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Abstract—Severe weather conditions decrease agricultural pro-
ductivity. Recent years have witnessed a plethora of IoT solutions
beneficial to various application domains. This paper presents
a predictive IoT weather station platform for smart farming.
Specifically, we built an online frost forecasting service that
collects microclimate data from weather stations in real-time and
provides frost forecasts for the next day using several machine
learning algorithms. The proposed system can effectively help
boost agricultural productivity by providing farmers with more
accurate frost forecast, thereby reducing the risk of frost damage.

Index Terms—IoT, machine learning, microclimate, frost pre-
diction

I. INTRODUCTION

Severe weather conditions decrease agricultural productivity
in many countries around the world. In the agriculture industry,
advanced decision support through IoT (Internet of Things)
technologies is gaining attention as it enables precision farm-
ing. Smart agriculture based on microclimate data analysis
helps improve productivity, avoid unnecessary costs related
to harvesting, and use proper pesticide and fertilizers [1], [2].

A microclimate is a distinctive climate of a small area
where the atmospheric conditions such as temperature and
humidity are different from those in the surrounding area due
to geographical characteristics. Table I shows a comparison of
the global climate collected at the meteorological station and
the microclimate collected at four weather stations. There is a
noticeable difference between the global and the microclimate
data in terms of RMSE (Root Mean Square Error). The
RMSEs of temperature are between 3.47 and 3.84. The RMSE
of the humidity ranges from 16.28 to 24.75. This is because
meteorological stations are located farther from the crops
whereas the microclimate is measured near the crops, hence
there is a difference in altitude, humidity, and other conditions
between the global and microclimate measures.

Among several climate effects impacting agricultural yields,
frost, especially during the flowering period, can harm the

TABLE I
COMPARISON OF MICROCLIMATE AT THE REFERENCE STATIONS AND

GLOBAL CLIMATE AT THE CLOSEST METEOROLOGICAL STATION.
Station Latitude Longitude RMSE MAX RMSE MAX

Temp Temp Humidity Humidity
S1 35.98 129.05 3.84 11.18 16.28 49.97
S2 36.03 128.98 3.58 10.76 24.75 49.3
S3 36.13 128.94 3.47 10.17 23.1 51.6
S4 36.11 128.88 3.5 11.14 23.96 52
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Fig. 1. The architecture of predictive weather station platform.

blossoms, resulting in significant crop failures [3], [4]. To
avoid this problem, Matzneller et al. [4] developed four empir-
ical functions which indicate possible frost damages on sweet
cherry buds. If there were an accurate frost forecast, it would
be possible to prevent damages from frost proactively, e.g.,
by driving a fan around the crop. Chung et al. [5] forecasted
frost using global climate, where the accuracy could have been
improved if the temperature close to the crop (microclimate)
was used. Crop yields are also sensitive to humidity.

To forecast frost more accurately, several prior studies
used microclimate data such as temperatures measured at
lower altitude, grass minimum temperature, diurnal, average
relative humidity, minimum relative humidity, mean wind
speed, etc [5], [6]. The grass temperature is measured using
thermometers just above the grass, about 10cm above ground.
In [7], the authors used the cloud cover, the atmospheric
temperature measured at midnight, and 5-day precipitation and
predicted the possibility of frost with 87% of accuracy. It is,
however, difficult to automatically gather the total amount of
cloud.

II. PROPOSED PREDICTIVE WEATHER STATION PLATFORM

Our predictive weather station platform, depicted in Fig. 1,
collects microclimate information around crops as well as
crop images and global weather information from the web.
Currently, all sensor data are collected every minute and sum-
marized as hourly averaged formats in a remote database. Solar
radiation is calculated as cumulative light intensity per day. As
shown in several recent studies, temperature inversion plays an
important role in determining the formation of precipitation.
As a result, convection produced by the heating of air from
below is limited to levels below the inversion, and then frost
is highly likely to occur.
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We use two measures of thermometer sensor data: one
collected from 10cm above the ground (T g) and the other
from 1.5m above the ground (T a). We then calculate a
temperature inversion layer using those two temperatures. The
temperature inversion, denoted as I, is calculated as follows:

∆Tt = Tg(t)− Ta(t), Ts ≤ t ≤ Te. (1)

I =
∑

∆Tt, if ∆Tt < 0. (2)

At a specific time t, ∆Tt is the difference between the grass
temperature and the air temperature. We start measuring these
temperature changes from 5 PM and continue until 11 PM
(our forecast time).

After collecting all these information and calculating ∆T ,
we performed data analysis on data patterns on days when
frost occurred by using five machine learning (ML) algorithms:
decision tree, boosted tree, random forest, support vector
machine (SVM), and regression. Details about how we applied
individual ML are as follows. Given a set of features xi and a
label yi ∈ {0, 1}, logistic regression interprets the probability
that the label is in one class as a logistic function of a linear
combination of the features, which is represented as:

fi(θ) = p(yi = 1|x) =
1

1 + exp(−θγx)
. (3)

Given the same set of features xi, and the label yi ∈ {0, 1},
SVM minimizes the loss function:

fi(θ) = max(1− θγx, 0). (4)

The decision tree and boosted tree can also be used as
a classifier for our purposes. In contrast to linear models
like logistic regression or SVM, these algorithms can model
nonlinear interactions between the features and the target
values. Boosted tree is based on a collection of base learners,
i.e., decision tree classifiers, and combines them using a
technique called gradient boosting. It should be noted that,
in this paper, we do not propose a new ML algorithm but
evaluate five widely used ML algorithms on their performance
of classifying the presence/absence of frost.

a) Evaluation: For evaluation, we collected frost data in
four regions of Yeoungcheon, South Korea, from October 1 to
November 23 in 2015. The number of actual frost occurrence
is 19 out of entire 216 observed data points (54 days per
each station). We predict the possibility of frost in the next
morning using microclimate data. We use machine learning
toolkits available in GraphLab [8] to train and evaluate five
machine learning algorithms. We use 80% data for training
and the remaining 20% for testing.

Fig. 2 shows the classification results from our dataset. As
shown in the figure, the random forest and SVM show the
highest F1 scores among all five algorithms we evaluated.
The reason algorithms like decision tree and boosted tree did
not perform well is that they are less suitable for classifying
continuous variables. Based on our analysis, the proposed
system can inform the possibilities of frost to farmers in
advance such that they can proactively take preventive actions
to protect the crops from frost damage.
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Fig. 2. Performance of proposed frost classification models.

b) User Interface: The proposed platform provides both
the web and a mobile services for farmers who can subscribe
agricultural services for their farming decisions. We forecast
at 11 PM through the web and mobile services so that farmers
can proactively implement preventive actions. For farmers who
receive forecast services automatically, they are notified with
updated, more accurate information at 1 AM. Moreover, it
provides an interface for farmers to easily provide the system
feedback for more accurate data collection. The location of
observation stations are displayed on the map, and frost
prediction/occurrence information, micro-weather information,
etc., are displayed in real time on our project website1.

III. CONCLUSION AND FUTURE WORK

The proposed platform is successfully deployed in 12
locations and is continuously collecting microclimate data.
Subscribed users are notified about accurate frost prediction
from the system. In the future, we plan to deploy other forecast
services like the spread of crop disease and consider config-
uring a weather station as a sensor node for scalability [9].
Stations are expanding and data is increasing dramatically,
so we will carry out research to improve issues such as data
compression in big data.
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