
An efficient parallel implementation of 3D-FFT on
GPU

Selcuk Keskin1, Ertunc Erdil2 and Taskin Kocak1
1Department of Computer Engineering, Bahcesehir University, Istanbul 34353, Turkey

2Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
Email: {selcuk.keskin,taskin.kocak}@eng.bau.edu.tr, ertuncerdil@sabanciuniv.edu

Abstract—Three-dimensional fast Fourier transform (3D-FFT)
is a very data and compute intensive kernel encountered in many
applications. In order to meet the very high throughput re-
quirements, dedicated application specific integrated circuit and
field programmable gate array solutions for FFT computation
are proposed in recent years. However, these solutions have a
long development cycle, high design cost and fixed functionality.
Conversely, software solutions are less expensive, scalable, and
flexible and have shorter development cycle. In this paper, we
propose an 3D-FFT algorithm on GPU. We demonstrated the
performance of the proposed approach on artificially generated
3D images with various sizes. Experimental results show that the
proposed GPU-based 3D-FFT implementation achieves up to 486
GFlops with memory and algorithmic optimizations.

I. INTRODUCTION

Fast Fourier Transform (FFT) is a well-known algorithm
that have made a huge impact in various fields of science
and engineering such as digital and wireless communications,
broadcast systems, image, audio, and video processing, digital
signal processing. The algorithm provides a fast implemen-
tation for the Discrete Fourier Transform (DFT) with low
complexity O(nlogn) whereas that of the DFT is O(n2).
Due to the time complexity of DFT, it becomes inefficient
in the applications that need real time processing for high
dimensional data sets.

Image processing and computer vision are two of the
research areas where 3D-FTT has been most commonly used.
Some applications of these fields include image denoising,
texture segmentation and image reconstruction. Dabov et
al. [1] propose a denoising approach that enhances each sparse
representation of a 3D image using Fourier domain. Also, a
non-exhaustive survey of image denoising literature includes
various Fourier domain algorithms [2]. Matej et al. propose
an FFT-based iterative approach for image reconstruction [3].
FFT have also been exploited for image segmentation since it
has nice properties to extract textural information from images.
One of the pioneering FFT-based texture segmentation method
was proposed in [4].

Graphics Processing Units (GPUs) have become one of
the most popular platform for high performance comput-
ing. GPUs provide parallel architecture, which combines raw
computation power with programmability [5]. By executing
thousands of threads simultaneously and much larger band-
width, GPUs have become an important platform to imple-
ment high performance FFT. The only public FFT library on

GPU is cuFFT provided by NVIDIA which supports multi-
dimensional transforms of complex single precision data and
1D batched execution [6]. In this paper, we propose an 3D-
FFT implementation that runs on GPU with support of high-
throughput requirement. In order to test the performance of our
3D-FFT, we artificially generate 3D images with various sizes.
Our experimental results demonstrate the efficiency of the
proposed approach over the existing 3D-FFT implementations.

II. 3D-FFT ARCHITECTURE

FFT is an efficient way of computing DFT for a set of
signals. DFT converts a finite sequence of samples from time
or space domain to frequency domain and vice versa. The
forward transform is expressed as:

Xk =
N−1∑
n=0

xne
− 2πi

N nk k = 0, ..., N − 1 (1)

where N is the input length, n is spatial index and k is the
frequency index.

The efficient algorithm proposed by Cooley and Tukey in
1965 for computing DFT was a major turning point in the
development of digital signal processing [7]. The FFT butterfly
operation which is the basic calculation element in the FFT
process takes two complex points and converts them into two
other complex points. In the case of the 2-point (radix-2)
Cooley-Tukey algorithm, the butterfly is simply a DFT of
size-2 that takes two complex inputs (x0, x1) and gives two
complex outputs (y0, y1) by using Eq. 2. The twiddle factors
in FFT algorithms are trigonometric coefficients that multiplies
the data [8].

y0 = x0 + x1w
k

y1 = x0 − x1wk (2)

where the twiddle factor, wk, is given as:

wk = e−
2πi
N nk = cos(

2π

N
nk)− isin(2π

N
nk) (3)

There are two different decomposition strategies for parallel
3D-FFT computation [9]. The 1D or slab decomposition is the
easiest and the most common decomposition technique used
in existing parallel FFT libraries [10]. The 3D input data are
decomposed along one axis into slabs. 3D-FFT consists of
1D-FFTs for each XYZ dimensions.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

Fig. 1 illustrates the steps of 3D-FFT computation strategy:
(a) 1D-FFT along x dimension, (b) 1D-FFT along y dimension,
and (c) 1D-FFT along z dimension.

x

y
z

x

y
z

x

z
y

(a) (b) (c)

Fig. 1: Illustration of the steps involved in the 3D-FFT
computation

III. GPGPU BASED PARALLEL 3D-FFT ALGORITHM
DESIGN

A. GPGPU Architecture

GPU provides extremely high computational throughput
by employing many cores working on a large set of data
in parallel. Compute Unified Device Architecture (CUDA),
developed by NVIDIA, is a widely used programming ap-
proach in massively parallel computing applications [11].
CUDA C provides a simple path for users familiar with the C
programming language to easily write programs to be executed
by device. CUDA C extends C by allowing the programmer to
define C functions, called kernels that are executed N times
in parallel by N different CUDA threads, unlike the regular
C functions.

