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Abstract—Energy consumption is the major limitation to 

achieving exascale computing systems. Caches are essential 

components that dissipate a large proportion of processor's 

energy. The use of smaller caches can reduce this effect; however, 

smaller caches result in performance degradation because they 

increase the number of misses. One way to compromise these 

conflict goals is to find a group of frequent references that can be 

served from the smaller cache with negligible misses. This 

smaller cache can serve these frequent references without the 

need to access a relatively large cache.  

Stack references (references that access the stack memory 

region) may facilitate the use of smaller caches and, thus, we 

suggest using stack cache toward extreme scale systems. We 

propose non-unified data cache design that maintains stack data 

in a separate cache and aims to, at least, maintain the 

performance (in terms of hit rate) as the same as the conventional 

L1 data cache, but with efficient energy. Because extreme scale 

systems require a massive number of cores to deliver high 

performance, minimizing the L1 caches in each core increases the 

number of cores that can be allocated on a single die. Hence, we 

examined the performance of a non-unified data cache design in 

comparison to that of a conventional data cache for different 

sizes of L1 data caches ranging from a quite large to small size. 

Our results show that through all different sizes of data cache, 

the non-unified design improved or maintained the same 

performance of the conventional cache in all applications tested, 

except in a very few cases, typically when the data cache was 

relatively large. 

Keywords—Cache Design; Cache Memories; Stack Cache; 

Exascale Computing Systems 

I.  INTRODUCTION 

Exascale computing systems have been researched 
extensively in recent years. Exascale computing refers to 
systems that can execute a thousand times as many operations 
per second as those of current petascale systems. However, the 
construction of practical exascale systems is limited by several 
factors, such as energy efficiency, interconnection technology, 
scalability, and resilience. Energy efficiency is considered one 
of the greatest impediment to achieving exascale computing 
systems [1][2][3][4]. Future exascale systems are constrained 
by a power budget of 20 MW [2]; a representative current 
supercomputer consumes 17.8 MW [2]. To address this issue, 

the energy efficiencies of different aspects of the system should 
be considered. 

In a processor, power consumption is spread across 
multiple components, including caches, the clock, and the 
register. In particular, L1 caches are one major contributor to 
processor energy consumption. For example, caches account 
for 16% of the energy consumption in Alpha 21264 
processors, and 30% in StrongARM processors [5]. Caches 
can dissipate more than 40% of the total energy consumed by 
a processor [6]. Therefore, several approaches have been 
proposed to alleviate this issue [7][8][9][10][11][12]. For 
extreme scale systems, the need for high performance and 
energy-efficient L1 cache design is increased. In this work, we 
focus on L1 data cache design. 

L1 data cache is frequently accessed. The use of a single 
large cache consumes a greater amount of energy per access 
than the use of smaller caches. However, reducing the size of 
L1 data cache decreases its performance. To overcome this 
issue,  one way is to find a group of frequent references that 
can be served from a smaller cache with negligible misses. 
This smaller cache can help to serve most of the references 
and, thus reduces the number of accesses to a large data cache. 
Thereby, it saves energy with efficient performance.  

A promising approach is to take advantage of the unique 
characteristics of the stack memory region. The references to 
this memory segment seem to be frequent, and its data 
behavior differs from those of other memory regions; various 
researchers have attempted to exploit these properties, such as 
[13][14][15][16]. This region grows each time a function is 
called and shrinks when the result is returned. At any given 
time, only one stack frame is active. If the stack frame size is 
small, then a small specialized cache could provide a 
significantly high hit rate. 

