SPOC to MOOC, Extending Local Training to the HPC Community

Julia Mullen and Lauren Milechin

September 25, 2019
• Challenges in HPC Education and Training
• Introduction to MOOCS
• Case Study: Understanding HPC Workflows and How to Exploit Them
 – The initial one-on-one training
 – The first online course
 – The future refactored courses
• Lessons Learned
HPC Education Challenges

Audience
- Learners want
 - Formal training with certificates
 - Informal training to complete work task
- Diverse learner background
 - Range of ages
 - Range of computer literacy
 - Multi-cultural, multi-lingual

Content Selection
- Workflows vary across domains requiring different solution techniques
- Learners have a range of background and skills
- Content needs include
 - Basic Unix skills
 - Basic HPC concepts
 - HPC software development and troubleshooting

Delivery Mode
- In person workshops
 - Limited pool of expert trainers
 - HPC system access limited
- Web resources
 - Predominantly text
 - Tutorials for a given technology, e.g. MPI, OpenMP
 - Simplified examples, often tightly coupled to specific systems

Expanding HPC education and creating personalized “Just In Time” education and training is necessary but hard.
• Challenges in HPC Education and Training
• Introduction to MOOCs
• Case Study: Understanding HPC Workflows and How to Exploit Them
 – The initial one-on-one training
 – The first online course
 – The future refactored courses
• Lessons Learned
Why MOOCs?

Scaling

- 81 million learners across major providers
- Additional 13 million across independent Open edX sites
- 9+ thousand courses
- 25 languages (primarily Open edX)
- 33 providers worldwide

- Kkan Academy
- MIT Courseware
- Articulate E-Learning
- Traditional University Lecture
- Traditional University Recitation
- Traditional University Tutorial
- Massive
- Individual
- Non-Interactive
- Interactive
Why MOOCs?

Pedagogy/Andragogy

- Open
 - No pre-requisites
 - Range of experience

- Online learning
 - Asynchronous
 - Self-paced
 - Instructor paced

- Social learning – interactions among diverse learner groups

- Built to support theory and practice
Why MOOCs?

- Basic demographics
- Engagement with content
- Exercises and grades
- Surveys & feedback comments
- Learning paths
- Data informs course updates
Open edX Platform

- Software stack publicly released in June 2013
- Stack includes integrated CMS and LMS
- Open edX community built around open source platform
- Statistics (as of March 2019)
 - 45 Million Learners
 - 24,000+ courses
 - 2400+ sites
 - 70+ Countries
 - 34 Languages
- Open edX Conferences since 2014
• Content Selection
 – Partition material into easily absorbable segments
 – Segments must be self-contained, progression not always linear
 – Content must be clear and simple without unnecessary simplifications
 – Remove all redundant material

• Delivery
 – Vary delivery modes used to present the content, e.g. video, text, simulation
 – Select most suitable medium for content
 – Course structure must be transparent and easy to navigate
 – Hands-on exercises reinforce theory

• Learning experience
 – Provide optional activities and reference to additional information
 – Enable and encourage interactions between the learners
 – Provide learners with a variety of assessments to test their understanding
 – Little-to-no overhead in setting up hands-on exercises
HPC MOOC Examples

Supercomputing, FutureLearn (EPCC/PRACE)

Using MIT Supercloud, LLx (Open edX) (MIT/LLSC)
HPC MOOC Examples

Having watched the above video, how would you modify it to make it more accurate? Share your ideas in the comments section!

