
Combining Tensor Decompositions and
Graph Analytics to Provide

Cyber Situational Awareness at HPC Scale

James Ezick,
Tom Henretty,

Muthu Baskaran,
Richard Lethin

Reservoir Labs, Inc.
New York, NY 10012

Email: {ezick, henretty,
baskaran, lethin}
@reservoir.com

John Feo
Pacific Northwest National

Laboratory
Richland, WA 99354

Email: john.feo@pnnl.gov

William Glodek
BreakPoint Labs

Falls Church, VA 22042
Email: wglodek

@breakpoint-labs.com

Tai-Ching Tuan,
Christopher Coley

Laboratory for Physical
Sciences

College Park, MD 20740
Email: {tctuan, coleyc}

@lps.umd.edu

Leslie Leonard,
Rajeev Agrawal,

Ben Parsons
Information Technology

Laboratory
U.S. Army Engineer Research

and Development Center
Vicksburg, MS 93180

Email: {leslie.c.leonard,
rajeev.k.agrawal,
ben.s.parsons}
@erdc.dren.mil

Abstract—This paper describes MADHAT (Multidimensional
Anomaly Detection fusing HPC, Analytics, and Tensors), an
integrated workflow that demonstrates the applicability of HPC
resources to the problem of maintaining cyber situational
awareness. MADHAT combines two high-performance packages:
ENSIGN for large-scale sparse tensor decompositions and
HAGGLE for graph analytics. Tensor decompositions isolate
coherent patterns of network behavior in ways that common
clustering methods based on distance metrics cannot. Parallelized
graph analysis then uses directed queries on a representation that
combines the elements of identified patterns with other available
information (such as additional log fields, domain knowledge,
network topology, whitelists and blacklists, prior feedback, and
published alerts) to confirm or reject a threat hypothesis, collect
context, and raise alerts. MADHAT was developed using the
collaborative HPC Architecture for Cyber Situational Awareness
(HACSAW) research environment and evaluated on structured
network sensor logs collected from Defense Research and
Engineering Network (DREN) sites using HPC resources at the
U.S. Army Engineer Research and Development Center DoD
Supercomputing Resource Center (ERDC DSRC). To date,
MADHAT has analyzed logs with over 650 million entries.

I. INTRODUCTION
Tensor decompositions have been shown to isolate coherent

patterns of potentially hostile behavior from within complex
network traffic logs. This represents a new paradigm of network
threat identification [1]. This pattern-based approach provides
an advantage over classical signature-based threat

Sponsored by the United States Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP) as
part of the Applicability of HPC to Cyber Situational Awareness (SA) initiative under contract W81EWF80232712.

identifications in that patterns can immediately link together
multiple discrete activities separated by time, entity, or location
in multidimensional data and can embody interactions that
cannot be expressed (or often even anticipated) by rule
signatures. As an unsupervised approach, tensor decomposition
methods do not require training and have the potential to identify
emergent behavior for which signatures have not yet been
developed. Tensor methods provide a path to the discovery of
deeper, higher-dimensional patterns at longer timescales – an
enabler for detection of Advanced Persistent Threats (APTs) – a
holy-grail-level problem in network cyber situational awareness.

Tensor decompositions are based on matrix operations
extended to higher dimensions and have been greatly
accelerated for both large shared- and distributed-memory
architectures through algorithmic advances [2, 3] and the
application of specialized sparse data structures [4, 5]. This
emphasis on accelerating tensor decompositions for sparse data
has made the technique practical for real datasets extending now
into the billions of nonzero entries [6, 7]. These algorithms and
data structures provide a foundation to apply tensor
decomposition methods to cyber data at massive scale. This
expansion of capability creates the potential to detect more
malicious behavior across a wider variety of data sources and a
larger range of time scales than any prior analysis.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

To truly realize this vision, it is also necessary to automate
the analysis of the patterns isolated by tensor decompositions.
At hundred-million scale and beyond, it makes sense to perform
decompositions that result in one hundred or more component
patterns for a single tensor. Furthermore, there is significant
value gained by decomposing multiple tensors formed from
different aspects of the data, revealing different behaviors. As a
result, the number of component patterns that need to be
analyzed explodes, and the workload of individually examining
each resulting pattern on a daily basis quickly becomes
unrealistic. Large graph data structures are a natural choice for
representing linked metadata at scale and offer rich query
capabilities that have also been optimized for high-performance
computing environments [8]. As a first-line analytics tool,
however, graph-based approaches can suffer from the “boil-the-
ocean” problem of having to search the totality of massive
graphs to find instances of specific, sometimes complex
subgraphs, among potentially billions of interconnected records.