The NVIDIA GPU architectures consist of multiple stream
multiprocessors (SM) which consist of pipelined cores and
instruction dispatch units. During execution, each dispatch unit
can issue a numerous wide single instruction multiple data
(SIMD) instruction, which is executed on a group of cores.
Although, CUDA provides the possibility to unleash GPU’s
computational power, several restrictions prevent programmers
from achieving peak performance.

Pascal is NVIDIA’s latest architecture for CUDA compute
applications. Pascal retains and extends the same CUDA pro-
gramming model provided by previous NVIDIA architectures
such as Kepler and Maxwell. Like Maxwell, each GP102 SM
provides four warp schedulers managing a total of 128 single-
precision (FP32) and four double-precision (FP64) cores. A
Pascal GP102 in TITAN X, used in this paper, implementation
includes 28 SM units and six 64-bit memory controllers. The
SM processing core architecture of TITAN X can be seen in
Fig. 2. The six SMs are grouped into a Graphics Processing
Cluster (GPC) which has one Raster Engine.

Compared to previous chip architectures Kepler and
Maxwell, the SMs memory hierarchy has also changed. Rather
than implementing a combined shared memory/L1 cache block
as in Kepler SMX, Pascal SM units feature a 96 KB dedicated
shared memory, while the L1 caching function has been moved
to be shared with the texture caching function. Global memory
of GPU is an off-chip memory. Whole SM can access the
global memory, but access time is the slowest.

SM

Core LD/ST SFU

Dispatch U. Dispatch U.

Warp Scheduler

Instruction Cache

96KB Shared Memory

Texture / L1 Cache

Tex

Register File (16,384 x 32-bit)

Instruction Buffer

Core Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core

Tex

Core LD/ST SFU

Dispatch U. Dispatch U.

Warp Scheduler

Register File (16,384 x 32-bit)

Instruction Buffer

Core Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core

Tex Tex

Core LD/ST SFU

Dispatch U. Dispatch U.

Warp Scheduler

Texture / L1 Cache

Tex

Register File (16,384 x 32-bit)

Instruction Buffer

Core Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core

Tex

Core LD/ST SFU

Dispatch U. Dispatch U.

Warp Scheduler

Register File (16,384 x 32-bit)

Instruction Buffer

Core Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core

Tex Tex

Fig. 2: Pascal GP102 Streaming Multiprocessor

B. Implementation of 3D-FFT computation on GPU

In the GPGPU based parallel computing, hardware archi-
tecture is very important while designing FFT computation
algorithm to achieve the peak performance. Major key points
in the algorithm design include calculation of twiddle factors,
number of stages in FFT computation, batch size of the
number of FFTs that will be computed in parallel, the memory
architecture that keeps the intermediate values during the
computation and the size of these values.

Coalesced global memory access has crucial importance
for memory-bound applications on GPU. As stated in [12],
a higher throughput can be achieved by ordering the data
to guarantee coalesced 64bit or 128bit reads. To improve the
performance of 3D-FFT, the 3D input array is represented as
an 1D array of type float2 that combines two floating point
numbers for real and complex parts in one structure. When
the inputs of 3D-FFT are real numbers, the complex part of
input array is set as zero.

An N -point 1D-FFT process can be performed as a logN -
stage computation module, where an 2-point 1D-FFT is cal-
culated in each stage. To achieve the size of N , we use N/2
independent threads in GPU. In most cases, computing twiddle
factors using sinf(x) and cosf(x) CUDA math library
functions is faster than reading precalculated values from any
memory location. So that, twiddle factors are computed on
the fly in butterfly operation. The threads are communicated
with each other over the shared memory. After the butterfly
operation, each thread writes 2 complex values to the shared