In this paper, we suggest the use of stack cache toward 
extreme scale systems and propose a non-unified data cache 
design that maintains stack data in a separate cache called a 
stack cache. Stack caches maintain only stack data that is 
retrieved from the stack memory region; other kinds of data, 
called non-stack data, are diverted to the original (non-stack) 
data cache. The aim of this study is to design L1 data cache 
that at, at least, maintains the performance as the same as the 
conventional L1 data cache, but with efficient energy. 
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In the present study, we examine the influence of the stack 
cache on high-performance computing benchmarks and highly 
parallelizable applications, such as Divide-and-Conquer 
(D&C) algorithms. The D&C algorithms are naturally solved 
by a recursion function, implying that the stack memory 
region is frequently accessed. Subsequently, we evaluate the 
overall performance of the proposed non-unified data cache 
design in comparison to the original data cache architecture 
when the L1 data cache is minimized. The non-unified data 
cache architecture maintains stack and non-stack data in two 
separate specialized caches.  

The remainder of this paper is organized as follows. 
Related work is discussed in section II. The proposed non-
unified data cache architecture is detailed in section III. In 
section IV, our experimental setup is introduced, and in 
section V the non-unified design evaluation results are 
presented. Section VI contains our conclusions and the aims of 
future work.  

II. RELATED WORK 

The unique characteristics of the memory stack region 
have generated significant recent research interest. Nielsen 
and Schoeberl [17] proposed four different stack cache 
implementations that allow the storage of stack and non-stack 
data in two separate caches, to improve the performance of 
embedded processors. These four implementations are known 
as the simple, window, and prefilling with and without tag 
stack caches. The simple and prefilling with tag stack caches 
were placed in parallel with the first-level data cache; the 
window and prefilling without stack caches were placed 
between the CPU and the DL1 data cache. The window and 
prefilling without tag stack caches improved the performance 
of the system by up to 3.5%.  

Lee et al. [18] proposed a non-architectured register file, 
called the stack value file (SVF), that exploits the 
characteristics of the stack memory region to improve 
instruction-level parallelism and to reduce the latency of stack 
references, the demand on the first-level data cache, and 
memory traffic. The SVF is designed as a circular buffer and 
maintains data from the top of the stack. In addition, the SVF 
reduces data bus traffic by avoiding write-back of dirty blocks 
and the loading of invalid stack data located beyond the top of 
the stack. 

Olson et al. investigated improving energy efficiency by 
exploiting stack data characteristics [19]. They found that 
stack segment accesses exhibited different behaviors to those 
of other memory accesses for a variety of different workloads  

for both x86 and ARM systems. To take advantage of these 
characteristics, the authors proposed implicit and explicit stack 
caches to reduce energy consumption. In the implicit stack 
cache, specific ways of the L1 data cache was reserved to 
store only stack data. In the explicit stack cache, a separate L1 
cache was used to maintain stack data. Their results showed 
that the implicit stack cache reduced the dynamic energy of 
the L1 data cache by an average of 37%, and the explicit stack 
cache reduced the dynamic energy by an average of 36%.  

Cho, Yew, and Lee [20] developed a data-decoupled 
architecture to provide high memory bandwidth in a wide-
issue superscalar processor. This data-decoupled architecture 
splits all memory references into two streams. Each stream is 
diverted to a separate memory access queue in the pipeline 
and to a separate cache. They concluded that the data-
decoupled scheme, in some cases, achieved higher 
performance than that obtained by increasing the number of 
ports to the L1 data cache. The authors also proposed fast data 
forwarding and combined access optimization. In their 
subsequent  work [21], they proposed an access region 
predictor to predict which memory region (heap or stack) is 
accessed by a specific instruction. This enabled them to 
predict the relevant access region before the specific address 
was determined. 

III. NON-UNIFIED DATA CACHE DESIGN 

Non-unified data cache design is based on providing 
additional small caches dedicated to stack references, 
implemented in parallel to the first-level data cache (Fig. 
1(b)). This design takes advantage of the unique 
characteristics of the stack segment to enable the same, or 
greater, hit rate of conventional data cache design but with less 
energy consumption. The conventional data cache design is 
called, here, unified data cache as shown in Fig. 1(a).  