Supercomputing, FutureLearn (EPCC/PRACE)

Using MIT Supercloud, LLx (Open edX) (MIT/LLSC)
Outline

• Challenges in HPC Education and Training
• Introduction to MOOCS
• Case Study: Understanding HPC Workflows and How to Exploit Them
 – The initial one-on-one training
 – The first online course
 – The future refactored courses
• Lessons Learned
Pre-MOOC Training

Reference Guides

IAP/Special Workshops

One-on-one Tutorials

Web Pages

Email
Scaling Step 1: Small Private Online Course (SPOC)

Goal: Develop a course for professionals and researchers that teaches strategies for building HPC workflows

<table>
<thead>
<tr>
<th>Audience</th>
<th>Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Professional engineers and scientists who need to scale scientific workflows</td>
<td>• A mixture of videos, text, programming exercises and quizzes</td>
</tr>
</tbody>
</table>
| • Diverse Learner background
 – Range of domains
 – Range of problem types
 – Range of computer literacy | • Focus on learning through theory and practice |
| | • Hands-on practice using HPC system |
| | • Self-paced |
Design of Open Online Course

- Andragogical Principles
 - Interleave Theory and Practice
 - Present content in self-contained chunks
 - Highlight links between concepts
 - Path enables learners to “build their own adventure”

- Concept Map Design Tool
 - Leaf nodes form content units
 - Design exposes course components
 - Related units form sections
 - Related sections form modules
 - Links are bi-directional between related concepts
 - Concepts with no links are removed
Initial Results

- Design supports learning paths
 - Learners can select content sections relevant to their immediate application
 - Increased likelihood of on the job practice leads to increased retention
 - Supports adult need to match learning to problem or question

- Interleave Theory and Practice
 - Learners gain experience with their application on target system
 - Immediate feedback to assessments minimizes misconceptions
Initial Results

- Design supports learning paths
 - Learners can select content sections relevant to their immediate application
 - Increased likelihood of on the job practice leads to increased retention
 - Supports adult need to match learning to problem or question

- Interleave Theory and Practice
 - Learners gain experience with their application on target system
 - Immediate feedback to assessments minimizes misconceptions

- Not reproducible
 - Highlighted areas contain material specific to one supercomputing center
Scaling Step 2: Redesign as a MOOC and SPOC

- Split course into 2 short courses
 - Introduction to HPC Strategies
 - Using the MIT Supercloud
- Convert programming components to demos and thought exercises
- Maintain hands-on component for center members
- SPOC designed to be easy to edit and adapt as center evolves and changes
Hands-On Practice

Github Repository

Jupyter Interface

Thought Problems

Demonstrations

Questions to Consider:
- Where is the independence?
- What data access patterns do you expect?
Hands-on examples provided in Github repository

Instructions for setting up and running problems
- Locally
- On Supercloud

Contain or point to sample data where used

https://github.com/llsc-supercloud/teaching-examples
Incorporating Jupyter

- In-browser programming environment
 - Notebooks contain images, plots, text, executable code blocks
 - Text editor with syntax highlighting
 - Command line

- Support variety of programming languages
 - Notebooks: Scripting languages
 - Text editor/terminal: Scripting and Compiled languages

- Provide easy to use alternative to command line
Outline

• Challenges in HPC Education and Training
• Introduction to MOOCS
• Case Study: Understanding HPC Workflows and How to Exploit Them
 – The initial one-on-one training
 – The first online course
 – The future refactored courses
• Lessons Learned
• HPC Education and Training can benefit by leveraging MOOCs
 – Can reach thousands of students
 – Students can
 • Self-select to create their own “Just In Time” experience
 • Learn at their own pace
 • Revisit material for review or deeper understanding
 – Online targeted lectures simplify learning and review for native and non-native speakers
 – Can track student activity to
 • Capture learning interests
 • Content gaps

• MOOCs aren’t a drop in replacement for existing training materials
 – Materials need to be refactored with design emphasis on creating stand alone content
 – Diversity of student skills and experience requires inclusion of supporting material
 – Instructor led courses require facilitation
 – Difficult to provide HPC System access to thousands of students for hands-on practice
Acknowledgements

- MIT Supercloud Team
- MIT Lincoln Laboratory Supercomputing Center
- Weronika Filinger, EPCC/PRACE