
Teraflop FFT computation for OFDM using GPGPU
Selcuk Keskin1 and Taskin Kocak2

Department of Computer Engineering, Bahcesehir University, Istanbul 34353, Turkey
Email: {selcuk.keskin1,taskin.kocak2}@eng.bau.edu.tr

Abstract—In this paper, we propose to use General Purpose
Computing on Graphical Processing Unit (GPGPU) to increase
the required throughput for multi-gbps Orthogonal Frequency
Division Multiplexing (OFDM) system. A parallel approach for
a 512-point Fast Fourier Transform (FFT) is investigated and
implemented by a general purpose parallel computing platform
called CUDA. Several optimization methods are applied and
efficient data structures are used to achieve 1 teraflop FFT
computation throughput.

I. INTRODUCTION

Next generation wireless and wired digital communication
systems have started to choose OFDM technology because
of its high speed data rates, high spectral efficiency, high
quality service and robustness. The main idea behind OFDM
is to split the data stream to be transmitted into N parallel
streams of reduced data rate and to transmit each of them
on a separate subcarrier. These carriers are made orthogonal
by appropriately choosing the frequency spacing between
them. The advantage of applying OFDM in high data rate
communication systems is a relatively long symbol duration
compared with the delay spread of the channel, in which inter-
symbol interference (ISI) can be eliminated by adding a guard
interval [1]. The realization of OFDM technique over any
communication system faces some difficulties.

Frame

detector

IQ imbalance

estimator &

corrector

CFO

corrector

Guard

interval

extraction

CFO

estimator
NCO

CFO

tracking

Channel

estimator &

corrector

FFT

De-tone

interleaver

Constellation

de-mapping

Stuff bits

extraction

FEC

decoder
De-scrambler

From analog

frontend

MAC

de-framer

To BER

tester etc.

Fig. 1: Receiver diagram of the OFDM system

OFDM is a method of encoding digital data on multiple
carrier frequencies [2]. Basic block diagram of the OFDM
system in a receiver mode can be seen in Fig. 1. FFT and
FEC decoding computations are the most time consuming
parts. Therefore, any performance gains in these blocks can
potentially improve the throughput of the whole system sig-
nificantly. The acceleration of algorithms such as these is

of critical importance for high throughput communications
systems [3].

Increasing data traffic and multimedia services in recent
years have paved the way for the development of optical
transmission methods to be used in high bandwidth DSP-
assisted optical communications systems. In this paper, we
present an FFT computation process on GPU instead of DSPs,
that can support the high-throughput requirement.

GPUs have only been used for 3D graphics rendering in
the first years of their evolution. By increasing technology
of GPUs, they offer high performance of general purpose
processing by executing thousands of threads simultaneously.
A GPU provides a parallel architecture, which combines raw
computation power with programmability [4]. GPU provides
extremely high computational throughput by employing many
cores working on a large set of data in parallel. Compute
Unified Device Architecture (CUDA), developed by NVIDIA,
is a widely used programming approach in massively parallel
computing applications [5].

II. FFT ALGORITHM DESIGN

An FFT process computes the Discrete Fourier Transform
(DFT) for a set of signal data and it produces exactly the
same result as evaluating the DFT definition directly; the only
difference is that an FFT is much faster. The DFT is obtained
by decomposing a sequence of values into components of
different frequencies. An FFT is a way to compute the same
result more quickly: computing the DFT of N points in naive
way. The difference in speed can be enormous, especially for
long data sets where N may be in the thousands or over.

If we assume that x0...xN−1 are complex numbers, Eq. 1
defines the DFT. Evaluating this definition directly requires
O(N2) operations: there are N outputs (Xk), and each output
requires a sum of N terms.

Xk =
N−1∑
n=0

xne
− 2πi

N nk k = 0, ..., N − 1 (1)

The publication by Cooley and Tukey in 1965 of an efficient
algorithm for the calculation of the DFT was a major turning
point in the development of digital signal processing [6]. Then,
various extensions and modifications were made to the original
algorithm [7]. By far the most commonly used FFT is the
Cooley-Tukey algorithm against the others like Prime-factor
FFT algorithm [8], Bruun’s FFT algorithm [9], Rader’s FFT
algorithm [10], and Bluestein’s FFT algorithm [11].

