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Abstract—This paper describes MADHAT (Multidimensional 
Anomaly Detection fusing HPC, Analytics, and Tensors), an 
integrated workflow that demonstrates the applicability of HPC 
resources to the problem of maintaining cyber situational 
awareness. MADHAT combines two high-performance packages: 
ENSIGN for large-scale sparse tensor decompositions and 
HAGGLE for graph analytics. Tensor decompositions isolate 
coherent patterns of network behavior in ways that common 
clustering methods based on distance metrics cannot. Parallelized 
graph analysis then uses directed queries on a representation that 
combines the elements of identified patterns with other available 
information (such as additional log fields, domain knowledge, 
network topology, whitelists and blacklists, prior feedback, and 
published alerts) to confirm or reject a threat hypothesis, collect 
context, and raise alerts. MADHAT was developed using the 
collaborative HPC Architecture for Cyber Situational Awareness 
(HACSAW) research environment and evaluated on structured 
network sensor logs collected from Defense Research and 
Engineering Network (DREN) sites using HPC resources at the 
U.S. Army Engineer Research and Development Center DoD 
Supercomputing Resource Center (ERDC DSRC). To date, 
MADHAT has analyzed logs with over 650 million entries. 

I. INTRODUCTION 
Tensor decompositions have been shown to isolate coherent 

patterns of potentially hostile behavior from within complex 
network traffic logs. This represents a new paradigm of network 
threat identification [1]. This pattern-based approach provides 
an advantage over classical signature-based threat 
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identifications in that patterns can immediately link together 
multiple discrete activities separated by time, entity, or location 
in multidimensional data and can embody interactions that 
cannot be expressed (or often even anticipated) by rule 
signatures. As an unsupervised approach, tensor decomposition 
methods do not require training and have the potential to identify 
emergent behavior for which signatures have not yet been 
developed. Tensor methods provide a path to the discovery of 
deeper, higher-dimensional patterns at longer timescales – an 
enabler for detection of Advanced Persistent Threats (APTs) – a 
holy-grail-level problem in network cyber situational awareness. 

Tensor decompositions are based on matrix operations 
extended to higher dimensions and have been greatly 
accelerated for both large shared- and distributed-memory 
architectures through algorithmic advances [2, 3] and the 
application of specialized sparse data structures [4, 5]. This 
emphasis on accelerating tensor decompositions for sparse data 
has made the technique practical for real datasets extending now 
into the billions of nonzero entries [6, 7]. These algorithms and 
data structures provide a foundation to apply tensor 
decomposition methods to cyber data at massive scale. This 
expansion of capability creates the potential to detect more 
malicious behavior across a wider variety of data sources and a 
larger range of time scales than any prior analysis. 
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To truly realize this vision, it is also necessary to automate 
the analysis of the patterns isolated by tensor decompositions.  
At hundred-million scale and beyond, it makes sense to perform 
decompositions that result in one hundred or more component 
patterns for a single tensor. Furthermore, there is significant 
value gained by decomposing multiple tensors formed from 
different aspects of the data, revealing different behaviors. As a 
result, the number of component patterns that need to be 
analyzed explodes, and the workload of individually examining 
each resulting pattern on a daily basis quickly becomes 
unrealistic. Large graph data structures are a natural choice for 
representing linked metadata at scale and offer rich query 
capabilities that have also been optimized for high-performance 
computing environments [8]. As a first-line analytics tool, 
however, graph-based approaches can suffer from the “boil-the-
ocean” problem of having to search the totality of massive 
graphs to find instances of specific, sometimes complex 
subgraphs, among potentially billions of interconnected records.  