In our non-unified data cache design, the additional small 
cache is called the stack cache (SC). The non-stack cache 
(Non-SC) is the same as the conventional data cache, except 
that it only stores data that is retrieved from non-stack 
memory segments, such as the heap or bss. The SC 
implementation is equivalent to that of the data cache in a 
unified cache design. Thus, the SC can be organized as a 
direct-mapped, set associative, or fully associative cache. 

Data memory accesses are classified as stack accesses if 
they occur within a certain region of the virtual memory space. 
For example, in an x86 processor, and the processor simulated 
in this study, the stack segment is located at the top of virtual 
memory and grows towards the lower addresses. If an address 
generated by a processor is located below the starting address 
of the stack segment, the N most significant bits of the starting 
address of the stack segment are compared with the address 
generated by the processor. If these bits match, then the access 
is classified as stack access; otherwise, it is classified as non-
stack access. The number of bits (N) that are needed to 
classify memory accesses is 8 bits after experiments. In our 
non-unified cache architecture, all of the stack accesses are 
directed to the SC; the non-stack accesses are directed to the 
Non-SC. In the case of a hit, the data is supplied to the 
processor from either the SC or Non-SC, but never from both. 

      (a) Unified Data Cache                 (b) Non-Unified Data Cache 
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(a) MiBench Benchmarks 
 

 

(b)  NPB Benchmarks   
 

 

(C)  Divide-and-Conquer Algorithms 
 

Fig. 2.  Breakdown DL1 Memory References for Different Workloads  

 

 

 

 

 

 

 

In the case of a miss in either of the two caches, the data is 
fetched from the L2 cache or from lower memory in the 
hierarchy. 

IV. EXPERIMENTS 

A. Simulation Framework 

To evaluate our non-unified data cache design, we 
integrated the SC using the SimpleScalar simulation toolset 
[24]. Because the performance of caches is measured by the 
hit rate factor, we used the sim-cache simulator. The 
SimpleScalar GCC compiler was used to generate 
SimpleScalar binaries in PISA format.  

To ensure that the fair comparison was made between the 
non-unified and conventional cache architectures, a cacheline 
size of 32 B and a LRU replacement policy were used for each 
cache. The L1 data cache capacity and its associativity are 
introduced in later sections. 

B. Benchmarks 

Three different types of benchmarks were used in our 
experiments: MiBench [23], D&C algorithms, and NAS 
parallel supercomputer benchmarks (C version) [22]. Table I 
lists the selected applications from each benchmark suite. All 
of the benchmarks were run to completion.  

MiBench is widely used for benchmarking embedded 
systems and includes a set of representative embedded 
application domains: Automotive and Industrial Control, 
Network, Security, Consumer Devices, Office Automation, 
and Telecommunications. We randomly selected applications 
from those domains. In addition, MiBench provides two input 
data sets: a small and a large set. We ran each benchmark 
using the large input data set. 

D&C algorithms, such as sorting algorithms, are naturally 
parallelizable algorithms. Therefore, they are the most suitable 
algorithms for parallel machines. They are naturally solved by 
recursion functions. This implies that the stack segment is 
heavily involved in the processing of these algorithms, which 
makes them appropriate for evaluating non-unified designs. 
We selected three different sorting algorithms to evaluate our 
SC-based design: Quick Sort, Merge Sort, and Heap Sort. 
Each of these algorithms was used to sort 1000, 16000, 
128000, and 1280000 elements. We studied those sorting 
algorithms for both statically and dynamically allocated 
unsorted arrays. For statically allocated arrays, the unsorted 
array is defined as a static array inside a function; therefore, 

the compiler will allocate the array to the stack segment. 
Conversely, dynamically allocated arrays are defined as 
dynamic arrays by malloc (); therefore, the array will be 
allocated to the heap segment.  

The NAS Parallel Benchmarks (NPB) include several 
applications designed for parallel supercomputers. We 
selected four applications from this workload with a standard 
problem size (class A). 