The FFT butterfly operation which is the basic calculation
element in the FFT process takes two complex points and

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

converts them into two other complex points. In the case of
the 2-point (radix-2) Cooley-Tukey algorithm, the butterfly
is simply a DFT of size-2 that takes two complex inputs
(x0, x1) which are corresponding outputs of the two sub-
transforms and gives two complex outputs (y0, y1) by using
Eq. 2. The wk is called twiddle factor. A twiddle factor in FFT
algorithms, is any of the trigonometric constant coefficients
that are multiplied by the data in the course of the algorithm.

y0 = x0 + x1w
k

y1 = x0 − x1w
k (2)

An N point signal is decomposed into N signals each
containing a single point. Each stage of FFT uses an interlace
decomposition, separating the even and odd numbered samples
[12]. The DFT of a N -point sequence can be simply calculated
from the two N/2-point DFT’s of the even index terms
x0, x2...xN−2 and the odd index terms x1, x3...xN−1 , then
those two results are combined to produce the DFT of the
whole sequence [13]–[15]. This idea can then be performed
recursively to reduce the overall runtime to O(NlogN).

A. GPGPU Architecture

GPU provides extremely high computational throughput by
employing many cores working on a large set of data in paral-
lel. Compute Unified Device Architecture (CUDA), developed
by NVIDIA, is a widely used programming approach in
massively parallel computing applications [5]. CUDA comes
with a software environment that allows developers to use C
as a high-level programming language. CUDA C provides
a simple path for users familiar with the C programming
language to easily write programs for execution by the device.
It consists of a minimal set of extensions to the C language
and a runtime library. CUDA C extends C by allowing the
programmer to define C functions, called kernels, that, when
called, are executed N times in parallel by N different CUDA
threads, as opposed to only once like regular C functions.

The NVIDIA GPU architectures consist of multiple stream
multiprocessors (SM) which consist of pipelined cores and
instruction dispatch units. During execution, each dispatch unit
can issue a numerous wide single instruction multiple data
(SIMD) instruction, which is executed on a group of cores.
Although, CUDA provides the possibility to unleash GPU’s
computational power, several restrictions prevent programmers
from achieving peak performance. The programmer should
pay attention to the hardware-based aspects to achieve near-
peak performance.

Pascal is NVIDIA’s latest architecture for CUDA compute
applications. Pascal retains and extends the same CUDA pro-
gramming model provided by previous NVIDIA architectures
such as Kepler and Maxwell. Like Maxwell, each GP102 SM
provides four warp schedulers managing a total of 128 single-
precision (FP32) and four double-precision (FP64) cores. A
Pascal GP102 in TITAN X, used in this paper, implementation
includes 28 SM units and six 64-bit memory controllers. The
SM processing core architecture of TITAN X can be seen in

Fig. 2. The six SMs are grouped into a Graphics Processing
Cluster (GPC) which has one Raster Engine.

SM

Core LD/ST SFU

Dispatch U. Dispatch U.

Warp Scheduler

Instruction Cache

96KB Shared Memory

Texture / L1 Cache

Tex

Register File (16,384 x 32-bit)

Instruction Buffer

Core Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core

Tex

Core LD/ST SFU

Dispatch U. Dispatch U.

Warp Scheduler

Register File (16,384 x 32-bit)

Instruction Buffer

Core Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core

Tex Tex

Core LD/ST SFU

Dispatch U. Dispatch U.

Warp Scheduler

Texture / L1 Cache

Tex

Register File (16,384 x 32-bit)

Instruction Buffer

Core Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core

Tex

Core LD/ST SFU

Dispatch U. Dispatch U.

Warp Scheduler

Register File (16,384 x 32-bit)

Instruction Buffer

Core Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core
Core LD/ST SFUCore Core Core

Tex Tex

Fig. 2: Pascal GP102 Streaming Multiprocessor

Compared to previous chip architectures Kepler and
Maxwell, the SMs memory hierarchy has also changed. Rather
than implementing a combined shared memory/L1 cache block
as in Kepler SMX, Pascal SM units feature a 96 KB dedicated
shared memory, while the L1 caching function has been moved
to be shared with the texture caching function. Global memory
of GPU is an off-chip memory. Whole SM can access the
global memory, but access time is the slowest.

III. GPGPU BASED PARALLEL FFT ALGORITHM DESIGN

Recent multi-gbps wireless communication specifications
such as WirelessHD [16] and IEEE802.15.3c [17] use com-
monly 512 subcarriers in their OFDM processes. Hence, we
also decided to design and implement a 512-point FFT in this
paper. A 512-point FFT process can be performed as a 9-stage
computation module, where a 2-point FFT is calculated in each
stage. To achieve better performance values, we must optimize
parallel FFT algorithm considering GPU device architecture.
One of the major optimizations for a CUDA algorithm by
considering device architecture is related with memory transfer
operations and the other one is related with threads.

A. Thread Organization

To achieve the size of 512, we will use 256 independent
threads (256×2 = 512). By computing these threads in parallel

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

on different cores, parallel computing of the FFT process will
be implemented as shown in Fig. 3. However, a kernel can
be executed by multiple equally-shaped thread blocks. The
input data will be transferred, as number of “batchsize” which
represents number of FFTs to be executed together.

