
Towards an Energy-Efficient Cache Architecture for

Extreme-Scale Systems

Abdulrahman Alshegaifi, Chun-Hsi Huang

Department of Computer Science and Engineering

University of Connecticut

Storrs, CT 06226, USA

{abdulrahman.alshegaifi, chunhsi.huang}@uconn.edu

Abstract—Energy consumption is the major limitation to

achieving exascale computing systems. Caches are essential

components that dissipate a large proportion of processor's

energy. The use of smaller caches can reduce this effect; however,

smaller caches result in performance degradation because they

increase the number of misses. One way to compromise these

conflict goals is to find a group of frequent references that can be

served from the smaller cache with negligible misses. This

smaller cache can serve these frequent references without the

need to access a relatively large cache.

Stack references (references that access the stack memory

region) may facilitate the use of smaller caches and, thus, we

suggest using stack cache toward extreme scale systems. We

propose non-unified data cache design that maintains stack data

in a separate cache and aims to, at least, maintain the

performance (in terms of hit rate) as the same as the conventional

L1 data cache, but with efficient energy. Because extreme scale

systems require a massive number of cores to deliver high

performance, minimizing the L1 caches in each core increases the

number of cores that can be allocated on a single die. Hence, we

examined the performance of a non-unified data cache design in

comparison to that of a conventional data cache for different

sizes of L1 data caches ranging from a quite large to small size.

Our results show that through all different sizes of data cache,

the non-unified design improved or maintained the same

performance of the conventional cache in all applications tested,

except in a very few cases, typically when the data cache was

relatively large.

Keywords—Cache Design; Cache Memories; Stack Cache;

Exascale Computing Systems

I. INTRODUCTION

Exascale computing systems have been researched
extensively in recent years. Exascale computing refers to
systems that can execute a thousand times as many operations
per second as those of current petascale systems. However, the
construction of practical exascale systems is limited by several
factors, such as energy efficiency, interconnection technology,
scalability, and resilience. Energy efficiency is considered one
of the greatest impediment to achieving exascale computing
systems [1][2][3][4]. Future exascale systems are constrained
by a power budget of 20 MW [2]; a representative current
supercomputer consumes 17.8 MW [2]. To address this issue,

the energy efficiencies of different aspects of the system should
be considered.

In a processor, power consumption is spread across
multiple components, including caches, the clock, and the
register. In particular, L1 caches are one major contributor to
processor energy consumption. For example, caches account
for 16% of the energy consumption in Alpha 21264
processors, and 30% in StrongARM processors [5]. Caches
can dissipate more than 40% of the total energy consumed by
a processor [6]. Therefore, several approaches have been
proposed to alleviate this issue [7][8][9][10][11][12]. For
extreme scale systems, the need for high performance and
energy-efficient L1 cache design is increased. In this work, we
focus on L1 data cache design.

L1 data cache is frequently accessed. The use of a single
large cache consumes a greater amount of energy per access
than the use of smaller caches. However, reducing the size of
L1 data cache decreases its performance. To overcome this
issue, one way is to find a group of frequent references that
can be served from a smaller cache with negligible misses.
This smaller cache can help to serve most of the references
and, thus reduces the number of accesses to a large data cache.
Thereby, it saves energy with efficient performance.

A promising approach is to take advantage of the unique
characteristics of the stack memory region. The references to
this memory segment seem to be frequent, and its data
behavior differs from those of other memory regions; various
researchers have attempted to exploit these properties, such as
[13][14][15][16]. This region grows each time a function is
called and shrinks when the result is returned. At any given
time, only one stack frame is active. If the stack frame size is
small, then a small specialized cache could provide a
significantly high hit rate.

