
A Fast and Efficient Parallel Algorithm for
Pruned Landmark Labeling

Qing Dong,1 Kartik Lakhotia,2 Hanqing Zeng,2 Rajgopal Kannan,3 Viktor Prasanna,1,2 Guna Seetharaman4

Department of Computer Science,1 Ming Hsieh Department of Electrical Engineering,2 University of Southern California
US Army Research Lab-West3

US Naval Research Laboratory4

{qingdong, klakhoti, zengh, rajgopak, prasanna}@usc.edu, guna@nrl.navy.mil

Abstract—Hub labeling based shortest distance querying plays
a key role in many important networked graph applications, such
as route planning, socially-sensitive search and web page ranking.
Over the last few years, Pruned Landmark Labeling (PLL)
has emerged as the state-of-the-art technique for hub labeling.
PLL drastically reduces the complexity of label construction by
pruning Shortest-Path Trees (SPTs). However, PLL is inherently
sequential, as different SPTs must be constructed in a specific
order of source vertices to ensure small label size. Particularly,
for large graphs, it takes significant processing time to construct
even pruned SPTs from all vertices in the graph. While there
are many works on parallelizing single source shortest path,
these solutions cannot be directly used for PLL, as pruning and
label querying introduce significant additional complexity while
restricting parallelism within an SPT.

In this paper, we propose a novel, fast and efficient algorithm
to significantly accelerate PLL on large graphs based on a two-
level parallelization of SPTs: intra- and inter-tree. For intra-
tree, we generate pruned SPTs based on a modification of
the Bellman-Ford (BF) algorithm. We further optimize BF to
reduce SPT label querying and initialization costs. We implement
our algorithm using the recently proposed Graph Processing
Over Partitions (GPOP) which dramatically improves cache-
efficiency and DRAM communication-bandwidth. When pruned
SPTs become very small and parallelizing individual SPTs is
not advantageous, we switch to inter-tree parallelization and
construct multiple trees concurrently in a batch. Experiments
conducted on a 36 core (2-way hyperthreaded) Intel Broadwell
server show that on some datasets, our proposed parallel algo-
rithm can achieve greater than 35.1× speedup over state-of-the-
art sequential algorithm.

I. INTRODUCTION

Computing the shortest distance between nodes in a graph
or network is a key task in many applications, for example, (a)
in social and web networks - for recommendations and node
ranking [1], (b) in knowledge graphs - for detecting concept
similarities [2], and (c) in transport networks - for distance-
sensitive navigation [3].

Hub labeling [4][5][6] has become the state-of-the-art pre-
processing technique for low-response time shortest distance
querying. Pruned Landmark Labeling (PLL) is a key step in
many hub labeling algorithms and is also an application of
interest in DARPA’s HIVE program for accelerating graph an-
alytics. However PLL, which is based on Dijkstra’s algorithm
is inherently sequential. As graphs grow ever larger, hub label
preprocessing becomes a major bottleneck for shortest path
query processing. For example, we saw that the runtime of

sequential PLL exceeded 24 hours for a 1.6 million node
social network graph (actor, see Section V). To the best of
our knowledge, there have been no significant efforts towards
accelerating PLL by taking advantage of modern multi-core
processing architectures. In this paper, we present a novel, fast
and efficient algorithm for accelerating PLL using a two-fold
parallelization approach: intra-tree parallelization (parallelize
computations within a Shortest Path Tree (SPT)) and inter-
tree parallelization (parallelize computations across multiple
SPTs).

For intra-tree parallelization, we first provide an algorithm
to construct SPTs based on a modification of the Bellman-Ford
(BF) algorithm. Unfortunately, a straightforward replacement
of Dijkstra’s by BF can radically increase the number of
label queries and heavily deteriorate performance. Thus we
propose novel optimizations to ensure that the number of
label queries remains the same as in sequential Dijkstra-
based PLL. Further, we parallelize the optimized algorithm
using the recently proposed Graph Processing Over Partitions
(GPOP) [7][8]. GPOP provides improved cache performance
and enables lock-free access to each vertex. This becomes
especially crucial for accelerating PLL as we can query and
update labels without worrying about the conflict between
multiple threads. We also note that most labels tend to be
added during the first few SPTs. Consequently, the size of the
graph explored is substantially reduced in subsequent SPTs
and there is little intra-tree parallelism to exploit.