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

0 real imag

1 real imag

2 real imag

3 real imag

4 real imag

5 real imag

6 real imag

7 real imag

𝐴0

𝐵0

𝐴1

𝐵1

𝐴2

𝐵2

𝐴3

𝐵3

+

∗ 𝑤𝑘 -

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

+

∗ 𝑤𝑘 -

+

∗ 𝑤𝑘 -

+

∗ 𝑤𝑘 -

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

𝐴0

𝐵0

𝐴1

𝐵1

𝐴2

𝐵2

𝐴3

𝐵3

+

∗ 𝑤𝑘 -

+

∗ 𝑤𝑘 -

+

∗ 𝑤𝑘 -

+

∗ 𝑤𝑘 -

𝐴0

𝐵0

𝐴1

𝐵1

𝐴2

𝐵2

𝐴3

𝐵3

+

∗ 𝑤𝑘 -

+

∗ 𝑤𝑘 -

+

∗ 𝑤𝑘 -

+

∗ 𝑤𝑘 -

real imag 0

real imag 1

real imag 2

real imag 3

real imag 4

real imag 5

real imag 6

real imag 7

Global memory Shared memory
Stage #1

Global memoryShared memory
Stage #2 Stage #3

Fig. 3: 8-point FFT architecture with 3-stage (Note that; real: real part(solid), imag: imaginary part(stripe))

memory with non-contiguous locations which is calculated
by thread number and current stage number. Then, for next
stage, the threads read two complex values from the shared
memory with contiguous locations to obtain coalesced access
pattern. Unlike global memory representation, data arrays on
shared memory are of type float so as to avoid bank conflict.
The demonstration of 8-point 1D-FFT computation including
shared memory usage with 4 independent threads is shown in
Fig. 3.

During 1D-FFT computation along one axis, other lines
in that axis are considered as independent. Threads can be
identified using a two-dimensional thread index, forming two-
dimensional block of threads, called a thread block. The
second dimension of thread block, which defines the number
of blocks, can be used to implement the other lines of one
axis of 3D-FFT computation. There is a limit to the number of
threads per block, since all threads of a block are expected to
reside on the same processor core and must share the limited
memory resources of that core. On current GPUs, a thread
block may contain up to 1024 threads. However, a kernel can
be executed by multiple equally-shaped thread blocks, so that
the total number of threads is equal to the number of threads
per block times the number of blocks. For an N×N×N FFT
computation, the number of threads per block is N/2 and the
number of blocks is N . Therefore, the total number of threads
is equal to N ×N/2.
N blocks are computed at the same time by the threads.

Then, the threads repeat the same computation with new
indexes N more times to finish all 1D-FFT computations
along one axis. The threads write the results of each 1D-FFT
computation to global memory so that new FFT computations
can be started along next axis. For next axis, the start index is
calculated by thread ids for each thread. To complete the 3D-
FFT computation, all 1D-FFT computations along three axes
are executed by N×N/2 threads with transpose illusion which
is obtained by calculating start point indexes and copying data

from global memory to local memory. A pseudo-code for 3D-
FFT computation described above is given in Algorithm 1.

Algorithm 1 3D-FFT computation with (N/2,N) thread block
1: Index = tIdx.x+N × tIdx.y
2: //Along x axis
3: for z = 0→ N do
4: xIndex = Index+N ×N × z
5: A = input[xIndex];B = input[xIndex+N/2]
6: Compute 1D FFT
7: end for
8: Index = N × tIdx.x+ tIdx.y
9: //Along y axis

10: for z = 0→ N do
11: xIndex = Index+N ×N × z
12: A = input[xIndex];B = input[xIndex+N/2×N]
13: Compute 1D FFT
14: end for
15: Index = N ×N × tIdx.x+ tIdx.y
16: //Along z axis
17: for z = 0→ N do
18: xIndex = Index+N × z
19: A = input[xIndex];B = input[xIndex+N/2×N ×N]
20: Compute 1D FFT
21: end for

IV. RESULTS

The designed Cooley-Tukey based parallel 3D-FFT compu-
tation algorithm is implemented with CUDA 8.0 environment
and executed on NVIDIA TITAN X. All the experiments
are conducted on a 3.20 GHz Intel Core i7-960 CPU with
12GB of memory. We test the performance of our 3D-
FFT on N × N × N artificially generated images for each
N ∈ {4, 8, 16, 32}.

The data transfer time between host and device memory
is limited by PCI bus bandwidth. It is independent to the
performance of code running time on GPU, so the transfer time

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

is excluded from our experimental results. The correctness of
our 3D-FFT outputs are verified by comparing with NVIDIA’s
cuFFT outputs. For a N × N × N FFT with execution time
of t seconds, its performance in GFlops is defined as

GFlops =
5×N3 × log(N3)

t
× 10−9 (4)

The performance of GPU based 3D-FFT of size N×N×N
with different batchsize which is the number of concurrent 3D-
FFT computations can be seen in Fig. 4. The performance of
a batch FFT computation generally increases with the FFT
size. Larger FFT problems have more parallelism, therefore
improving the utilization of the computation power of GPU.
The performance increase stops when more passes of global
memory access is needed for some large FFT sizes.