V. EVALUATION AND DISCUSSION 

A. Distribution of Stack References 

Fig. 2(a–c) show breakdowns of data memory accesses for 
different workloads. Fig. 2(a) represents applications from the 

TABLE I.  BENCHMARKS 

Benchmarks Suite Benchmarks 

Embedded 

Applications 

(MiBench) 

bitcount (bc), susan.smoothing (ss), susan.edges 

(se), susan.corners(sc), patricia(pa), stringsearch 

(sts), rijndael.dec (rdec), rijndael.enc (renc), 

adpcm.rawcaudio (rc), adpcm.rawdaudio (rd), 

CRC32 (crc), fft, fft.inverse (fft.inv) 

NAS Parallel 

Benchmarks (NPB) 
cg, mg, ep, lu 

Divand-Conquer 

Algorithms (D&C) 
quicksort (qs), mergesort (ms), heapsort (hs) 
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(a) MiBench Benchmarks 

 

(b) NPB Benchmarks 

Fig. 3.  Average Miss Rate of the  Stack and Non-Stack Cache. 

 

 

 

 

 

 

 

 

 

MiBench suite and shows that on average, 77% of data 
memory references were accessed from the stack memory 
region. For the NPB benchmarks, stack references were less 
frequent than for the MiBench workload. On average, 30% of 
the total NPB benchmark references were to the stack region; 
the maximum percentage of stack references was about 60% 
(“ep” application; Fig. 2(b)).  

The stack references were extremely high for the D&C 
algorithms (Fig. 2(c)). As stated earlier, the D&C algorithms 
are solved using recursion functions; hence, the stack region is 
repeatedly accessed during each function call. Fig. 2(c) shows 
that on average, 65% of the total accesses were to stack 
memory when the array was dynamically allocated. The 
percentage of stack references was greater than 99% when the 
array was statically allocated. These mainly refer to program 
semantics. If the array is defined as a pointer (dynamically 
allocated), then, it will be allocated to the heap (non-stack). 
Conversely, if the array is defined as static inside a function 
(statically allocated), it will be allocated to the stack region. 

Overall, these results show that the stack region is 
frequently accessed and represents most of the load/store 
references in the majority of applications.  

B. Locality of Stack and Non-Stack Caches 

Several experiments were conducted to observe the 
locality of each individual cache (SC and Non-SC) in the non-
unified data cache design. We measured the miss rate of the 
SC over its references, and that of Non-SCs with sizes of 1 to 
32 KB with 1-way (direct-mapped) and 8-way associativity. 

Because the majority of memory references represented by 
D&C algorithms are stack references, it would be unnecessary 
to compare the localities of the SC and Non-SC for this kind 
of application. Hence, we only performed locality experiments 
for MiBench and NPB workloads. Fig. 3(a) and (b) illustrate 
the average miss rate of the SC and Non-SC for the MiBench 
and NPB workloads, respectively. As expected, higher 
associativity resulted in a lower miss rate for each cache; this 
trend was more pronounced for the Non-SC. In addition, these 
results show that the SC consistently exhibited better locality 
than the Non-SC for all cache sizes tested in both benchmark 
sets. Moreover, regardless of the proportion of accesses, the 
SC achieved a hit rate greater than 99% with a relatively small 
cache. In contrast, the results for the Non-SC show that the 
miss rate decreased as the Non-SC size increased. This 
indicates that the localities of non-stack references are more 
sensitive to the cache size. 

From these results, we conclude that the locality of the SC 
was significantly high, even with a very small cache size. 
Hence, by separating stack references from other types of 
references and directing them to an additional small cache, the 
SC would provide a efficient performance without 
significantly increasing the overall capacity of the first-level 
data cache.  

C. Stack Cache Size 

In our non-unified data cache design, the choice of a 
suitable size for the SC is critical because all of the stack 

references will be restricted within that selected size. In 
addition, the SC should be as small as possible to maximize 
energy efficiency and to avoid significantly increasing the 
overall size of the L1 data cache.  