In this paper, we suggest the use of stack cache toward
extreme scale systems and propose a non-unified data cache
design that maintains stack data in a separate cache called a
stack cache. Stack caches maintain only stack data that is
retrieved from the stack memory region; other kinds of data,
called non-stack data, are diverted to the original (non-stack)
data cache. The aim of this study is to design L1 data cache
that at, at least, maintains the performance as the same as the
conventional L1 data cache, but with efficient energy.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

Fig. 1. Cache Architecture

Fig. 1. Cache Architecture

In the present study, we examine the influence of the stack
cache on high-performance computing benchmarks and highly
parallelizable applications, such as Divide-and-Conquer
(D&C) algorithms. The D&C algorithms are naturally solved
by a recursion function, implying that the stack memory
region is frequently accessed. Subsequently, we evaluate the
overall performance of the proposed non-unified data cache
design in comparison to the original data cache architecture
when the L1 data cache is minimized. The non-unified data
cache architecture maintains stack and non-stack data in two
separate specialized caches.

The remainder of this paper is organized as follows.
Related work is discussed in section II. The proposed non-
unified data cache architecture is detailed in section III. In
section IV, our experimental setup is introduced, and in
section V the non-unified design evaluation results are
presented. Section VI contains our conclusions and the aims of
future work.

II. RELATED WORK

The unique characteristics of the memory stack region
have generated significant recent research interest. Nielsen
and Schoeberl [17] proposed four different stack cache
implementations that allow the storage of stack and non-stack
data in two separate caches, to improve the performance of
embedded processors. These four implementations are known
as the simple, window, and prefilling with and without tag
stack caches. The simple and prefilling with tag stack caches
were placed in parallel with the first-level data cache; the
window and prefilling without stack caches were placed
between the CPU and the DL1 data cache. The window and
prefilling without tag stack caches improved the performance
of the system by up to 3.5%.

Lee et al. [18] proposed a non-architectured register file,
called the stack value file (SVF), that exploits the
characteristics of the stack memory region to improve
instruction-level parallelism and to reduce the latency of stack
references, the demand on the first-level data cache, and
memory traffic. The SVF is designed as a circular buffer and
maintains data from the top of the stack. In addition, the SVF
reduces data bus traffic by avoiding write-back of dirty blocks
and the loading of invalid stack data located beyond the top of
the stack.

Olson et al. investigated improving energy efficiency by
exploiting stack data characteristics [19]. They found that
stack segment accesses exhibited different behaviors to those
of other memory accesses for a variety of different workloads

for both x86 and ARM systems. To take advantage of these
characteristics, the authors proposed implicit and explicit stack
caches to reduce energy consumption. In the implicit stack
cache, specific ways of the L1 data cache was reserved to
store only stack data. In the explicit stack cache, a separate L1
cache was used to maintain stack data. Their results showed
that the implicit stack cache reduced the dynamic energy of
the L1 data cache by an average of 37%, and the explicit stack
cache reduced the dynamic energy by an average of 36%.

Cho, Yew, and Lee [20] developed a data-decoupled
architecture to provide high memory bandwidth in a wide-
issue superscalar processor. This data-decoupled architecture
splits all memory references into two streams. Each stream is
diverted to a separate memory access queue in the pipeline
and to a separate cache. They concluded that the data-
decoupled scheme, in some cases, achieved higher
performance than that obtained by increasing the number of
ports to the L1 data cache. The authors also proposed fast data
forwarding and combined access optimization. In their
subsequent work [21], they proposed an access region
predictor to predict which memory region (heap or stack) is
accessed by a specific instruction. This enabled them to
predict the relevant access region before the specific address
was determined.

III. NON-UNIFIED DATA CACHE DESIGN

Non-unified data cache design is based on providing
additional small caches dedicated to stack references,
implemented in parallel to the first-level data cache (Fig.
1(b)). This design takes advantage of the unique
characteristics of the stack segment to enable the same, or
greater, hit rate of conventional data cache design but with less
energy consumption. The conventional data cache design is
called, here, unified data cache as shown in Fig. 1(a).

