fig. 3: Detector detailed implementation

B. GPU Kernel 1: Parallel Computation of Hypotheses Prob-
abilities

As shown in Fig. 3, GPU Kernel 1 is the code portion
which produces the probabilities of the various hypotheses
regarding the temporal offset of the target signal. The same
GPU kernel is executed by M-2 threads, where M is the
number of different hypotheses regarding the temporal offset
of the target. The threads execute the same routine but the
parameters and memory used by each thread are different.
Technically, the retrieval of the different memory segments
is achieved by adding an address offset to the memory read
by each kernel, based on the thread identity number. Given
the most recent observation, r(t), the kernel produces the set
{exp_d2, ..., exp_dM−1} which are normalized probabilities,
each corresponding to the hypothesis that the target appeared k
samples ago given past to present observations {r(0), ..., r(t)}.

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

4

To produce {exp_d2, ..., exp_dM−1}, each thread preforms
the algorithm [3, 5] given by equations (2)-(7):

r̂in,k = zk|k−1{1}︸ ︷︷ ︸
The first
elelemt of
the vector

zk|k−1

+ zk|k−1{Q+1}︸ ︷︷ ︸
The Q+1
element of
the vector

zk|k−1

(2)

zk|k =zk|k−1 +Kk · (r[t]− r̂in,k) (3)

zk+1|k =A · zk|k (4)

qk[j] =
1

2

[
− log{2π

∣∣Σr,k|k−1
∣∣︸ ︷︷ ︸

see Table 1

−
(
r̂in,k − rin) · Σ−1r,k|k−1︸ ︷︷ ︸

see Table 1

[j∆t] · (r̂in,k − rin)
]

(5)

dk[j] =dk−1[j − 1] + qk[j]− LX [j] (6)
exp_dk[j] =exp(dk[j]− norm_factor) (7)

where:

• k is the offset hypothesis index (k ∈ [2, ..,M−1]) which
is determined by the GPU thread and block id numbers
(tid and bid, respectively):

k = threads_per_block ∗ bid+ tid+ filter_base_idx
(8)

For example, k = 3 refers to the hypothesis that the target
appeared 3 samples ago.

• A, Kk, Σr,k|k−1 consist of a-priori known constants. See
Table I for details on their dimensions and meaning.

• zk|k−1 are internal state vectors that are kept in the GPU
memory and are updated every sample. Their current
value is used for producing exp_dk[j]. There are M such
internal vectors, each of size 2Q× 1.

• dk[j] are also internal state variables. Each of them holds
a logarithmic version of the normalized probability to be
in a certain temporal offset from target appearance time.
Thus, exp(dk[j]) is a normalized probability.

• LX [j] is an identical input to all the threads in the kernel.
It is a normalization quantity which is produced by the
CPU every clock cycle as shall be explained by eq. (9)
in Section III-C.

The mathematical derivation of equations (2)-(5) and (6)-
(7) was given in [5] and [3], respectively. Here we briefly
emphasize three underlying conceptual ideas. The first concept
is the propagation of the vectors in time zk|k−1 → zk+1|k
and dk → dk+1 as described in equations (3)-(4) and (6)
(see also the arrows in Fig. 3) . This propagation takes place
because the hypothesis that the target appeared k samples
ago at the moment j, corresponds to the hypothesis that
the target appeared k + 1 samples ago at the next sample
(j + 1). The second concept incorporated in equations (2)-(5)
is the Kalman procedure [5, 16] which allows to isolate the
innovative information in the most recent incoming data r(t),
and to produce qk[j∆t] which is the probability of the latest
data r(t) to support the assumed offset hypothesis. The last
concept is the Bayes rule which is incorporated in eq. (6) that
combines the probability of the recent data (qk[j∆t]) together

with the information from prior samples (the dk register) to
generate the probability of a specific target offset hypothesis
given all past-to-present-data.

GPU Memory Organization I: The registers zk|k−1 and dk
(k = 1...M−1) are stored in the GPU device memory and are
read and written by different threads of Kernel 1. To guarantee
that the correct register content is read before a new value is
overwritten, the design maintains in the GPU memory two
copies of these array variables at all times. On the arrival of
the first data sample, all the threads read from copy ’A’ of
the memory, and write to copy ’B’. On the arrival of the next
sample, the read and write direction are reversed. This process
continues as long as the data streams in.