We therefore propose inter-tree parallelization to batch
process multiple later stage SPTs and prove theoretically that
the resulting labeling is correct (can answer any shortest path
query correctly). To better exploit the benefits of intra- ver-
sus inter-tree parallelization, we explore the optimum switch
points between the two modes through empirical analysis
on various real-life datasets. Finally, we demonstrate the
efficiency of the proposed methods through experiments on
various large-scale real-world networks. We summarize the
major contributions of our work below:

• We develop a novel algorithm for construction of individ-
ual SPTs (intra-tree parallelization) through a modifica-
tion of Bellman-Ford coupled with a novel GPOP-based
implementation that includes specific optimizations for
efficient label querying during tree construction.

• We develop an inter-tree parallelization method to batch

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

process multiple SPTs in parallel when tree size becomes
small.

• We show experimentally that pure intra-tree paralleliza-
tion can achieve up to 32.1× speedup for constructing
all SPTs and up to 103× speedup for the first 0.1% of
SPTs, using 64 threads.

• We also show that employing hybrid intra- and inter-tree
parallelization can provide up to 35.1× speedup with a
negligible increase in label size.

The rest of the paper is organized as follows. Section II
introduces some related work. Section III provides definitions
and notations used in the paper. In Section IV, we explain our
design of the parallel algorithm. We show experimental results
in section V with conclusions in Section VI.

II. RELATED WORK

A. Shortest Distance Queries

Dijkstra’s algorithm [9] answers shortest distance queries
with a greedy strategy by expanding to neighbors repeatedly.
With an efficient implementation of min-heap (e.g. Fibonacci
heap), Dijkstra’s algorithm takes O(|E|+|V | log |V |) time [10]
in the worst case (where |V | and |E| are the number of vertices
and edges). It is a near-linear time algorithm but cannot be
parallelized. Bellman-Ford [11][12] is another algorithm to
compute shortest distance and able to process graphs with
negative weights. The time complexity for Bellman-Ford is
O(|V | · |E|) in the worst case which is more than Dijkstra’s.
However, unlike Dijkstra’s algorithm, Bellman-Ford algorithm
is efficiently parallelizable.

Following the idea of network traversal, many algorithms
have been proposed to answer shortest distance queries, e.g.
A* [13], CH [14], TNR [15] and REAL [16]. Most of them
abstract distance information to build various indices. These
auxiliary indices are then used to accelerate shortest distance
queries. One extreme solution is to precompute the shortest
distances for all pairs of vertices. The queries can be answered
very fast but the index size is O(|V |2) which is infeasible
to store for large graphs [5]. Another line of research is to
answer the shortest distance without network traversal where
hub labeling techniques are the commonly used.

B. Hub Labeling Algorithms

By constructing a labeling for each vertex (a labeling usu-
ally contains certain hubs and the distance between the vertex
and the hub), the shortest distance can be easily retrieved
by checking the labels of source and destination vertices.
Cohen et al. proposed the first hub labeling algorithm [17].
Abraham et al. then proposed hierarchical hub labeling to
speedup preprocessing and find smaller labels [4]. Akiba et
al. proposed Pruned Landmark Labeling (PLL) [18][5] and
Delling et al. proposed labeling compression techniques [6].

III. PRELIMINARIES

A. Notations

Table I lists some important notations used in this paper.

TABLE I: Frequently used notations

symbol description
G = (V,E,W) a graph with vertices V , edges E and edge weights W

SP (s, t) the shortest path from s to t
d(s, t) the shortest distance from s to t
O an ordering of all vertices in V
O(i) the i-th vertex in the ordering O

Lf/b(v) the forward/backward labels of v
Li
f/b

(v) the forward/backward labels of v after iteration i

B. Problem Definition

This paper studies the following problem: given a graph
G = (V,E,W) and an ordering O of all vertices indicating
their importance based on some heuristic, design a parallel
algorithm to efficiently construct an index (2-hop cover label-
ing) to answer shortest distance queries between an arbitrary
pair of vertices.