In our non-unified data cache design, the additional small
cache is called the stack cache (SC). The non-stack cache
(Non-SC) is the same as the conventional data cache, except
that it only stores data that is retrieved from non-stack
memory segments, such as the heap or bss. The SC
implementation is equivalent to that of the data cache in a
unified cache design. Thus, the SC can be organized as a
direct-mapped, set associative, or fully associative cache.

Data memory accesses are classified as stack accesses if
they occur within a certain region of the virtual memory space.
For example, in an x86 processor, and the processor simulated
in this study, the stack segment is located at the top of virtual
memory and grows towards the lower addresses. If an address
generated by a processor is located below the starting address
of the stack segment, the N most significant bits of the starting
address of the stack segment are compared with the address
generated by the processor. If these bits match, then the access
is classified as stack access; otherwise, it is classified as non-
stack access. The number of bits (N) that are needed to
classify memory accesses is 8 bits after experiments. In our
non-unified cache architecture, all of the stack accesses are
directed to the SC; the non-stack accesses are directed to the
Non-SC. In the case of a hit, the data is supplied to the
processor from either the SC or Non-SC, but never from both.

 (a) Unified Data Cache (b) Non-Unified Data Cache

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

(a) MiBench Benchmarks

(b) NPB Benchmarks

(C) Divide-and-Conquer Algorithms

Fig. 2. Breakdown DL1 Memory References for Different Workloads

In the case of a miss in either of the two caches, the data is
fetched from the L2 cache or from lower memory in the
hierarchy.

IV. EXPERIMENTS

A. Simulation Framework

To evaluate our non-unified data cache design, we
integrated the SC using the SimpleScalar simulation toolset
[24]. Because the performance of caches is measured by the
hit rate factor, we used the sim-cache simulator. The
SimpleScalar GCC compiler was used to generate
SimpleScalar binaries in PISA format.

To ensure that the fair comparison was made between the
non-unified and conventional cache architectures, a cacheline
size of 32 B and a LRU replacement policy were used for each
cache. The L1 data cache capacity and its associativity are
introduced in later sections.

B. Benchmarks

Three different types of benchmarks were used in our
experiments: MiBench [23], D&C algorithms, and NAS
parallel supercomputer benchmarks (C version) [22]. Table I
lists the selected applications from each benchmark suite. All
of the benchmarks were run to completion.

MiBench is widely used for benchmarking embedded
systems and includes a set of representative embedded
application domains: Automotive and Industrial Control,
Network, Security, Consumer Devices, Office Automation,
and Telecommunications. We randomly selected applications
from those domains. In addition, MiBench provides two input
data sets: a small and a large set. We ran each benchmark
using the large input data set.

D&C algorithms, such as sorting algorithms, are naturally
parallelizable algorithms. Therefore, they are the most suitable
algorithms for parallel machines. They are naturally solved by
recursion functions. This implies that the stack segment is
heavily involved in the processing of these algorithms, which
makes them appropriate for evaluating non-unified designs.
We selected three different sorting algorithms to evaluate our
SC-based design: Quick Sort, Merge Sort, and Heap Sort.
Each of these algorithms was used to sort 1000, 16000,
128000, and 1280000 elements. We studied those sorting
algorithms for both statically and dynamically allocated
unsorted arrays. For statically allocated arrays, the unsorted
array is defined as a static array inside a function; therefore,

the compiler will allocate the array to the stack segment.
Conversely, dynamically allocated arrays are defined as
dynamic arrays by malloc (); therefore, the array will be
allocated to the heap segment.

The NAS Parallel Benchmarks (NPB) include several
applications designed for parallel supercomputers. We
selected four applications from this workload with a standard
problem size (class A).