0

50

100

150

200

250

300

350

400

450

500

Th
ro

ug
hp

ut
 (

G
flo

ps
)

Batch

32x32x32

16x16x16

8x8x8

4x4x4

Fig. 4: Performance of 3D-FFT of size N ×N ×N

Our GPU based FFT algorithm can be compared with
NVIDIA’s cuFFT algorithm and Gu’s work [8]. The cuFFT
algorithm is implemented with CUDA 8.0 library and executed
on NVIDIA TITAN X with same batchsize of our algorithm.
Like our implementation, the transfer time between global
and host memories for cuFFT algorithm is excluded from
the measurements. As we can see from Fig. 5, we perform
better than cuFFT and Gu’s work. Moreover, cuFFT is a
closed source algorithm. Before calling cuFFT algorithm, a
plan function is executed by using the transform size, data
type and batch size. The process must be waited until this
plan function is finished.

V. CONCLUSIONS

This paper presents the design, methodology and imple-
mentation of GPU-based 3D-FFT algorithm for power-of-
two sizes. Global memory accesses are reduced and data
representation is improved to use memory coalescing. Our
optimized 3D-FFT algorithm has achieved up to 486 GFlops
computation throughput that is 1.14× faster than the cuFFT’s
result. Our GPU-based 3D-FFT implementation can be used
in many areas of scientic computing. As a future work, we are
aiming to improve the efficiency of our GPU-based 3D-FFT
algorithm and apply to a real image processing application.

0

50

100

150

200

250

300

350

400

450

500

4x4x4 8x8x8 16x16x16 32x32x32

Th
ro

u
gh

p
u

t
(G

Fl
o

p
s)

3D-FFT size

Gu[8]

cuFFT

Proposed

Fig. 5: Performance comparison of batched 3D-FFT imple-
mentations

ACKNOWLEDGMENT

As a member of CUDA Research Center, we also acknowl-
edge the support of NVIDIA Corporation with the donation
of the GPU used for this research.

REFERENCES

[1] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by
sparse 3-d transform-domain collaborative filtering,” IEEE Transactions
on image processing, vol. 16, no. 8, pp. 2080–2095, 2007.

[2] A. Buades, B. Coll, and J.-M. Morel, “A review of image denoising
algorithms, with a new one,” Multiscale Modeling & Simulation, vol. 4,
no. 2, pp. 490–530, 2005.

[3] S. Matej, J. A. Fessler, and I. G. Kazantsev, “Iterative tomographic image
reconstruction using fourier-based forward and back-projectors,” IEEE
Transactions on medical imaging, vol. 23, no. 4, pp. 401–412, 2004.

[4] T. R. Reed and H. Wechsler, “Segmentation of textured images
and gestalt organization using spatial/spatial-frequency representations,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 12, no. 1, pp. 1–12, 1990.

[5] J. B. Srivastava, R. Pandey, and J. Jain, “Implementation of Digital Sig-
nal Processing Algorithm in General Purpose Graphics Processing Unit
(GPGPU),” International Journal of Innovative Research in Computer
and Communication Engineering, vol. 1, no. 4, pp. 1006–1012, 2013.

[6] (2017) The CUDA Programming Guide. [Online]. Available: https:
//developer.nvidia.com/category/zone/cuda-zone

[7] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Mathematics of Computation, vol. 19, no. 90,
pp. 297–301, 1965.

[8] L. Gu, X. Li, and J. Siegel, “An Empirically Tuned 2D and 3D FFT
Library on CUDA GPU,” in Proceedings of the 24th ACM International
Conference on Supercomputin, June 2010, pp. 305–314.

[9] M. Eleftheriou, J. E. Moreira, B. G. Fitch, and R. S. Germain, “A
Volumetric FFT for BlueGene/L,” in Pinkston T.M., Prasanna V.K. (eds)
High Performance Computing - HiPC 2003. Lecture Notes in Computer
Science, vol. 2913, 2003, pp. 194–203.

[10] U. Sigrist, “Optimizing parallel 3D fast Fourier transformations for a
cluster of IBM POWER5 SMP nodes,” Ph.D. dissertation, The Univer-
sity of Edinburgh, Aug 2007.

[11] D. B. Kirk and W.-M. W.Hwu, Programming Massively Parallel Pro-
cessors, 2nd ed. Morgan Kaufmann, 2012.

[12] J. Siegel, J. Ributzka, and X. Li, “CUDA Memory Optimizations for
Large Data-Structures in the Gravit Simulator,” in 2009 International
Conference on Parallel Processing Workshops, Sept. 2009, pp. 174–181.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