Thread #255

Thread #1

Thread #0

SHARED

MEMORY

Fetch two points

Calculate

twiddle factors

Butterfly

Calculation

Store two points

SHARED

MEMORY

9
 r

ep
et

it
io

n
s

T
ra

n
sf

er
 d

at
a

fr
o

m
 g

lo
b

al
 m

em
o

ry

Transfer data to

global memory

512#

complex data

512#

complex data

512#

complex data

512#

complex data

FFT #1

FFT #2

FFT #3

FFT

#batchsize

… H
o

st
 t

o
D

ev
ic

e
m

em
o

ry
tr

a
n

sf
er

D
ev

ic
e

to
H

o
st

 m
em

o
ry

tr
a

n
sf

er

512#

complex data

512#

complex data

512#

complex data

512#

complex data

…

Fig. 3: Thread organization of the GPU parallel calculation
process

The major steps of the each stage can be summarized as
fetch two points from memory, calculate twiddle factors and
implement butterfly operations for each radix and then store
back to memory as shown in Fig. 4. The process is repeated
9 times to achieve 512-point FFT. Inputs of FFT process are
transferred host to device(global) memory (H2D), and after the
calculations, outputs on global memory are transferred from
device to host memory (D2H).

256 butterflies

256 threads

S

M

E

M

S

M

E

M

S

M

E

M

…

Stage #1 Stage #2 Stage #9

+

∗ 𝑤𝑘 +
-

+

∗ 𝑤𝑘 +
-

+

∗ 𝑤𝑘 +
-

+

∗ 𝑤𝑘 +
-

256 butterflies

256 threads

+

∗ 𝑤𝑘

+

-
+

∗ 𝑤𝑘 +
-

+

∗ 𝑤𝑘

+

-
+

∗ 𝑤𝑘 +
-

256 butterflies

256 threads

+

+

+

+

-
+

∗ 𝑤𝑘

+

+

∗ 𝑤𝑘 +
-

∗ 𝑤𝑘

∗ 𝑤𝑘

-

-

… … …

0

1

2

256

510

511

0

1

2

256

510

511

R
ea

l p
ar

t
Im

ag
in

ar
y

p
ar

t

0

1

2

256

510

511

0

1

2

256

510

511

R
ea

l p
ar

t
Im

ag
in

ar
y

p
ar

t

Fig. 4: 512-point FFT architecture with 9-stage

B. Reduction in Shared Memory Access

In the first-pass form of the algorithm, inputs were written
to the shared memory from global memory as shown in Fig.
3. In the iteration, inputs were written to registers from shared

memory and results were calculated with registers. After the
iteration, outputs were read again from shared memory and
written to global memory. To reduce shared memory access,
we changed progress. Inputs are transferred from global mem-
ory to registers. In the iteration part, calculations are done and
written to shared memory. After the calculation, the values
are transferred from shared memory to registers for the next
iteration. At the end of the iterations, outputs are already on
the registers so these values are used to calculate outputs which
are written to global memory. The new algorithmic flow for
each thread can be seen in Fig. 5.

SHARED

MEMORY

Computation

2-point

FFT

8
re

p
et

it
io

n
s

Transfer data from

global memory

Transfer data to

global memory

s

s

SHARED

MEMORY
REMOVED

Fig. 5: Illustration of one thread’s algorithmic flow after
enhancement

IV. EXPERIMENTAL RESULTS

The designed Cooley-Tukey based parallel FFT computa-
tion algorithm, so called BauFFT (Bahcesehir University Fast
Fourier Transform) is implemented with CUDA 8.0 environ-
ment and executed on NVIDIA TITAN X. All the experiments
are conducted on a 3.20 GHz Intel Core i7-960 CPU with
12GB of memory.

The data copy time between host and device is excluded
from our measurements. Different number of batchsize is
evaluated to show the effect on performance of multiple
FFTs with the same sizes. The calculation time per FFT is
reduced by increasing batchsize as seen in Fig. 6. When
batchsize is 4096 and higher, the performance is nearly
the same. A single 512-point FFT signal with 32-bit data
representation is calculated within 23 ns computation time by
using BauFFT code on Pascal architecture based TITAN X
GPU. The computation throughput of the FFT block for peak

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

256 512 1024 2048 4096 8192 16384 32768
20

23

26

29

32

35

38

41

44

47

50

53

56

Batch size

C
al

cu
la

ti
o

n
 T

im
e

p
er

 F
F

T
 (

n
s)

256 512 1024 2048 4096 8192 16384 32768
450

500

550

600

650

700

750

800

850

900

950

1000

1050

C
o

m
p

u
ta

ti
o

n
 T

h
ro

u
g

h
p

u
t

(G
fl

o
p

s)

Time
Throughput

Fig. 6: The performance of the BauFFT code on GPU

performance becomes as

5× 512× 9

23× 10−9 sec
=

23040

23× 10−9 sec
= 1TF lops (3)

Our GPU based FFT algorithm can be compared with
NVIDIA’s cuFFT algorithm. As we can see from Fig. 7, we
perform better than cuFFT. Moreover, cuFFT is a closed source
algorithm. Before calling cuFFT algorithm, a plan function is
executed by using the transform size, data type and number
of transforms. The process must be waited until this plan
function is finished. In the other words, the next process in the
OFDM system cannot be started. Considering to accelerate all
processes in the OFDM system by GPU, only one kernel can
be used to implement whole OFDM process without too much
kernel initialization overhead for each process.