MADHAT (Multidimensional Anomaly Detection fusing
HPC, Analytics, and Tensors) [9] is based on the insight that
large-scale tensor decompositions can be used to create an
effective roadmap for targeted graph queries that confirm or
reject behavior hypotheses. MADHAT combines ENSIGN [10]
high-performance tensor decompositions with HAGGLE [11]
parallelized graph analytics into a unified data science workflow
supporting data preparation, analysis, reflection, and
dissemination with both scriptable and visual components. Data
sources are ingested into ENSIGN and tensor decompositions
are performed. A coarse-grained triage of the resulting patterns

identifies activities requiring deeper, targeted inspection. These
patterns are passed to automated forensic analyses driven by
HAGGLE to validate the hypothesis that the identified activities
are of concern. These analyses are capable of combining
elements of the original network log data with contextual
information including network topology, preferences and
priorities, whitelist and blacklist information, and external
information such as published alerts. This contextual
information allows adaptation and customization to specific
environments that have the potential to improve the quality of
resulting alerts while also reducing alert clutter.

MADHAT is being developed using resources made
available by the HPCMP (High Performance Computing
Modernization Program). This includes development support in
their HACSAW (HPC Architecture for Cyber Situational
Awareness) environment. This environment provides access to
a variety of modern data science tools inside a Python-based
Jupyter environment layered on top of access to months of data
collected from the DREN (Defense Research and Engineering
Network). In particular, this effort leverages Zeek (formally
Bro) Intrusion Detection System (IDS) [12] network connection
logs collected from various US DoD sites. Zeek IDS connection
logs capture both inbound and outbound communications to
DREN sites and individual records include more than twenty
(20) fields with valuable metadata. The DREN itself
encompasses more than 100 individual sites.

This paper describes an on-going effort to demonstrate the
value of leveraging HPC to address several critical needs in
cyber situational awareness:

Figure 1. Diagram representing the MADHAT workflow.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

• Need for non-signature based detection

Signature based techniques are not adequate in
operational cyber environments because it is not always
feasible to describe normal and abnormal network
behavior up front.

• Need for multidimensional analysis of cyber data

Cyber data is always associated with multiple attributes
(for example, a network connection log has metadata
attributes, such as timestamp, sender IP, receiver IP,
receiver port, number of response bytes, etc.).

• Need for an approach that scales to big data

The potential of identifying threats, attacks, and other
anomalous behaviors in networks increases when the
analysis is done over huge volumes of data collected
from multiple sources and over a long period of time.

• Need to reduce analyst cognitive load

False-positive clutter is a limiting factor in the adoption
of new approaches; it is infeasible and unreliable to rely
on human interpretation of a large volume of complex,
multidimensional patterns.

The remainder of this paper is organized as follows.
Section II outlines the MADHAT architecture and workflow.
Experimental results to date are captured in Section III.
Section IV provides conclusions, mentions related work, and
describes directions for future work.

II. ARCHITECTURE AND WORKFLOW
This section describes the MADHAT workflow illustrated in

Figure 1. The workflow consists of four stages:

1. Tensor Construction
2. Tensor Decomposition
3. Low Pass Behavior Detection
4. Canned Forensic Analysis

A. Tensor Construction
Tensor construction is the process of creating a tensor

suitable for decomposition from a data source. At this stage of
development, the experimental data source has been Zeek
connection log (conn.log) files collected from DREN sites.
Connection logs provide a record of each network connection
and include approximately twenty fields organized in a row-
column format similar to a CSV file, with one record per line. In
the general MADHAT workflow, different tensors can be
constructed from different combinations of logs and record
fields stored in a Tensor Creation Library. For the examples used
in this paper, a single tensor type is used that includes five fields
from the connection log as dimensions of the tensor:

1. Timestamp (ts)
2. Originating IP address (id_orig_h)
3. Destination IP address (id_resp_h)
4. Responding port (id_resp_p)
5. Site

These fields were selected to allow for the discovery of
broad patterns of point-to-point activity over time and across
sites in message traffic.