C. Pruned Landmark Labeling

The hub labeling algorithm and most of its variants follow a
two-step procedure (see Fig.1). The first step ranks all vertices
in the order of their importance using heuristics (e.g. degree
[18][19], betweenness [4] or closeness [18]). The second step
generates labeling from pruned SPTs constructed in the order
determined by the first step. The PLL [18] generates correct
and minimal sized labeling for a given ordering. It has been
generally accepted as the most efficient method to conduct step
2 [20]. Although optimal ordering would result in minimum
average label size, it is NP-hard [17] to find such ordering
resulting in the use of heuristics for step 1.

Fig. 1: Two-step procedure of hub labeling algorithm

From the most important vertex to the least important
vertex, PLL generates a pruned SPT. The pruning happens
when the shortest distance to a node is obtained by label query
(there exists a more important vertex serving as a hub between
the node currently visited and the root node of the SPT).
The neighbors of pruned nodes are not explored, reducing
the number of vertices touched. In undirected graphs, only
one SPT will be generated from each root node. In directed
graphs, forward SPTs will be generated based on the original
graph to construct backward labels while backward SPTs will
be generated based on the reverse graph to construct forward
labels. The shortest distance between an arbitrary pair of
vertices s and t can be found by searching the forward labels
of s and backward labels of t. Akiba et al. [18] proved that
PLL generates correct (can answer any shortest path query

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

correctly) and minimal (deleting any hub violates the cover
property).

Cover property: for any s and t, there must be some
common hub in Lf (s)∩Lb(t) which is included in one shortest
path from s to t, which means we can always get correct
shortest distance by finding the minimum distance by the
merge-join of Lf (s) and Lb(t).

Akiba et al. [18] employ Dijkstra’s algorithm to construct
SPTs which is completely sequential. Step 1 can be imple-
mented using various heuristics such as degree-based ordering,
PageRank, etc. For most of these heuristics, the total cost of
step 1 is much smaller than step 2. Hence, accelerating the
second step (i.e. PLL) is the key to reduce the preprocessing
cost of hub labeling algorithms.

D. Graph Processing Over Partitions (GPOP)

Recently, Lakhotia et al. proposed a cache- and work-
efficient framework for graph processing over partitions [7]
[8]. Different from current vertex-centric and edge-centric
methods, GPOP divides the vertex set V into k disjoint
partitions and implements each iteration of a graph algorithm
in a two-phase (Gather-Apply-Scatter, GAS) model.

In the scatter phase, the out edges of active vertices in a
partition are streamed in and vertex data is communicated
to other partitions in the form of messages. In the gather
phase, incoming messages of a partition are streamed in and
the vertex data is updated as per a user-defined function.
GPOP processes multiple partitions in parallel during both of
the phases. Moreover, each partition is processed by a single
thread and has its own distinct memory space to write outgoing
messages.

GPOP improves the cache performance by exploiting the
locality of partitioning. For PLL, GPOP can achieve good
scalability by enabling label query and insertion without locks
and atomics. It also uses a hybrid of source and destination
centric communication modes in a way that ensures work-
efficiency of each iteration and simultaneously boosts high
bandwidth sequential memory accesses.

IV. ALGORITHM

A. Overall design

PPL constructs O(|V |) SPTs. Due to pruning, the workload
of each SPT’s construction varies. In general, most of the
labels are added in the first few SPTs (see Fig.3). Therefore,
we exploit intra-tree parallelization for the construction of
large initial SPTs. Subsequently, as SPTs become small, the
available parallelism within each tree becomes limited. To
construct such SPTs, we exploit inter-tree parallelization and
build each tree using sequential Dijkstra’s algorithm. The
overall flow of the algorithm is shown in Fig. 2.

B. Intra-tree parallelization

In this section, we introduce the proposed intra-tree parallel
algorithm for PLL which is based on the Bellman-Ford algo-
rithm. Since pruning is effectively used in the original Dijkstra-
based algorithm to reduce the running time, we first modify

Fig. 2: Overall design of the hybrid intra- and inter-tree
parallel PLL algorithm

Bellman-Ford to enable pruning. As opposed to conventional
Bellman-Ford, we update the shortest distance of a node by the
minimum of distance obtained by label query and by relaxing
the edge with an active neighbor. Further, if the former is
selected, the node under consideration is not activated to avoid
exploring its neighbors.