MADHAT (Multidimensional Anomaly Detection fusing 
HPC, Analytics, and Tensors) [9] is based on the insight that 
large-scale tensor decompositions can be used to create an 
effective roadmap for targeted graph queries that confirm or 
reject behavior hypotheses. MADHAT combines ENSIGN [10] 
high-performance tensor decompositions with HAGGLE [11] 
parallelized graph analytics into a unified data science workflow 
supporting data preparation, analysis, reflection, and 
dissemination with both scriptable and visual components. Data 
sources are ingested into ENSIGN and tensor decompositions 
are performed. A coarse-grained triage of the resulting patterns 

identifies activities requiring deeper, targeted inspection. These 
patterns are passed to automated forensic analyses driven by 
HAGGLE to validate the hypothesis that the identified activities 
are of concern. These analyses are capable of combining 
elements of the original network log data with contextual 
information including network topology, preferences and 
priorities, whitelist and blacklist information, and external 
information such as published alerts. This contextual 
information allows adaptation and customization to specific 
environments that have the potential to improve the quality of 
resulting alerts while also reducing alert clutter. 

MADHAT is being developed using resources made 
available by the HPCMP (High Performance Computing 
Modernization Program). This includes development support in 
their HACSAW (HPC Architecture for Cyber Situational 
Awareness) environment. This environment provides access to 
a variety of modern data science tools inside a Python-based 
Jupyter environment layered on top of access to months of data 
collected from the DREN (Defense Research and Engineering 
Network). In particular, this effort leverages Zeek (formally 
Bro) Intrusion Detection System (IDS) [12] network connection 
logs collected from various US DoD sites. Zeek IDS connection 
logs capture both inbound and outbound communications to 
DREN sites and individual records include more than twenty 
(20) fields with valuable metadata. The DREN itself 
encompasses more than 100 individual sites. 

This paper describes an on-going effort to demonstrate the 
value of leveraging HPC to address several critical needs in 
cyber situational awareness: 

Figure 1. Diagram representing the MADHAT workflow. 
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• Need for non-signature based detection 

Signature based techniques are not adequate in 
operational cyber environments because it is not always 
feasible to describe normal and abnormal network 
behavior up front. 

• Need for multidimensional analysis of cyber data 

Cyber data is always associated with multiple attributes 
(for example, a network connection log has metadata 
attributes, such as timestamp, sender IP, receiver IP, 
receiver port, number of response bytes, etc.). 

• Need for an approach that scales to big data 

The potential of identifying threats, attacks, and other 
anomalous behaviors in networks increases when the 
analysis is done over huge volumes of data collected 
from multiple sources and over a long period of time. 

• Need to reduce analyst cognitive load 

False-positive clutter is a limiting factor in the adoption 
of new approaches; it is infeasible and unreliable to rely 
on human interpretation of a large volume of complex, 
multidimensional patterns. 

The remainder of this paper is organized as follows. 
Section II outlines the MADHAT architecture and workflow. 
Experimental results to date are captured in Section III. 
Section IV provides conclusions, mentions related work, and  
describes directions for future work. 

II. ARCHITECTURE AND WORKFLOW 
This section describes the MADHAT workflow illustrated in 

Figure 1. The workflow consists of four stages: 

1. Tensor Construction 
2. Tensor Decomposition 
3. Low Pass Behavior Detection 
4. Canned Forensic Analysis 

A. Tensor Construction 
Tensor construction is the process of creating a tensor 

suitable for decomposition from a data source. At this stage of 
development, the experimental data source has been Zeek 
connection log (conn.log) files collected from DREN sites. 
Connection logs provide a record of each network connection 
and include approximately twenty fields organized in a row-
column format similar to a CSV file, with one record per line. In 
the general MADHAT workflow, different tensors can be 
constructed from different combinations of logs and record 
fields stored in a Tensor Creation Library. For the examples used 
in this paper, a single tensor type is used that includes five fields 
from the connection log as dimensions of the tensor: 

1. Timestamp (ts) 
2. Originating IP address (id_orig_h) 
3. Destination IP address (id_resp_h) 
4. Responding port (id_resp_p) 
5. Site 

 

These fields were selected to allow for the discovery of 
broad patterns of point-to-point activity over time and across 
sites in message traffic. 