Tensor construction requires that each dimension be
independently binned and indexed, that duplicate rows (if any)
be consolidated, and that the tensor be output in a common
sparse tensor format along with associated maps translating
numerical indices back to data labels. For the examples in this
paper, time is binned by minute and the other dimensions are
binned by their natural discrete values (that is, one index for each
IP address, port, and site). To support tensor construction, the

MADHAT workflow uses a custom tensor construction utility
that leverages the Python Dask library to parallelize the reading,
binning, and, indexing steps. The utility was evaluated on
various small datasets and shown to produce speedups of 5.5 to
8.5x versus single-threaded performance on a 12 CPU machine
(in real terms, from ~3 minutes to ~30 seconds on a dataset with
2 million entries). This speedup is significant because one day
of DREN data can consist of over seven billion log entries that
must eventually be converted to a tensor in an HPC
environment. The tool was able to saturate all available CPU
resources for a large proportion of its execution time due to
embarrassingly parallel sections of data input and binning. This
is shown in Figure 2.

B. Tensor Decomposition
MADHAT uses ENSIGN to perform tensor decompositions

using the CP-APR [13] non-negative Poisson-based
decomposition method. This method has been optimized within
ENSIGN for HPC environments using a hybrid MPI+OpenMP
parallel implementation, with MPI used between nodes and
OpenMP used within each multicore node. The implementation
addresses a number of critical challenges introduced from the
irregularity of the structure of sparse tensors [14] (Table 1).

The output of the tensor decomposition method is a pre-
selected number of components that, in sum, approximate the
original tensor. An annotated example component is shown in
Figure 3. A component includes a score between 0 and 1 (y-axis)
for each index (x-axis) in each dimension of the tensor and a
weight that captures the prevalence of the represented pattern in
the tensor. As an approximation, each combination of spikes
(one per dimension) is indicative of a nonzero value in the

Figure 2. Diagram illustrating task parallelism in the tensor creation
tool.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

original tensor (indicating a record in the original log data). The
component in Figure 3 captures what appears to be a scan of a
range of ports targeted at a machine at a US service academy.

Table 1. Critical challenges in decomposing sparse tensors.

Challenge Approach

Load-balanced
parallel execution

Light-weight load distribution (at the
beginning of the decomposition)

Communication
minimization

Selective tensor partition (distribution)
to minimize communication volume
and frequency

Factor matrix (aka decomposition
output) replication on selective modes
to reduce communication frequency

Reduced memory
footprint

Selective re-computation of
intermediate data (vs. storing large
footprint intermediate data)

Minimal
computations

Efficient sparse tensor data structures
to facilitate memory- and operation-
efficient computations

Data locality Fusion of computations to increase
thread-local operations with improved
locality

C. Low-Pass Behavior Detection
At scale, it is not practical to individually annotate each

decomposition component. Detectors are a mechanism for
quickly identifying components that require deeper analysis. In
the MADHAT workflow, each detector is a Python routine that
accepts a single component and determines whether a specific
characteristic behavior is present in that component. The
detectors are based on heuristics and operate exclusively on the
scores contained within the component without any additional
context. In this way, the cross-product operation of applying all
detectors to all components is embarrassingly parallel. As
examples, we have experimented with three basic detectors in
the MADHAT workflow (Table 2).

Table 2. Basic detectors in the MADHAT workflow.

Detector Purpose Impact

Port Scan Identify contact with a
range of ports on a
single target machine

Port scanning
behavior found in
nearly all DREN
decompositions

Network
Mapping

Identify contact with a
range of destination IP
addresses

Small number of
machines repeatedly
detected performing
lateral scanning

Beaconing Identify instances of
periodic
communication

Low detection rate
within DREN
decompositions

Figure 4. A single tensor decomposition component capturing a port
scan activity at a US service academy.

Figure 3. A single tensor decomposition component capturing a
network mapping activity at two US service academies.

Figure 5. A single tensor decomposition component capturing a
beaconing activity at a US service academy.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

Port scanning and network mapping can be indicative of
reconnaissance on a network. Reconnaissance activities attempt
to identify specific nodes that can be attacked directly, through
lateral movement, or possibly through exploitation of
application-specific vulnerabilities. Beaconing can be
indicative of surreptitious periodic behavior such as malware
contacting a host. All three of these activities are characterized
by patterns of messages that, in isolation, would likely be
considered benign. Tensor decompositions tend to capture
these behaviors as discrete components. Figure 3 illustrates an
annotated component exhibiting port scanning behavior.
Figure 4 illustrates an annotated component exhibiting network
mapping. Figure 5 illustrates an annotated component
exhibiting beaconing.