We use the GPOP framework [8] to parallelize the proposed
algorithm. In each iteration of Bellman-Ford, GPOP does
work proportional to active edges. Thus, parallel Bellman-
Ford using GPOP efficiently represents the pruning process.
Algorithm 1 shows PLL implementation using GPOP APIs.

For the proposed algorithm, we implement the following
optimizations to improve the efficiency.

1) Avoid repeated queries: When the program is construct-
ing a single SPT, one vertex can become active multiple times.
Every time it becomes active, the updated distance will be
compared with the queried distance from the current labeling.
To avoid repeated queries, we store the queried distance to
the distance array. When a vertex becomes active again, new
distance is simply compared with the value in distance array.
Therefore, even though a vertex may become active several
times, their labels are only queried once. Hence, the total work
done in label queries is the same as the original sequential
algorithm.

2) Asynchronous update: GPOP adopts a 2-phase Scatter-
Gather model. The default Bellman-Ford algorithm in GPOP is
synchronous in which all active nodes first send their distance

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

Algorithm 1 Pruned Bellman-Ford algorithm using GPOP
APIs

Global variables: srcId, distance
1: procedure SCATTERFUNC(node)
2: return distance[node]
3: procedure REINIT(node)
4: return false
5: procedure GATHERFUNC(updateVal, destId)
6: queriedDis = label.query(srcId, destId)
7: if updateVal < distance[destId] then
8: if updateVal < QueriedDis then
9: distance[destId] = updateVal

10: label.add(destId, srcId, updateVal)
11: Return true
12: else
13: distance[destId] = queriedDis
14: Return false
15: else
16: Return false
17: procedure APPLY(node)
18: return true
19: procedure APPLYWEIGHT(updateVal, weight)
20: return updateVal + weight
21: function MAIN
22: Graph G
23: initialize(G, filename)
24: initBin(G)
25: for i from 0 to |V | do
26: srcId = order[i]
27: distance={∞,∞,∞, ...∞}
28: Frontier{srcId}
29: loadFrontier()
30: while G→ FrontierSize > 0 do
31: GPOP(G)

to neighbors and in the second phase, the neighbors compute
and update their own distance. Consequently, any update to a
node’s distance value is only visible in the next iteration. We
replace the default mode by asynchronous update where active
nodes scatter address of the distance values. This optimization
increases the rate of convergence of Bellman-Ford algorithm
to reduce the running time.

3) Avoid unnecessary re-initialization: In the proposed
algorithm, all the values in the distance array are set to be
infinity before each SPT construction. However, since pruning
techniques are used, a lot of the values in the array keep
untouched. In this case, re-initializing the whole array before
each SPT construction is not efficient. Instead, we record the
vertices whose value has been changed and only re-initialize
these vertices.

C. Inter-tree parallelization

Due to pruning, the size of SPTs reduces as the algorithm
proceeds. For example, Fig.3 shows that most of the labels
for coAuthor (see in V-A2) dataset are added in the first

Fig. 3: Number of labels added in each SPT (coAuthor)

few SPTs. The number of labels added also reflects the size
of SPT and the number of nodes explored during the SPT
construction. If the size of SPT is very small, there is little
parallelism to exploit and the overheads kill the benefits
of parallelizing an individual SPT. Therefore, to accelerate
construction of subsequent SPTs in PLL, we propose the inter-
tree parallelization method (see in Algorithm 2).

We construct multiple trees concurrently in a batch of
size b. In other words, when we have finished i SPTs and
obtained Li

f/b, we start constructing trees i + 1 to i + b
using Dijkstra’s algorithm, on concurrent parallel threads. As
a result, tree i + j may not have the knowledge of trees
i + 1 to i + j − 1 and redundant labels could be inserted.
To avoid large label size due to this redundancy, we switch
to inter-tree parallelization only when SPTs become very
small. Consequently, the addition of redundant labels results
in negligible increase in overall average label size. To balance
the load among threads, we keep the batch size to be at least
8 times of the number of threads.