Fig. 4 shows the miss rates of the SC over its references 
for SC sizes from 1 to 4 KB with 1-way and 8-way 
associativity. Fig. 4(a) represents the SC miss rates for the 
MiBench and NPB benchmarks. As shown in Fig. 4(a), 1 KB 
was sufficient for the majority of the applications. However, in 
the “pa”, “fft”, “fft.inv”, and “mg” applications, the 1 KB SC 
exhibited a significantly higher miss rate than either the 2 or 4 
KB SC. For these applications, a 2 KB SC provided a hit rate 
of approximately 99% for 1-way associativity, except for the 
“mg” benchmark. In the case of 8-way associativity, 2 KB SC 
was significantly efficient and provided a hit rate of greater 
than 99.8%, except for the “mg” benchmark.  

We also performed experiments on workloads that 
significantly use stack segments to carefully select the size of 
the SC. Fig. 4(b) and (c) show the miss rates of the SC for 
D&C algorithms for statically and dynamically allocated 
arrays, respectively. The size of the array was varied from 
1000 elements to slightly over 1 million elements. For each 
array size, we measured the miss rates of SCs from 1 to 4 KB 
with 1-way and 8-way associativity. The SCs exhibited very 
low miss rates for both statically and dynamically allocated 
arrays. However, when the array was dynamically allocated, 
the SC miss rate was significantly lower than for the statically 
allocated array for all of the programs and array sizes tested. 
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These results were attributed to the relative proportions of 
stack references. For statically allocated arrays, almost all of 
the references were to the stack region as shown in Fig. 2(c); 
however, in the dynamically allocated case, a larger 
proportion of the references were accessed from the non-stack 
region. 

Based on these results, we selected an SC size of 2 KB. In 
most of the applications tested, the 2 KB SC provided a hit 
rate of greater than 99%. The 1 KB SC exhibited a 
significantly higher miss rate than the 2 and 4 KB SCs. The 
miss rate of the 2 KB was, also, larger than that of the 4 KB. 
However, in this case, the miss rate reduction was minor. 

D. Non-Unified vs. Unified Data Cache Architecture 

In this subsection, we discuss the miss rates of the non-
unified data cache design compared to those of a conventional 
unified data cache architecture. The non-unified design adds a 
2 KB SC to the first-level data cache. We examined the effect 
of this SC on the miss rate for data cache sizes from 1 to 32 
KB with 1-way (direct-mapped) and 8-way associativity. All 

the caches had the same associativity in all conducted 
experiments. For example, when using a direct-mapped 
organization for the data cache, a direct-mapped organization 
was also applied to both the Non-SC and SC in the non-
unified design.   

Because MiBench and NPB benchmarks exhibited more 
significant variations in their data memory reference patterns 
than D&C algorithms, we performed experiments using these 
benchmarks. Fig. 5(a) and (b) illustrate the miss rates of non-
unified and unified architectures for different data cache sizes 
with a direct-mapped and 8-way associativity for MiBench 
and NPB workloads, respectively.  

The results for the MiBench benchmarks show that for 
various data cache sizes, the non-unified design resulted in a 
significantly lower miss rate than the unified architecture for 
the majority of applications when using 1-way associativity 
(Fig. 5(a)). The “ss”, “se”, and “sc” benchmarks exhibited 
miss rate reductions of greater than 77%, for all of the cache 
sizes investigated, and the “rc” and “rd” benchmarks exhibited 
reductions of greater than 50% for cache sizes from 1 to 8 KB. 

 

 (a) MiBench and NPB Benchmarks. 

 

 

(b) Divide-and-Conquer When Array Statically Allocated. 

 

 

(c) Divide-and-Conquer When Array Dynamically Allocated. 
 

Fig. 4.  Stack Cache Miss Rate for Various Sizes with 1-way and 8-way Associativity.  
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(a) MiBench Benchmarks 

 

(b) NPB Benchmarks 
 

Fig. 5.  Unified VS Non-Unified Miss Rate for Different Data Cache sizes with 1-way and 8-way Associaitivity. U-ss and N-ss Indicate Unified and Non-
unified Architecture for "ss" benchmark repectively.  