GPU Memory Organization II: Another note-worthy point
concerns the order by which the vectors Kk and zk+1|k of
equations (2)-(5) are stored in the memory. The algebraic
vector-times-scalar multiplication in eq. (3) and the matrix-
times-vector operation in eq. (4) are performed row after
row (row=1, 2, ..., 2 ·Q), where ideally, all the threads should
execute simultaneously the same multiplication only under
different hypothesis (k = 2, 3, ..M − 1). To minimize the
stalls due to memory access, the vectors K2,K3, ...,KM−1
are stored in the memory such that after the first term of the
vector K2 comes the first term of the vector K3 (and not
the second term of K2). The second term of the vector K2

is stored after the first term of the last vector, KM−1. This
memory organization minimizes thread stalls as it makes use
of the full bandwidth of the GPU memory access bus such
that several threads are serviced in a single read.

C. CPU Role: Generation of the Likelihood Ratio, Clear Cut
Decision Making and Calculation of First and Last Hypothe-
ses.

In this section we describe in more depth the roles of
the CPU in performing the detection algorithm. Other than
managing the GPU, the CPU main tasks are to sum the
hypotheses probabilities corresponding to target presence and
absence, calculate the ratio between them (the LLR) and
eventually reach a clear cut decision regarding target presence
by comparing the LLR to a threshold. The CPU also calculates
elements associated with the first and last hypotheses since the
algorithm of these two cases differ from the remaining M-2
hypotheses. We describe each of these calculations in more
detail next:

1) Kalman Filter #M, and the calculation of LX : As
oppose to the M − 2 other hypotheses, the probabilities of
the first (#1) and last (#M) hypotheses are calculated by
the CPU and not on the GPU. The last Kalman filter is
different since its internal state is fed back, as oppose to the
state propagation which is performed by the M-2 filters of
GPU kernel 1 (see Fig. 3). Furthermore, the probability of
the last offset hypothesis is always normalized to one, and
this normalization factor LX , is also used for normalizing
all the other hypotheses-probabilities. For this reason, the
CPU executes a dedicated Kalman recursion (eq. (2)-(5)) for
the last Kalman filter before launching GPU-Kernel-1. This
calculation produces qM [j] and also an updated Kalman state

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

5

vector for the next sample, zM |M−1[j + 1] . Using qM [j], the
CPU generates an input to GPU kernel 1 designated as LX :

LX [t] = qM [j] + log{1− α+ exp(dM−1[j − 1]} (9)

where, α = 10−9 is a suitable value for detection under large
a-priori uncertainty regarding target re-appearance time.

2) Kalman Filter #1 and the calculation of the first Hy-
pothesis Register, d1: The CPU calculates the value of the
first hypothesis register in two stages. First, a dedicated CPU
Kalman recursion (equations (2)-(5)) uses the recent data r(t)
and the state vector z1|0 to produce new values of q1 and z2|1.
Then, the value of the first hypothesis register is calculated as
follows:

d1[j] = log(α) + q1[j]− LX [j] (10)

Comparing to the other Kalman filters, the first Kalman filter
has a unique wiring of its input and output state vectors: The
input state vector of this filter is z1|0 and it originates from
the output of the last Kalman filter (zM |M−1[j − 1]) which
was calculated in the previous data sampling point. The state
vector going out of the first Kalman filter (z2|1) is copied to
the GPU memory. This copied value will be used by the first
GPU thread upon the arrival of the next signal sample r[j+1].
This unique wiring is also illustrated in Fig. 3.

3) Probabilities Summation : Upon the completion of GPU
kernel 1, the CPU sums the probabilities associated with
target presence and absences into the quantities S1 and S2,
respectively:

S1 = target presence sum =

Ns∑
k=2

exp_dk (11)

S2 = target absence sum =
M−1∑

k=Ns+1

exp_dk (12)

4) Generation of the normalization factor : To avoid out
of range numerical errors, the exp_dk registers produced by
the GPU, are normalized by the same number, norm_factor
every cycle (see eq. (7) and the top right side of Fig. 3). This
normalization factor is generated by the CPU as follows:

norm_factor[j + 1] = norm_factor[j]+ (13)

log
(
max{exp_d1[j], S1[j], S2[j]}

)
+

−20.0︸ ︷︷ ︸
to obtain precision for numbers lower than the maximum probability.

(14)

5) Calculation of the Log-Likelihood-Ratio: Following the
calculation of the sums S1 , S2 and exp_d1 , the CPU
calculates the Log-Likelihood-Ratio which is the logarithm of
the ratio between 1) S1 augmented by the first normalized
hypothesis probability, and 2) S2 augmented by the last
normalized hypothesis probability:

LLR[j] =log
(
S1[j] + exp_d1

)
− log

(
exp(−norm_factor[j]) + S2[j]

)
(15)

6) Comparison of the likelihood ratio to a threshold : A
clear cut decision regarding target presence is achieved by
comparing the log likelihood ratio to a threshold. The value
of the threshold depends on the desired prevalence of false
alarms.