0

10

20

30

40

50

60

70

80

90

100

256 512 1024 2048 4096 8192 16384 32768

Th
ro

u
gh

p
u

t
(G

b
p

s)

Batch size

cuFFT

BauFFT

Fig. 7: The performance comparison between BauFFT and
NVIDIA’s cuFFT

V. CONCLUSION AND FUTURE WORK

A GPGPU-based 512-point FFT algorithm is proposed in
this paper. Global memory accesses are reduced and data
representation is improved to use memory coalescing. The flow
of BauFFT algorithm is modified to reduce passed of shared
memory. As a result, our algorithm achieves over 1 TFlops
FFT computation throughput.

The result shows that GPUs can efficiently calculate FFT
in OFDM system. We would like to implement FEC decoding
on GPU which is the other time consuming part of an OFDM
receiver.

ACKNOWLEDGMENT

A part of this work is financially supported by KDDI R&D
Laboratories Inc., Japan. As a member of CUDA Research
Center, we also acknowledge the support of NVIDIA Corpo-
ration with the donation of the GPU used for this research.

REFERENCES

[1] M. Yoshida and T. Taniguchi, “An LDPC-coded OFDM receiver with
pre-FFT iterative equalizer for ISI channels,” in IEEE 61st Vehicular
Technology Conference, vol. 2, May 2005, pp. 767–772.

[2] V. Kanwar, H. Thakur, and N. Sharma, “Performance Evaluation of
OFDM System under Various Modulation Techniques and Various Chan-
nels,” International Journal of Research in Engineering & Advanced
Technology, vol. 1, no. 3, pp. 1–5, 2013.

[3] C.-H. Peng, K.-T. Shr, M.-H. Lin, and Y.-H. Huang, “A baseband
receiver for optical OFDM systems,” in International Symposium on
VLSI Design, Automation and Test (VLSI-DAT), April 2011, pp. 1–4.

[4] J. B. Srivastava, R. Pandey, and J. Jain, “Implementation of Digital Sig-
nal Processing Algorithm in General Purpose Graphics Processing Unit
(GPGPU),” International Journal of Innovative Research in Computer
and Communication Engineering, vol. 1, no. 4, pp. 1006–1012, 2013.

[5] D. B. Kirk and W.-M. W.Hwu, Programming Massively Parallel Pro-
cessors, 2nd ed. Morgan Kaufmann, 2012.

[6] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Mathematics of Computation, vol. 19, no. 90,
pp. 297–301, 1965.

[7] J. W. Cooley, P. A. W. Lewis, and P. D. Welch, “Historical notes on the
fast Fourier transform,” Proceedings of the IEEE, vol. 55, no. 10, pp.
1675–1677, 1967.

[8] I. J. Good, “The Interaction Algorithm and Practical Fourier Analysis,”
Journal of the Royal Statistical Society, Series B, vol. 20, pp. 361–372,
1958.

[9] G. Bruun, “z-Transform DFT filters and FFTs,” IEEE Trans. on Acous-
tics, Speech, and Signal Processing, vol. 26, no. 1, pp. 56–63, 1978.

[10] C. Rader, “Discrete Fourier transforms when the number of data samples
is prime,” Proceedings of the IEEE, vol. 56, no. 6, pp. 1107–1108, 1968.

[11] L. I. Bluestein, “A linear filtering approach to the computation of
discrete Fourier transform,” IEEE Trans. on Audio and Electroacoustics,
vol. 18, no. 4, pp. 451–455, 1970.

[12] S. W. Smith, The scientist and engineer’s guide to digital signal
processing. California Technical Publishing, 1997.

[13] E. O. Brigham, The fast Fourier transform and its applications, 1st ed.
Prentice-Hall, Inc., 1988.

[14] A. V. Oppenheim and R. Schafer, Discrete-Time Signal Processing,
3rd ed. Prentice-Hall, Inc., 2009.

[15] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal
Processing, 1st ed. Prentice-Hall, Inc., 1975.

[16] (2017) The WirelessHD Consortium. [Online]. Available: http:
//www.wirelesshd.org/

[17] (2017) IEEE standards association. [Online]. Available: http://standards.
ieee.org/findstds/standard/802.15.3c-2009.html

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