Algorithm 2 Inter-tree parallelization

labelingi: labeling after i-th SPT construction
PushListi: result data structure of i-th SPT

1: for k ∈ [i+ 1, i+ b) do in parallel . Inter-tree
2: PushListk = PPL(Labelingi, k)
3:
4: for all k ∈ [i+ 1, i+ b) do
5: labelingk ← push(labelingk−1, PushListk)

We will prove below that the algorithm can still generate
correct labeling (can answer any shortest distance correctly)
if not minimum (with no redundant labels).

1) Proof of correctness: In this part, L represents the
labeling of the proposed algorithm while Lo represents the
labeling of the original algorithm. Let’s say we start inter-tree
parallelization from SPTi+1. Since Li+1

f/b takes Li
f/b as input,

Li+1
f/b keeps the same with Loi+1

f/b . For SPTi+j (2 ≤ j ≤ b),

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

Li+j
f/b takes Li

f/bas input while Loi+j
f/b takes Loi+j−1

f/b as input.
In the original algorithm, O(i+j) (the i+j-th vertex in order-
ing O) is pushed to the labeling of vertex t if d(O(i+j), t) has
not been covered by Li+j−1

f/b . Since Li
f/b contains fewer labels

than Loi+j−1
f/b , d(O(i+ j), t) has not covered by Li

f/b either.
Therefore, the proposed algorithm will also push O(i+ j) to
the labeling of vertex t. As we collect all the labels added in
the batch to Li+b

f/b, Li+b
f/b contains all of the labels in Loi+b

f/b and
any query to Li+b

f/b and Loi+b
f/b give same result (which means

the proof can be easily extended to later batches as well).
Thus, the proposed algorithm generates correct labeling.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

1) Platform and Environment: We implement our parallel
algorithm using C++ and OpenMP (version 4.5), which are
consistent with the implementation of GPOP [8]. The codes
are compiled by g++ 4.8 with -O3 flag. We use a dual-
socket Broadwell server equipped with two 18-core Intel
Xeon R© E5-2695 v4 processors@ 2.1 GHz as our experimental
platform which has 1 TB main memory with 55.1GBps copy
bandwidth and 64.2 GBps add bandwidth.

2) Datasets: We use various types of graphs for evaluation.
Table II summarizes the characteristics of the graphs. They are
categorized into complex networks (e.g. social networks and
hyperlink networks) and road networks. The ordering step uses
vertex-degree as a heuristic for complex networks [21], and
betweenness-centrality as a heuristic for road networks [20].

TABLE II: Input graph datasets

Type Name |V | |E| Avg. Deg

Complex
coAuthor [22] 227,320 814,134 3.58
Actor [23][24] 382,219 33,115,812 86.64
coPaper [22] 540,486 15,245,729 28.21

Road FLA [25] 1,070,376 2,712,798 2.53

3) Baseline Algorithm: We use the sequential Dijkstra-
based PLL [21] as the baseline since our work is the first
study on parallelizing PLL to the best of our knowledge.

B. Evaluation of Intra-tree Parallelization

In this section, we evaluate the performance of our algo-
rithm by exploiting intra-tree parallelization only. In other
words, we construct all SPTs one by one in serial, and paral-
lelize the construction of each tree by the pruned Bellman-Ford
algorithm described in Algorithm 1.

1) Runtime for the first few SPTs: According to Figure 3,
most of the workload is due to the construction of the very
first few SPTs. Therefore, in Table III, considering the running
time of the first 0.1% of SPTs’ construction, we compare our
pure intra-tree parallel algorithm (using 1 to 64 threads) with
the sequential PLL implementation (denoted as “Dij”).

Compared with the Dijkstra-based sequential algorithm,
the inter-tree parallel program achieves up to 103× speedup
for the constructions of first few SPTs (using 64 threads).
Comparing the runtime of the intra-tree parallel program using
1 to 64 threads, the proposed program shows good scalability.

In Table III, for many of the datasets, even with one thread,
our parallel algorithm is faster than the baseline sequential
algorithm. For each SPT construction, the baseline imple-
mentation based on Dijkstra’s algorithm is of computation
complexity O(|V | log |V |+ |E|), whereas our implementation
based on Bellman-Ford algorithm is of O(|V | · |E|). From the
total workload perspective, our proposed algorithm is more
efficient than the baseline for dense and small-diameter graphs.