Tensor construction requires that each dimension be 
independently binned and indexed, that duplicate rows (if any) 
be consolidated, and that the tensor be output in a common 
sparse tensor format along with associated maps translating 
numerical indices back to data labels. For the examples in this 
paper, time is binned by minute and the other dimensions are 
binned by their natural discrete values (that is, one index for each 
IP address, port, and site). To support tensor construction, the 

MADHAT workflow uses a custom tensor construction utility 
that leverages the Python Dask library to parallelize the reading, 
binning, and, indexing steps. The utility was evaluated on 
various small datasets and shown to produce speedups of 5.5 to 
8.5x versus single-threaded performance on a 12 CPU machine 
(in real terms, from ~3 minutes to ~30 seconds on a dataset with 
2 million entries). This speedup is significant because one day 
of DREN data can consist of over seven billion log entries that 
must eventually be converted to a tensor in an HPC 
environment. The tool was able to saturate all available CPU 
resources for a large proportion of its execution time due to 
embarrassingly parallel sections of data input and binning. This 
is shown in Figure 2. 

B. Tensor Decomposition 
MADHAT uses ENSIGN to perform tensor decompositions 

using the CP-APR [13] non-negative Poisson-based 
decomposition method. This method has been optimized within 
ENSIGN for HPC environments using a hybrid MPI+OpenMP 
parallel implementation, with MPI used between nodes and 
OpenMP used within each multicore node. The implementation 
addresses a number of critical challenges introduced from the 
irregularity of the structure of sparse tensors [14] (Table 1). 

The output of the tensor decomposition method is a pre-
selected number of components that, in sum, approximate the 
original tensor. An annotated example component is shown in 
Figure 3. A component includes a score between 0 and 1 (y-axis) 
for each index (x-axis) in each dimension of the tensor and a 
weight that captures the prevalence of the represented pattern in 
the tensor. As an approximation, each combination of spikes 
(one per dimension) is indicative of a nonzero value in the 

Figure 2. Diagram illustrating task parallelism in the tensor creation 
tool. 
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original tensor (indicating a record in the original log data). The 
component in Figure 3 captures what appears to be a scan of a 
range of ports targeted at a machine at a US service academy. 

Table 1. Critical challenges in decomposing sparse tensors. 

Challenge Approach 

Load-balanced 
parallel execution 

Light-weight load distribution (at the 
beginning of the decomposition) 

Communication 
minimization 

Selective tensor partition (distribution) 
to minimize communication volume 
and frequency 

Factor matrix (aka decomposition 
output) replication on selective modes 
to reduce communication frequency 

Reduced memory 
footprint 

Selective re-computation of 
intermediate data (vs. storing large 
footprint intermediate data) 

Minimal 
computations 

Efficient sparse tensor data structures 
to facilitate memory- and operation-
efficient computations 

Data locality Fusion of computations to increase 
thread-local operations with improved 
locality 

C. Low-Pass Behavior Detection 
At scale, it is not practical to individually annotate each 

decomposition component. Detectors are a mechanism for 
quickly identifying components that require deeper analysis. In 
the MADHAT workflow, each detector is a Python routine that 
accepts a single component and determines whether a specific 
characteristic behavior is present in that component. The 
detectors are based on heuristics and operate exclusively on the 
scores contained within the component without any additional 
context. In this way, the cross-product operation of applying all 
detectors to all components is embarrassingly parallel. As 
examples, we have experimented with three basic detectors in 
the MADHAT workflow (Table 2). 

Table 2. Basic detectors in the MADHAT workflow. 

Detector Purpose Impact 

Port Scan Identify contact with a 
range of ports on a 
single target machine 

Port scanning 
behavior found in 
nearly all DREN 
decompositions 

Network 
Mapping 

Identify contact with a 
range of destination IP 
addresses 

Small number of 
machines repeatedly 
detected performing 
lateral scanning 

Beaconing Identify instances of 
periodic 
communication 

Low detection rate 
within DREN 
decompositions 

 

Figure 4. A single tensor decomposition component capturing a port 
scan activity at a US service academy. 