D. Canned Forensic Analysis

 For each low-pass behavior detector, there is an associated
Canned Forensic Analysis (CFA) that processes components,
one at a time, identified as exhibiting the behavior of interest
specific to that detector. The goal of the CFA is to perform a
deeper analysis that uses the identified component as a map to
make targeted queries into the original data and relevant
associated metadata. Associated metadata can include domain
knowledge, network topology information, whitelist and
blacklist information, and user preferences and priorities. While
CFAs can vary in complexity, based on the sophistication of the
analysis being performed, the overall structure of the CFA is that
of a rule-based decision process – each query leads to zero or
more follow-up queries until eventually a terminal state is
reached that either does or does not raise an alert.

MADHAT uses HAGGLE (Hybrid Attributed Generic
Graph Library Environment) to represent Zeek connection log
data and associated metadata as a single coherent data structure.
HAGGLE is a scalable platform that supports a variety of mixed
analytic workloads, distributed, thread-safe data structures, and
an abstract runtime layer that allows rapid porting of the
software stack to modern conventional, distributed high-
performance computing systems with accelerators as well as
novel, purposely designed hardware.

The HAGGLE APIs were used to implement a hybrid data
view that stores raw Zeek log data as a relational table and then
builds a graph of servers (vertices) and connections (edges). An
example is illustrated in Figure 6.

For each of the Port Scan, Network Mapping, and Beaconing
detectors, the ENSIGN/detector front-end passes the times and

entities of interest as parameters to the CFA. Each CFA then
follows a similar pattern. Understanding that a tensor
decomposition is an approximation of the original data, the CFA
first validates the existence of the identified pattern in the
original data. These tests typically involve nested for loops over
entities, and edges from those entities, in the HAGGLE
representation. Beyond existence checks, additional counting is
performed and comparisons are made against connection
whitelists or other thresholds such as message size or duration
that might exclude the behavior from concern. Once the pattern
is validated and a determination is made that it should not be
excluded as a false-positive, an alert is generated with
supporting context.

Expressing the forensics as nested parallel loops maximizes
concurrency resulting in an oversubscription of threads to cores.
The runtime system then exploits the oversubscription to hide
long latency operations by multithreading.

III. EXPERIMENTAL RESULTS
This section focuses on the performance of ENSIGN and

HAGGLE in the context of the MADHAT workflow.
Experiments with elements of the MADHAT workflow were
performed using the Topaz cluster located at the ERDC DSRC.
Topaz is an SGI ICE X System comprising 3,456 standard
compute nodes. Each standard compute node has two 2.3-GHz
Intel Xeon Haswell 18-core processors (36 cores) and 128
GBytes of DDR4 memory. Compute nodes are interconnected
by a 4x FDR InfiniBand Hypercube network, and have Intel's
Turbo Boost and Hyper-Threading Technology enabled.
Memory is shared by cores on each node, but not between nodes.
The experiments did not use the large compute node or GPU
accelerated capabilities available on Topaz.

A. ENSIGN
The tensor decomposition method used in MADHAT is an

iterative convergence algorithm. An immediate benefit of
running in the HPC environment was the ability to explore the
tradeoff between iteration count and final fit (quality of
approximation) for a selection of large cyber data tensors

Figure 6. An example of the HAGGLE hybrid data view.

Table 3. Tensors formed from DREN Zeek conn.log data.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

ranging from ~70M to ~456M nonzeros (Table 3). The largest
tensor was formed from more than 650M log entries.

From these tensors, over seventy (70) decompositions were
performed on Topaz for performance tuning, cyber analysis, and
cyber security experiments. The experiment consistently
demonstrated that reducing the iteration count by 10-20x (a
close approximation for runtime reduction, modulo I/O and
initialization) resulted in only a minor reduction in final fit
(Table 4).