TABLE III: Runtime for the first 0.1% SPTs of the
sequential Dijkstra-based algorithm and intra-tree parallel

algorithm (Ti indicates the runtime (s) using i threads)

Dataset Dij T1 T2 T4 T8 T16 T32 T64
coAuthor 80 23 17 11 8 6 5 5

actor 2684 328 239 140 76 45 28 26
coPaper 2204.28 582 557 278 149 84 50 47

FLA 52 269 201 179 148 127 122 145

2) Effect of Various Optimizations: We proposed three op-
timizations to improve the efficiency in Section IV-B. Here we
test the effect of various optimization using the coAuthor and
FLA datasets as representatives of complex and road networks,
respectively. Table IV summarizes the runtime comparison un-
der various settings. Each of the experiments executes all SPTs
construction using 16 threads on the parallel platform. Below
we summarize the notations used: (i). Query methods “r”/“nr”:
repeated/non-repeated queries (Section IV-B1). (ii). Update
methods “asy”/“sy”: asynchronous/synchronous updates (Sec-
tion IV-B2). (iii). Re-initialization methods “all”/“touched”:
“all” means to re-initialize the entire distance array with
infinity. “touched” means to re-initialize the touched vertices
only (Section IV-B3).

TABLE IV: Effect of various optimizations on the runtime
of intra-tree parallel PLL

Dataset update re-init query runtime (s)
coAuthor sy touched nr 70
coAuthor sy all nr 108
coAuthor sy touched r 79
coAuthor asy touched nr 70

FLA sy touched nr 752
FLA sy all nr 1627
FLA sy touched r 803
FLA asy touched nr 741

The experimental results in Table IV show the effectiveness
of our various optimization techniques. Specifically, the execu-
tion time is reduced by 1.12× and 1.06× due to the avoidance
of repeated queries. The execution time is reduced by 1.54×
and 2.16× due to the re-initialization on touched vertices only.
The execution time is reduced by 1.04× on FLA due to the
asynchronous updates. The execution time does not benefit
much from asynchronous updates for the coAuthor dataset
since complex networks are of smaller diameters.

C. Evaluation of Hybrid Inter- and Intra-Tree Parallelization

Since most of the labels are added during the construction
of the first few SPTs, SPT construction afterward only need
to traverse a small fraction of the entire graph. Hence, the

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

TABLE V: Execution time (s) and average label size of PLL using different algorithms

Dataset
Dijkstra-based

algorithm intra-tree parallelization inter- & intra-tree parallelization

runtime average label
size

runtime
(1 thread)

runtime
(64 threads)

average label
size (64 threads) switch point runtime

(1 thread)
runtime

(64 threads)
average label

size (64 threads)
coAuthor 537 273.106 424 193 273.106 0.005 496 44 277.482

actor >24h x 51669 2695 1135.1 0.1 55084 2464 1136.41
coPaper >24h x >24h 14865 3629.43 0.2 >24h 13001 3636.18

FLA 99 67.875 377 1968 67.875 0.005 345 273 74.8023

Fig. 4: The runtime and labeling size of hybrid intra- and
inter-tree parallel PLL algorithm with different switch points

intra-tree parallelism becomes limited and the overheads kill
the benefits of parallelizing an individual SPT. Therefore, we
propose a hybrid parallelization scheme combining intra- and
inter- SPT parallelization. Specifically, for the construction of
the first γ · |V | number of SPTs (γ is the switch point of
intra- and inter- tree parallelization), we exploit the intra-tree
parallelization by our pruned Bellman-Ford algorithm. And
for the remaining (1− γ) · |V | number of SPTs, we construct
multiple trees in parallel, where each tree is built by the
sequential Dijkstra’s algorithm.

1) Effect of switch point: From the running time perspec-
tive, there exists an optimal switching point determined by
γopt. The value of γopt depends on the characteristic of the
input graph. Below we use the coAuthor dataset to explore
the effect of γ. As shown in Figure 4, when using 64 threads,
we can achieve up to 4.38× speedup compared with the
implementation using intra-tree parallelization only. As for
label size, there is only a minor increase on label size, as
expected. As an example, even when γ is as small as 0.5%,
there is only 1.6% of increase on average label size.