V. EVALUATION AND DISCUSSION

A. Distribution of Stack References

Fig. 2(a–c) show breakdowns of data memory accesses for
different workloads. Fig. 2(a) represents applications from the

TABLE I. BENCHMARKS

Benchmarks Suite Benchmarks

Embedded

Applications

(MiBench)

bitcount (bc), susan.smoothing (ss), susan.edges

(se), susan.corners(sc), patricia(pa), stringsearch

(sts), rijndael.dec (rdec), rijndael.enc (renc),

adpcm.rawcaudio (rc), adpcm.rawdaudio (rd),

CRC32 (crc), fft, fft.inverse (fft.inv)

NAS Parallel

Benchmarks (NPB)
cg, mg, ep, lu

Divand-Conquer

Algorithms (D&C)
quicksort (qs), mergesort (ms), heapsort (hs)

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

(a) MiBench Benchmarks

(b) NPB Benchmarks

Fig. 3. Average Miss Rate of the Stack and Non-Stack Cache.

MiBench suite and shows that on average, 77% of data
memory references were accessed from the stack memory
region. For the NPB benchmarks, stack references were less
frequent than for the MiBench workload. On average, 30% of
the total NPB benchmark references were to the stack region;
the maximum percentage of stack references was about 60%
(“ep” application; Fig. 2(b)).

The stack references were extremely high for the D&C
algorithms (Fig. 2(c)). As stated earlier, the D&C algorithms
are solved using recursion functions; hence, the stack region is
repeatedly accessed during each function call. Fig. 2(c) shows
that on average, 65% of the total accesses were to stack
memory when the array was dynamically allocated. The
percentage of stack references was greater than 99% when the
array was statically allocated. These mainly refer to program
semantics. If the array is defined as a pointer (dynamically
allocated), then, it will be allocated to the heap (non-stack).
Conversely, if the array is defined as static inside a function
(statically allocated), it will be allocated to the stack region.

Overall, these results show that the stack region is
frequently accessed and represents most of the load/store
references in the majority of applications.

B. Locality of Stack and Non-Stack Caches

Several experiments were conducted to observe the
locality of each individual cache (SC and Non-SC) in the non-
unified data cache design. We measured the miss rate of the
SC over its references, and that of Non-SCs with sizes of 1 to
32 KB with 1-way (direct-mapped) and 8-way associativity.

Because the majority of memory references represented by
D&C algorithms are stack references, it would be unnecessary
to compare the localities of the SC and Non-SC for this kind
of application. Hence, we only performed locality experiments
for MiBench and NPB workloads. Fig. 3(a) and (b) illustrate
the average miss rate of the SC and Non-SC for the MiBench
and NPB workloads, respectively. As expected, higher
associativity resulted in a lower miss rate for each cache; this
trend was more pronounced for the Non-SC. In addition, these
results show that the SC consistently exhibited better locality
than the Non-SC for all cache sizes tested in both benchmark
sets. Moreover, regardless of the proportion of accesses, the
SC achieved a hit rate greater than 99% with a relatively small
cache. In contrast, the results for the Non-SC show that the
miss rate decreased as the Non-SC size increased. This
indicates that the localities of non-stack references are more
sensitive to the cache size.

From these results, we conclude that the locality of the SC
was significantly high, even with a very small cache size.
Hence, by separating stack references from other types of
references and directing them to an additional small cache, the
SC would provide a efficient performance without
significantly increasing the overall capacity of the first-level
data cache.

C. Stack Cache Size

In our non-unified data cache design, the choice of a
suitable size for the SC is critical because all of the stack

references will be restricted within that selected size. In
addition, the SC should be as small as possible to maximize
energy efficiency and to avoid significantly increasing the
overall size of the L1 data cache.

Fig. 4 shows the miss rates of the SC over its references
for SC sizes from 1 to 4 KB with 1-way and 8-way
associativity. Fig. 4(a) represents the SC miss rates for the
MiBench and NPB benchmarks. As shown in Fig. 4(a), 1 KB
was sufficient for the majority of the applications. However, in
the “pa”, “fft”, “fft.inv”, and “mg” applications, the 1 KB SC
exhibited a significantly higher miss rate than either the 2 or 4
KB SC. For these applications, a 2 KB SC provided a hit rate
of approximately 99% for 1-way associativity, except for the
“mg” benchmark. In the case of 8-way associativity, 2 KB SC
was significantly efficient and provided a hit rate of greater
than 99.8%, except for the “mg” benchmark.