In the case of larger associativity (8-way), we observed that 
the non-unified design only exhibited a reduced miss rate 
when the data cache was small. However, The miss rates of 
the non-unified architecture did not increase when larger 
cache sizes were used as illustrated in Fig. 5(a). The results for 
the “bc” application are not shown because 95% of its 
references are stack references, and a 1 KB SC provided a hit 
rate of almost 100% for both associativities (Fig. 4(a)). Hence, 
for applications such as “bc” and D&C algorithms, where 
stack references represent most of their accesses, a small 
cache is sufficient. Moreover, in these cases, a non-unified 
design would be significantly more energy efficient in contrast 
to a unified design that incorporates a single large cache for 
different needs of each applications.  

For NPB workloads, the non-unified design generally 
exhibited the same miss rates as the unified design for both 
associativities and provided slightly better results for small 
cache sizes (Fig. 5(b)). The maximum miss rate reduction was 
about 40% for the “ep” benchmark, and 15% for the “mg” 
benchmark when using a 1 KB with 1-way and 8-way 
associativity, respectively. For the “cg” application, the miss 
rates were the same for both architectures for 1-way and 8-
way associativity and all cache sizes; in this application, the 

most of the memory references are assigned to the non-stack 
region. 

In very few cases, the non-unified design exhibited a  
slightly higher miss rate than the unified data cache 
architecture. For example, the “pa”, “fft”, and “fft.inv” 
applications from the MiBench workload in the case of 1-way 
associativity, and the “mg” application from the NPB 
workload for both associativities. However, these increased 
miss rates were observed when the data cache size (of the 
unified design) was relatively large. The increased miss rates 
were attributed to the limited size of the SC; and as the data 
cache size was increased, these applications were processed 
more effectively and the miss rate of the unified architecture 
decreased. 

In conclusion, non-unified design consistently improves or 
maintains the same miss rate of unified data cache design on 
different data cache sizes with direct-mapped cache and 8-way 
associativity for the majority of applications of MiBench and 
NPB benchmarks.  
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VI. CONCLUSIONS AND FUTURE WORK 

The goal of future exascale computing systems is to 
achieve 1018 operations per second with a similar, or lower, 
energy consumption than that of a current supercomputer. 
Caches are fundamental parts of computer systems, because 
they alleviate the speed disparity between the processor and 
main memory. However, existing L1 cache designs account 
for a large fraction of a chip’s overall power consumption. 
Accessing a single large data cache consumes substantially 
more energy per access. We suggested a non-unified data 
cache architecture that maintains stack data in a small 
additional “stack cache”.  

We found that stack data are frequently referenced making 
them the best candidate to exploit. Our results showed that in 
high performance benchmarks, embedded benchmarks, and 
D&C algorithms, an average of 30%, 77%, and 99% of 
memory references, respectively, were stack references. In 
addition, for all of these different spectrums of stack 
references, small size of cache can provide a significant high 
hit rate. The experimental results showed that a 2 KB stack 
cache achieved a hit rate of greater than 99% for almost all of 
the benchmarks tested. 

Moreover, we investigated the overall performance of a 
non-unified data cache design in comparison to a conventional 
unified data cache design for different sizes of L1 cache. We 
observed that for both a direct-mapped cache and one with 8-
way associativity, the non-unified architecture attained the 
same or better performance for the majority of MiBench and 
NPB benchmarks with different data cache sizes. 

Overall, the results obtained in this study demonstrate that 
the stack memory region is regularly referenced in most 
applications. A small stack cache was observed to consistently 
provide high hit rates for a wide range of applications. This 
implies that diverting stack references to a separate small 
cache is a promising approach to achieve a high-performance 
and energy-efficient design for L1 data cache. The next stage 
of this work is to further study the energy consumption of the 
proposed cache architecture. 
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