A single tensor was used to demonstrate speedup on Topaz
vs. a 20-core shared-memory segment of the HACSAW
environment. The result was an end-to-end speedup of ~7.5x
(Table 5). This included a speedup of ~20x of the core Matrix-
Times-Tensor Khatri Rao Product (MTTKRP) computation that
dominates large tensor decompositions (other factors affecting
runtime include I/O operations and per-iteration convergence
tests). The MTTKRP speedup is in line with expectations for a
computation over a sparse tensor data structure that does not
afford the same data locality as its dense analog. In total, this
result demonstrates how HPC resources can reduce a daily
decomposition to an execution time that is tractable for a nightly
run.

B. HAGGLE
The Port Scan and Network Mapping forensics were tested

on a Zeek conn.log data file of 306M records. Data ingestion
was parallelized by dividing file reads among nodes, having

each node read and process its section, update a shared index
pointer, and then move the processed data into a preallocated
table. A property graph of servers (vertices) and Zeek records
(edges) was created from the Zeek table data. The record’s
id.orig_h and id.resp_h attributes served as the source and
destination vertices of an edge. The constructed graph had 703K
vertices and 306M edges. Read and construction execution time
and memory footprint on 8, 12, 16, and 24 nodes was measured.
HAGGLE stores all data in memory to avoid slow disk accesses,
requiring us to add additional compute nodes as data size grows.
Since the constructed graph did not fit comfortably on 4 nodes,
we ran on configurations of 8 nodes or more. The almost linear
speedup shows that HAGGLE performance scales as data sizes
grow (Table 6).

Log files from one day of activity at a DREN site (over 150K
network connections) were converted to a tensor (approximately
100K nonzero entries) and decomposed into 100 components. A
run of the Network Mapping and Ports Scan low pass filters
detected three (3) potential network mapping attempts and five
(5) potential port scans. Unique destination IP addresses and
destination ports were counted per component, where any IP
address or port with a score over 0.00001 was added to the
respective count.

Counts that exceeded thresholds of 100 unique destination
IP addresses or 10 unique destination ports on a single IP address
were flagged as a network map or port scan detection,
respectively. Associated IP addresses, ports, and timestamps
were handed off to HAGGLE for further analysis.

HAGGLE analysis of the network map detections confirmed
the presence of two out of three detections in the original Zeek
logs, while analysis of the port scan detections confirmed the
presence of four out of five detections in the original Zeek logs.
Further HAGGLE analysis determined the port scan detections
to be TCP SYN scans, where a TCP connection was initiated by
the scanning host but the TCP handshake is left incomplete.

Both the Port Scan and Network Mapping forensics ran in
under a hundredth of second, so they had too little work to
exhibit speedup as we increased the number of processors. The
approach is clearly scalable to much larger datasets.

IV. CONCLUSION
MADHAT explores the idea that tensor decompositions can

be used to provide a roadmap that allows the generation of
focused, well-informed queries on large data. This approach
combines the unique strengths of tensor methods as an
unsupervised pattern-rather-than-signature-focused analytic
with recent advances in representing and navigating large-scale
linked metadata in graph form. The resulting workflow permits
detection of unique patterns followed by fast forensic
investigation that both validates an initial hypothesis and
collects supporting context. MADHAT provides a path toward

Table 5. Example decompositions showing how reducing iteration
count improves performance with minimal loss of precision.

Table 6. Using HPC resources makes large decompositions tractable
for nightly runs.

Table 4. Performance of HAGGLE forensics.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

an operational workflow that shows promise in reducing both
clutter and overall cognitive load on an analyst.

Some existing work in the literature (for example,
MultiAspectForensics [15] and MalSpot [16]) has applied tensor
decompositions to network traffic data in order to extract
anomalies and malicious patterns. Unlike this other work,
MADHAT extends beyond theoretical research and toolbox
development to demonstrate a practical, scalable workflow.
Prior work has investigated the additional step of automating
alert analysis on DREN data using artificial neural
networks [17]. Several commercial approaches are exploring the
possibilities for enhanced cyber situational awareness created
from the convergence of large data stores (for example,
Chronicle Backstory [18]). The uniqueness of MADHAT lies in
the application of tensor methods to navigate and extract value
from large data stores.