We also performed experiments on workloads that
significantly use stack segments to carefully select the size of
the SC. Fig. 4(b) and (c) show the miss rates of the SC for
D&C algorithms for statically and dynamically allocated
arrays, respectively. The size of the array was varied from
1000 elements to slightly over 1 million elements. For each
array size, we measured the miss rates of SCs from 1 to 4 KB
with 1-way and 8-way associativity. The SCs exhibited very
low miss rates for both statically and dynamically allocated
arrays. However, when the array was dynamically allocated,
the SC miss rate was significantly lower than for the statically
allocated array for all of the programs and array sizes tested.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

These results were attributed to the relative proportions of
stack references. For statically allocated arrays, almost all of
the references were to the stack region as shown in Fig. 2(c);
however, in the dynamically allocated case, a larger
proportion of the references were accessed from the non-stack
region.

Based on these results, we selected an SC size of 2 KB. In
most of the applications tested, the 2 KB SC provided a hit
rate of greater than 99%. The 1 KB SC exhibited a
significantly higher miss rate than the 2 and 4 KB SCs. The
miss rate of the 2 KB was, also, larger than that of the 4 KB.
However, in this case, the miss rate reduction was minor.

D. Non-Unified vs. Unified Data Cache Architecture

In this subsection, we discuss the miss rates of the non-
unified data cache design compared to those of a conventional
unified data cache architecture. The non-unified design adds a
2 KB SC to the first-level data cache. We examined the effect
of this SC on the miss rate for data cache sizes from 1 to 32
KB with 1-way (direct-mapped) and 8-way associativity. All

the caches had the same associativity in all conducted
experiments. For example, when using a direct-mapped
organization for the data cache, a direct-mapped organization
was also applied to both the Non-SC and SC in the non-
unified design.

Because MiBench and NPB benchmarks exhibited more
significant variations in their data memory reference patterns
than D&C algorithms, we performed experiments using these
benchmarks. Fig. 5(a) and (b) illustrate the miss rates of non-
unified and unified architectures for different data cache sizes
with a direct-mapped and 8-way associativity for MiBench
and NPB workloads, respectively.

The results for the MiBench benchmarks show that for
various data cache sizes, the non-unified design resulted in a
significantly lower miss rate than the unified architecture for
the majority of applications when using 1-way associativity
(Fig. 5(a)). The “ss”, “se”, and “sc” benchmarks exhibited
miss rate reductions of greater than 77%, for all of the cache
sizes investigated, and the “rc” and “rd” benchmarks exhibited
reductions of greater than 50% for cache sizes from 1 to 8 KB.

 (a) MiBench and NPB Benchmarks.

(b) Divide-and-Conquer When Array Statically Allocated.

(c) Divide-and-Conquer When Array Dynamically Allocated.

Fig. 4. Stack Cache Miss Rate for Various Sizes with 1-way and 8-way Associativity.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

(a) MiBench Benchmarks

(b) NPB Benchmarks

Fig. 5. Unified VS Non-Unified Miss Rate for Different Data Cache sizes with 1-way and 8-way Associaitivity. U-ss and N-ss Indicate Unified and Non-
unified Architecture for "ss" benchmark repectively.

In the case of larger associativity (8-way), we observed that
the non-unified design only exhibited a reduced miss rate
when the data cache was small. However, The miss rates of
the non-unified architecture did not increase when larger
cache sizes were used as illustrated in Fig. 5(a). The results for
the “bc” application are not shown because 95% of its
references are stack references, and a 1 KB SC provided a hit
rate of almost 100% for both associativities (Fig. 4(a)). Hence,
for applications such as “bc” and D&C algorithms, where
stack references represent most of their accesses, a small
cache is sufficient. Moreover, in these cases, a non-unified
design would be significantly more energy efficient in contrast
to a unified design that incorporates a single large cache for
different needs of each applications.