2) Performance: We measure the runtime of sequential
Dijkstra-based algorithm (using a single core of experiment
platform), pure intra-tree parallel algorithm (using 1 and 64
threads) and hybrid intra- & inter-tree parallel algorithm (using
1 and 64 threads). Detailed result is shown in Table V.
For complex networks, pure intra-tree parallelization provides
2.78× to > 32.1× speedup using 64 threads (compared with
Dijkstra-based algorithm). By combining inter-tree paralleliza-
tion, the algorithm achieves 1.1× to 4.38× additional speedup.

Both of the intra-tree parallel algorithm and the hybrid

algorithm show good scalability for large graphs like actor
and coPaper. By increasing number of threads from 1 to 64,
the pure intra-tree parallel algorithm achieves up to 19.17×
speedup and the hybrid parallel algorithm achieves up to
22.3× speedup.

For road networks, the running time of parallel algorithm
is larger than the Dijkstra-based algorithm. The reason is that
the road networks usually have a large diameter and small
average degree which provides little intra-tree parallelism. In
such cases, small γ (switch to inter-tree parallelization earlier)
usually helps to reduce the runtime.

VI. CONCLUSION & FUTURE WORK

In this paper, we developed one of the first parallel Pruned
Landmark Labeling (PLL) algorithm that combines the ben-
efits of intra-tree and inter-tree parallelization. For intra-tree
parallelization, we developed a modified Bellman-Ford based
algorithm with optimizations and parallelized it using the
recently proposed Graph Processing Over Partitions (GPOP).
For inter-tree parallelization, we set aside cross-loop depen-
dency and processed multiple SPTs as a batch. Our hybrid
PLL algorithm adaptively transitions from intra- to inter-
tree parallelism in a way that ensures high scalability with
negligible increase in label size.

We observe that intra-tree parallelization can provide up
to 32.1× speedup over the state-of-the-art (sota) sequential
algorithm [5] and a speedup of more than 35.1× can be
achieved by combining inter-tree parallelism. For some large
graphs, while the state-of-the-art does not finish in a day,
our parallel algorithm computes labeling in less than an
hour. However, we see that in FLA road network (which
is characterized by large diameter), our parallel algorithm is
slower than the sequential algorithm. This is because Bellman-
Ford does more work (O(|E| · |V |)) than the Dijkstra’s
algorithm (O(|V | log |V | + |E|)) for constructing an SPT. In
the future, we would like to explore pruning in work-efficient
shortest path algorithms, such as delta-stepping [26].

Further, we studied only weighted graphs in this paper. For
unweighted graphs, pruned Breadth-First Search (BFS) is used
to compute PLL [18]. We believe that for BFS, more efficient
techniques can be explored to employ inter-tree parallelization.
Due to inter-tree parallelization, our current parallel algorithm
does not guarantee minimum label size for a given ordering.
Reducing label size to imitate the output of the sequential
algorithm is another direction that can be pursued in future
research.

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

ACKNOWLEDGMENT

This material is based on work supported by the Defense
Advanced Research Projects Agency (DARPA) under Con-
tract Number FA8750-17-C-0086, National Science Founda-
tion (NSF) under Contract Numbers CNS-1643351 and ACI-
1339756 and Air Force Research Laboratory under Grant
Number FA8750-15- 1-0185. Any opinions, findings and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of DARPA, NSF or AFRL. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

REFERENCES

[1] T. Carnes, C. Nagarajan, S. M. Wild, and A. Van Zuylen, “Maximizing
influence in a competitive social network: a follower’s perspective,”
in Proceedings of the ninth international conference on Electronic
commerce. ACM, 2007, pp. 351–360.

[2] P. Shiralkar, A. Flammini, F. Menczer, and G. L. Ciampaglia, “Finding
streams in knowledge graphs to support fact checking,” in Data Mining
(ICDM), 2017 IEEE International Conference on. IEEE, 2017, pp.
859–864.

[3] T. Abeywickrama and M. A. Cheema, “Efficient landmark-based can-
didate generation for knn queries on road networks,” in International
Conference on Database Systems for Advanced Applications. Springer,
2017, pp. 425–440.