IV. MEASUREMENT METHODS

The CUDA detector design and a full CPU implementation
which served as a reference were both tested on a Lenovo
W540BG machine. Briefly, the computer included an Intel
Core i7-4700MQ CPU running at speed of up to 3.40 GHz
(2.4GHz minimal speed) with 4 physical cores and 8 logical
cores. The GPU was NVIDIA Quadro K1100M running at 706
MHz with 2x192 cores capable of running 2x1024 threads.
The computer display was handled by an additional Intel HD
graphics card that served only for that purpose. The operating
system was Windows-7-Ultimate. To calculate the CUDA
computation time, we used the built-in measurement time
utilities cudaEventRecord(start/stop) and averaged the results
over 100,000 samples of input data. No other applications
were ran during measurement time and the computer network
connections were disabled. The pure CPU design used for
comparison included the same computational building blocks
of the CUDA based design (see Fig. 3), but was compiled to
run solely on the CPU using MATLAB compiler. The duration
of the calculation per sample was printed to a file by the
compiled program and was averaged at the post-processing
stage.

V. RESULTS

M 92 364 1018 5378 10756
with GPU (µs) 124 132 143 191 278
Just CPU (µs) 64 100 193 724 1284

Fig. 4: Comparison of calculation time per incoming sample as
function of the number of filters M (target duration and the number
of offset hypotheses). The blue line is the GPU+CPU design, and
the green dotted line is the design based solely on the CPU. A lower
value corresponds to a faster calculation time. Filter length in all
cases was four taps (Q=4).

Computation time per sample: Figure 4 depicts the required
computation time per incoming sample as function of M

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

6

(the number of offset hypotheses that the target may have).
The blue line reflects the computation time of the CUDA
based design, whereas the green dotted line represents the
design based solely on the CPU. The exact durations are
also tabulated below the graph. The figure shows that for
both implementations, the calculation time increases with
the number of offset hypotheses in an approximately linear
fashion, but with different slopes and offsets. At the lowest
number of hypotheses (M = 92), the pure CPU is faster and
completes the calculation in 64µs compared to 124µs that are
required for the CUDA based design. At the largest number
of offset hypotheses (M = 10756), the CUDA based design is
more than ×4.5 faster and completes the calculation in 278µs
compared to 1284µs that are required for the pure CPU design.
Note that for an online detection, the maximum possible
incoming data rate is the inverse of the calculation time per
sample. Thus, our results indicate that the maximum incoming
data rates for online detection at M = 92 and M = 10756 are
15625 Hz and 3597 Hz, respectively. These results suggest that
recent technological advancements facilitate optimal online
detection of Gaussian signals at acquisition rates of several
kilohertz and target durations lasting for several seconds. The
results also suggest that the combined CPU+GPU CUDA
design is much faster when the number of hypotheses are at
the order of thousand hypotheses or more, but slower when
the number of hypotheses is lower than about six hundred.

GPU utilization and bottlenecks: Table II informs on the
execution times and efficiency of GPU-Kernel-1 as function of
the number of target offset hypotheses which are listed on the
first row. The second row of the table lists the kernel initiation
and execution times in each case. Note that the execution time
is almost the same in the first three columns. This happens
because in the first three cases, all the hypotheses probabilities
are calculated simultaneously by (M-2) threads (see the third
row of Table II) since the number of hypotheses is much
lower than the theoretical 2048 simultaneous thread limit of
the hardware. The low number of threads in these three cases
also leads to the low issue efficiency shown in the fourth row of
Table II. In the last two columns, the number of hypotheses is
higher than the number of hardware threads. In these cases, the
execution time increases with the number of hypotheses since
only 1536 threads are executed simultaneously. It is worth
noting that the maximum number of simultaneously running
threads (1536) was lower than the theoretical bound (2048) and
was limited by the GPU local memory size and the fact that
each thread used 35 registers. When the number of hypotheses
is high (last two columns), the issue efficiency stands on
46% − 47%. We found that the issue efficiency bottleneck
consisted mainly of memory accesses to the z, and K arrays
which took two clock cycles each. This led to a pipeline stall
every other cycle. We note that this was the minimal number
of stalls achieved after optimizing the memory organization as
described in Section III-B.

Space state size effect: Table III shows the effect of increas-
ing, Q, which determines the size of the matrices and vectors
handled by each thread. The calculation time increases linearly
in Q for both designs. This happens because the Q dimension
is iterated serially is both designs, as oppose to the hypotheses

TABLE II: GPU Kernel 1 computation time, and resource
utilization as function of number of hypotheses M − 2.