For NPB workloads, the non-unified design generally
exhibited the same miss rates as the unified design for both
associativities and provided slightly better results for small
cache sizes (Fig. 5(b)). The maximum miss rate reduction was
about 40% for the “ep” benchmark, and 15% for the “mg”
benchmark when using a 1 KB with 1-way and 8-way
associativity, respectively. For the “cg” application, the miss
rates were the same for both architectures for 1-way and 8-
way associativity and all cache sizes; in this application, the

most of the memory references are assigned to the non-stack
region.

In very few cases, the non-unified design exhibited a
slightly higher miss rate than the unified data cache
architecture. For example, the “pa”, “fft”, and “fft.inv”
applications from the MiBench workload in the case of 1-way
associativity, and the “mg” application from the NPB
workload for both associativities. However, these increased
miss rates were observed when the data cache size (of the
unified design) was relatively large. The increased miss rates
were attributed to the limited size of the SC; and as the data
cache size was increased, these applications were processed
more effectively and the miss rate of the unified architecture
decreased.

In conclusion, non-unified design consistently improves or
maintains the same miss rate of unified data cache design on
different data cache sizes with direct-mapped cache and 8-way
associativity for the majority of applications of MiBench and
NPB benchmarks.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

VI. CONCLUSIONS AND FUTURE WORK

The goal of future exascale computing systems is to
achieve 1018 operations per second with a similar, or lower,
energy consumption than that of a current supercomputer.
Caches are fundamental parts of computer systems, because
they alleviate the speed disparity between the processor and
main memory. However, existing L1 cache designs account
for a large fraction of a chip’s overall power consumption.
Accessing a single large data cache consumes substantially
more energy per access. We suggested a non-unified data
cache architecture that maintains stack data in a small
additional “stack cache”.

We found that stack data are frequently referenced making
them the best candidate to exploit. Our results showed that in
high performance benchmarks, embedded benchmarks, and
D&C algorithms, an average of 30%, 77%, and 99% of
memory references, respectively, were stack references. In
addition, for all of these different spectrums of stack
references, small size of cache can provide a significant high
hit rate. The experimental results showed that a 2 KB stack
cache achieved a hit rate of greater than 99% for almost all of
the benchmarks tested.

Moreover, we investigated the overall performance of a
non-unified data cache design in comparison to a conventional
unified data cache design for different sizes of L1 cache. We
observed that for both a direct-mapped cache and one with 8-
way associativity, the non-unified architecture attained the
same or better performance for the majority of MiBench and
NPB benchmarks with different data cache sizes.

Overall, the results obtained in this study demonstrate that
the stack memory region is regularly referenced in most
applications. A small stack cache was observed to consistently
provide high hit rates for a wide range of applications. This
implies that diverting stack references to a separate small
cache is a promising approach to achieve a high-performance
and energy-efficient design for L1 data cache. The next stage
of this work is to further study the energy consumption of the
proposed cache architecture.

REFERENCES

[1] P. Kogge et al. “Exascale computing study: technology challenges in
achieving exascale systems Technical,” DARPA IPTO, 2008.

[2] DOE ASCAC Subcommittee, “Top ten exascale research challenges,”
U.S. Department of Energy (DOE), 2014.

[3] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technology
challenges,” in International Conference on High Performance
Computing for Computational Science-VECPAR'10, pp. 1-25, 2011.

[4] J. Torrellas, “Extreme-scale computer architecture energy efficiency
from the ground up,” in Design, Automation and Test in Europe
(DATE), pp. 1-5, 2014.

[5] S. Mittal, “A survey of architectural techniques for improving cache
power efficiency,” Sustainable Computing.: Informatics and Systems,
vol. 4, no. 1, pp. 33-43, 2014.

[6] R. Gonzalez-Alberquilla, F. Castro, L. Pinuel, and F. Tirado, “Stack
filter: reducing L1 data cache power consumption,” Journal of Systems
Architecture, vol. 56, no. 12, pp. 685-695, 2010.