[4] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “Hier-
archical hub labelings for shortest paths,” in European Symposium on
Algorithms. Springer, 2012, pp. 24–35.

[5] T. Akiba, Y. Iwata, K.-i. Kawarabayashi, and Y. Kawata, “Fast shortest-
path distance queries on road networks by pruned highway labeling,” in
2014 Proceedings of the Sixteenth Workshop on Algorithm Engineering
and Experiments (ALENEX). SIAM, 2014, pp. 147–154.

[6] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck, “Robust
distance queries on massive networks,” in European Symposium on
Algorithms. Springer, 2014, pp. 321–333.

[7] K. Lakhotia, R. Kannan, and V. K. Prasanna, “Accelerating pagerank
using partition-centric processing,” in 2018 USENIX Annual Technical
Conference (Usenix ATC). USENIX, 2018.

[8] K. Lakhotia, S. Pati, R. Kannan, and V. Prasanna, “GPOP: A cache-and
work-efficient framework for graph processing over partitions,” arXiv
preprint arXiv:1806.08092, 2018.

[9] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[10] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their
uses in improved network optimization algorithms,” J. ACM,
vol. 34, no. 3, pp. 596–615, Jul. 1987. [Online]. Available:
http://doi.acm.org/10.1145/28869.28874

[11] R. Bellman, “On a routing problem,” Quarterly of applied mathematics,
vol. 16, no. 1, pp. 87–90, 1958.

[12] L. R. Ford Jr, “Network flow theory,” RAND CORP SANTA MONICA
CA, Tech. Rep., 1956.

[13] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[14] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A
search meets graph theory,” in Proceedings of the sixteenth annual ACM-
SIAM symposium on Discrete algorithms. Society for Industrial and
Applied Mathematics, 2005, pp. 156–165.

[15] H. Bast, S. Funke, P. Sanders, and D. Schultes, “Fast routing in road
networks with transit nodes,” Science, vol. 316, no. 5824, pp. 566–566,
2007.

[16] A. V. Goldberg, H. Kaplan, and R. F. Werneck, “Reach for a*: Ef-
ficient point-to-point shortest path algorithms,” in 2006 Proceedings
of the Eighth Workshop on Algorithm Engineering and Experiments
(ALENEX). SIAM, 2006, pp. 129–143.

[17] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reachability and
distance queries via 2-hop labels,” SIAM Journal on Computing, vol. 32,
no. 5, pp. 1338–1355, 2003.

[18] T. Akiba, Y. Iwata, and Y. Yoshida, “Fast exact shortest-path distance
queries on large networks by pruned landmark labeling,” in Proceedings
of the 2013 ACM SIGMOD International Conference on Management
of Data. ACM, 2013, pp. 349–360.

[19] M. Jiang, A. W.-C. Fu, R. C.-W. Wong, and Y. Xu, “Hop doubling label
indexing for point-to-point distance querying on scale-free networks,”
Proceedings of the VLDB Endowment, vol. 7, no. 12, pp. 1203–1214,
2014.

[20] Y. Li, M. L. Yiu, N. M. Kou et al., “An experimental study on hub
labeling based shortest path algorithms,” Proceedings of the VLDB
Endowment, vol. 11, no. 4, pp. 445–457, 2017.

[21] Savrus, “savrus/hl,” Feb 2015. [Online]. Available:
https://github.com/savrus/hl

[22] R. Geisberger, P. Sanders, and D. Schultes, “Better approximation of
betweenness centrality,” in Proceedings of the Meeting on Algorithm
Engineering & Expermiments. Society for Industrial and Applied
Mathematics, 2008, pp. 90–100.

[23] “Actor collaborations network dataset – KONECT,” Apr. 2017. [Online].
Available: http://konect.uni-koblenz.de/networks/actor-collaboration

[24] A.-L. Barabsi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[25] C. Demetrescu, A. Goldberg, and D. Johnson, “9th dimacs implemen-
tation challenge–shortest paths,” American Mathematical Society, 2006.

[26] U. Meyer and P. Sanders, “δ-stepping: a parallelizable shortest path
algorithm,” Journal of Algorithms, vol. 49, no. 1, pp. 114–152, 2003.

978-1-5386-5989-2/18/$31.00 ©2018 IEEE