The MADHAT workflow is extensible and is being
developed with a goal of eventual operational use. Tensor
methods can be applied to data sources beyond raw Zeek logs.
The HACSAW environment provides access to enhanced
versions of these logs along with a variety of other sensor data
sources that have not yet been utilized. This paper describes
three basic detectors, but others are possible including detectors
for data exfiltration (possible over several protocols), lateral
movement, and anomaly detection based on comparisons with
historical decompositions. The HAGGLE platform and CFA
framework are truly extensible supporting a variety of metadata
sources and a limitless set of possible supporting analyses.

REFERENCES
[1] M. Baskaran, T. Henretty, D. Bruns-Smith, J. Ezick, and R. Lethin,

“Enhancing Network Visibility through Tensor Analysis,” in SC17
Innovating the Network for Data-Intensive Science (INDIS) Workshop,
November 2017.

[2] M. Baskaran, T. Henretty, B. Pradelle, M. H. Langston, D. Bruns-Smith,
J. Ezick, and R. Lethin, “Memory-efficient Parallel Tensor
Decompositions,” in IEEE Conference on High Performance Extreme
Computing (HPEC), September 2017.

[3] M. Baskaran, B. Meister, N. Vasilache, and R. Lethin, “Efficient and
Scalable Computations with Sparse Tensors,” in IEEE High Performance
Extreme Computing Conference, September 2012.

[4] M. Baskaran, B. Meister, and R. Lethin, “Low-overhead Load-balanced
Scheduling for Sparse Tensor Computations,” in IEEE High Performance
Extreme Computing Conference, September 2014.

[5] M. Baskaran, B. Meister, and R. Lethin, “Parallelizing and Optimizing
Sparse Tensor Computations,” in Proceedings of the 28th ACM
International Conference on Supercomputing, (ICS ’14), 2014, pp. 179–
179.

[6] A. Gudibanda, T. Henretty, M. Baskaran, J. Ezick, and R. Lethin, "All-at-
once Decomposition of Coupled Billion-scale Tensors in Apache Spark,"
in IEEE Conference on High Performance Extreme Computing (HPEC),
September 2018.

[7] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, "GigaTensor:
Scaling Tensor Analysis up by 100 Times – Algorithms and Discoveries,"
in KDD'12, August 2012.

[8] V. Castellana and M. Minutoli, “SHAD: The Scalable High-performance
Algorithms and Data-structures Library,” in CCGRID 2018: 18th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, 2018, pp. 442–451.

[9] L. Leonard and W. Glodek, "HACSAW: A Trusted Framework for Cyber
Situational Awareness," in HoTSoS'18, April 2018.

[10] https://www.reservoir.com/research/tech/tensor-analysis/
[11] V. Castellana, M. Drocco, J. Feo, et. al., “A Parallel Graph Environment

for Real-World Data Analytics Workflows,” in proceedings DATE 2019.
Florence Italy, March 2019.

[12] https://www.zeek.org
[13] E. C. Chi and T. G. Kolda, “On Tensors, Sparsity, and Non-negative

Factorizations,” arXiv:1304.4964 [math.NA], December 2011.
[14] M. Baskaran, T. Henretty, and J. Ezick, “Fast and Scalable Distributed

Tensor Decompositions,” in IEEE Conference on High Performance
Extreme Computing (HPEC), September 2019.

[15] K. Maruhashi, F. Guo, and C. Faloutsos, “Multiaspectforensics: Pattern
Mining on Large-scale Heterogeneous Networks with Tensor Analysis,”
in: International Conference on Advances in Social Networks Analysis
and Mining, Kaohsiung, Taiwan, 2011.

[16] H.-H. Mao, W. Chung-Jung, E. E. Papalexakis, K.-C. L. Christos
Faloutsos, and T.-C. Kao, “Malspot: Multi2 Malicious Network Behavior
Patterns Analysis,” in: Pacific-Asia Conference on Knowledge Discovery
and Data Mining, Tainan, Taiwan, 2014.

[17] C. Lorenzen, R. Agrawal, and J. King, "Determining Viability of Deep
Learning on Cybersecurity Log Analytics," in 2018 IEEE International
Conference on Big Data (Big Data), December 2018.

[18] https://chronicle.security/products/backstory/

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

	I. Introduction
	II. Architecture and Workflow
	A. Tensor Construction
	B. Tensor Decomposition
	C. Low-Pass Behavior Detection
	D. Canned Forensic Analysis

	III. Experimental Results
	A. ENSIGN
	B. HAGGLE

	IV. Conclusion
	References