[7] J. Kin, M. Gupta, and W. Mangione-Smith, “The filter cache: an energy
efficient memory structure,” in 30th International symposium on
Microarchitecture (MICRO), pp. 184–193, 1997.

[8] P. Carazo, R. Apolloni, F. Castro, D. Chaver, L. Pinuel, and F. Tirado,
“L1 data cache power reduction using a forwarding predictor,”
Integrated Circuit and System Design, Power and Timing Modeling,
Optimization, and Simulation, pp. 116–125, 2011.

[9] J. Dai, M. Guan, and L. Wang, “Exploiting early tag access for reducing
L1 data cache energy in embedded processors,” IEEE Transactions on
Very Large Scale Integration Systems, vol. 22, no. 2, pp. 396-407, 2014.

[10] D. Nicolaescu, B. Salamat, A. Veidenbaum, and M. Valero, “Fast
speculative address generation and way caching for reducing L1 data
cache energy,” in International Conference on Computer Design
(ICCD), pp. 101–107, 2006.

[11] A. Bardizbanyan, M. Själander, D. Whalley, P. Larsson-Edefors,
“Speculative tag access for reduced energy dissipation in set-associative
L1 data caches,” in International Conference on Computer Design
(ICCD), pp. 302-308, 2013.

[12] A. Bardizbanyan, M. Själander, D. Whalley, P. Larsson-Edefors,
“Reducing set-associative L1 data cache energy by early load data
dependence detection (ELD 3),” Proc. Conf. on Design, Automation and
Test in Europe (DATE) , 2014.

[13] S. Abbaspour, A. Jordan, and F. Brandner, “Lazy spilling for a time-
predictable stack cache: implementation and analysis, ” in Int. Workshop
on Worst-Case Execution Time Analysis, pp. 83--92, 2014.

[14] J. Lu, K. Bai, and A. Shrivastava, “SSDM: Smart Stack Data
Management for software managed multicores (SMMs),” Proceedings
of the Design Automation Conference, pp. 1-8, 2013.

[15] A. Jordan, F. Brandner, and M. Schoeberl, “Static analysis of worst-
case stack cache behavior,” Proceedings of the 21st International
Conference on Real-Time Networks and Systems, pp. 55-64, 2013.

[16] S. Abbaspour, F. Brandner, and M. Schoeberl, “A time- predictable
stack cache,” 16th IEEE International Symposium on
Object/component/service-oriented Real-time distributed Computing
(ISORC), pp. 1-8, 2013.

[17] C. Nielsen and M. Schoeberl, “Stack caching using split data caches,”
Proceedings of IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, pp. 66-73, 2015.

[18] H. Lee, M. Smelyanskiy, C. Newburn, and G. Tyson, “Stack Value File:
Custom microarchitecture for the stack,” Int'l Symposium on High-
Performance Computer Architecture, pp. 5-14, 2001.

[19] L. E. Olson, Y. Eckert, S. Manne, and M. D. Hill, “Revisiting stack
caches for energy efficiency,” Technical Report TR1813, University of
Wisconsin, 2014.

[20] S. Cho, P. Yew, and G. Lee, “Decoupling local variable accesses in a
wide-issue superscalar processor,” Int'l Symposium on Computer
Architecture, pp. 100-110, 1999.

[21] S. Cho, P. Yew, and G. Lee, “Access region locality for high-bandwidth
processor memory system design,” Int'l Symposium on
Microarchitecture, pp. 136-146, 1999.

[22] An unofficial C version of the NAS Parallel Benchmarks OpenMP 3.0.
2014. Retrieved from: https://github.com/benchmark-
subsetting/NPB3.0-omp-C

[23] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and
R. B. Brown, “ MiBench: A free, commercially representative embedded
benchmark suite,” in Proceedings of IEEE 4th Annual Workshop on
Workload Characterization, pp. 3-14, 2001.

[24] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,”
Technical Report TR1342, University of Wisconsin-Madison Computer
Sciences Department, 1997.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