M-2 90 362 1016 5376 10754
Kernel
initiation+duration
(µs)

18 +
25

18 +
26

18 +
28

18 +
75

18 +
148

Simultaneously
running threads

90 362 1016 1536 1536

Issue efficiency 6.6% 9.7% 24% 46% 47%

dimension (M) which is computed in parallel by the GPU.

TABLE III: Calculation time per incoming sample as function
of the space state dimension Q, while M = 5378 is fixed.

Q 4 6 10
CPU+GPU (µs) 191 225 297
Just CPU (µs) 724 798 1396

VI. SUMMARY AND CONCLUSIONS

The purpose of this study was to test whether optimal
online Gaussian signal in Gaussian noise is feasible at realis-
tic throughput of several Kilohertz, using CUDA and Intel
CPU technologies. We have found that both the combined
CPU+GPU based design and the pure CPU based design
support such online detection rates. The stand alone CPU
design was faster for short target signal durations, up to about
600 samples. The combined GPU+CPU design was up to x4.5
faster at longer signal durations. The maximum detection rates
achieved were 3500 Hz - 15625 Hz at target durations of 10756
and 92 samples, respectively.

REFERENCES

[1] J. Marcum, “A statistical theory of target detection by
pulsed radar,” Information Theory, IRE Transactions on,
vol. 6, no. 2, pp. 59–267, 1960.

[2] G. Carter, “Time delay estimation for passive sonar signal
processing,” Acoustics, Speech and Signal Processing,
IEEE Transactions on, vol. 29, no. 3, pp. 463–470, 1981.

[3] N. Nossenson and H. Messer, “Optimal sequential detec-
tion of stimuli from multiunit recordings taken in densely
populated brain regions,” Neural computation, vol. 24,
no. 4, pp. 895–938, 2012.

[4] M. Basseville and I. Nikiforov, Detection of abrupt
changes: theory and application. Citeseer, 1993, vol. 10.

[5] F. Schweppe, “Evaluation of likelihood functions for
Gaussian signals,” IEEE transactions on Information
Theory, vol. 11, no. 1, pp. 61–70, 1965.

[6] L. L. Scharf and L. W. Nolte, “Likelihood ratios for
sequential hypothesis testing on markov sequences,” In-
formation Theory, IEEE Transactions on, vol. 23, no. 1,
pp. 101–109, 1977.

[7] C. W. Therrien, “A sequential approach to target dis-
crimination,” Aerospace and Electronic Systems, IEEE
Transactions on, no. 3, pp. 433–440, 1978.

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

7

[8] A. Farina and A. Russo, “Radar detection of correlated
targets in clutter,” Aerospace and Electronic Systems,
IEEE Transactions on, no. 5, pp. 513–532, 1986.

[9] V. Aloisio, A. Di Vito, and G. Galati, “Optimum de-
tection of moderately fluctuating radar targets,” IEE
Proceedings-Radar, Sonar and Navigation, vol. 141,
no. 3, pp. 164–170, 1994.

[10] J. Michels, P. Varshney, and D. Weiner, “Multichannel
signal detection involving temporal and cross-channel
correlation,” Aerospace and Electronic Systems, IEEE
Transactions on, vol. 31, no. 3, pp. 866–880, 1995.

[11] M. V. Kulikova, “Likelihood gradient evaluation using
square-root covariance filters,” Automatic Control, IEEE
Transactions on, vol. 54, no. 3, pp. 646–651, 2009.

[12] N. Nossenson, A. Magal, and H. Messer, “Detection of
stimuli from multi-neuron activity: Empirical study and
theoretical implications,” Neurocomputing, vol. 174, pp.
822–837, 2016.

[13] N. Corporation. (2013) Cuda c programming guide
v5. 5. [Online]. Available: https://developer.nvidia.com/
cuda-toolkit-archive

[14] N. Kumar, S. Satoor, and I. Buck, “Fast parallel expecta-
tion maximization for gaussian mixture models on gpus
using cuda,” in High Performance Computing and Com-
munications, 2009. HPCC’09. 11th IEEE International
Conference on. IEEE, 2009, pp. 103–109.

[15] A. Herout, R. Jošth, R. Juránek, J. Havel, M. Hradiš, and
P. Zemčík, “Real-time object detection on cuda,” Journal
of Real-Time Image Processing, vol. 6, no. 3, pp. 159–
170, 2011.

[16] R. E. Kalman, “A new approach to linear filtering and
prediction problems,” Journal of Fluids Engineering,
vol. 82, no. 1, pp. 35–45, 1960.

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