Figure 3. A single tensor decomposition component capturing a 
network mapping activity at two US service academies. 

Figure 5. A single tensor decomposition component capturing a 
beaconing activity at a US service academy. 
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Port scanning and network mapping can be indicative of 
reconnaissance on a network. Reconnaissance activities attempt 
to identify specific nodes that can be attacked directly, through 
lateral movement, or possibly through exploitation of 
application-specific vulnerabilities. Beaconing can be 
indicative of surreptitious periodic behavior such as malware 
contacting a host. All three of these activities are characterized 
by patterns of messages that, in isolation, would likely be 
considered benign. Tensor decompositions tend to capture 
these behaviors as discrete components. Figure 3 illustrates an 
annotated component exhibiting port scanning behavior.  
Figure 4 illustrates an annotated component exhibiting network 
mapping. Figure 5 illustrates an annotated component 
exhibiting beaconing. 

D. Canned Forensic Analysis 

 For each low-pass behavior detector, there is an associated 
Canned Forensic Analysis (CFA) that processes components, 
one at a time, identified as exhibiting the behavior of interest 
specific to that detector. The goal of the CFA is to perform a 
deeper analysis that uses the identified component as a map to 
make targeted queries into the original data and relevant 
associated metadata. Associated metadata can include domain 
knowledge, network topology information, whitelist and 
blacklist information, and user preferences and priorities. While 
CFAs can vary in complexity, based on the sophistication of the 
analysis being performed, the overall structure of the CFA is that 
of a rule-based decision process – each query leads to zero or 
more follow-up queries until eventually a terminal state is 
reached that either does or does not raise an alert. 

MADHAT uses HAGGLE (Hybrid Attributed Generic 
Graph Library Environment) to represent Zeek connection log 
data and associated metadata as a single coherent data structure. 
HAGGLE is a scalable platform that supports a variety of mixed 
analytic workloads, distributed, thread-safe data structures, and 
an abstract runtime layer that allows rapid porting of the 
software stack to modern conventional, distributed high-
performance computing systems with accelerators as well as 
novel, purposely designed hardware.  

The HAGGLE APIs were used to implement a hybrid data 
view that stores raw Zeek log data as a relational table and then 
builds a graph of servers (vertices) and connections (edges). An 
example is illustrated in Figure 6. 

For each of the Port Scan, Network Mapping, and Beaconing 
detectors, the ENSIGN/detector front-end passes the times and 

entities of interest as parameters to the CFA. Each CFA then 
follows a similar pattern. Understanding that a tensor 
decomposition is an approximation of the original data, the CFA 
first validates the existence of the identified pattern in the 
original data. These tests typically involve nested for loops over 
entities, and edges from those entities, in the HAGGLE 
representation. Beyond existence checks, additional counting is 
performed and comparisons are made against connection 
whitelists or other thresholds such as message size or duration 
that might exclude the behavior from concern. Once the pattern 
is validated and a determination is made that it should not be 
excluded as a false-positive, an alert is generated with 
supporting context. 

Expressing the forensics as nested parallel loops maximizes 
concurrency resulting in an oversubscription of threads to cores. 
The runtime system then exploits the oversubscription to hide 
long latency operations by multithreading. 

III. EXPERIMENTAL RESULTS 
This section focuses on the performance of ENSIGN and 

HAGGLE in the context of the MADHAT workflow. 
Experiments with elements of the MADHAT workflow were 
performed using the Topaz cluster located at the ERDC DSRC. 
Topaz is an SGI ICE X System comprising 3,456 standard 
compute nodes. Each standard compute node has two 2.3-GHz 
Intel Xeon Haswell 18-core processors (36 cores) and 128 
GBytes of DDR4 memory. Compute nodes are interconnected 
by a 4x FDR InfiniBand Hypercube network, and have Intel's 
Turbo Boost and Hyper-Threading Technology enabled. 
Memory is shared by cores on each node, but not between nodes. 
The experiments did not use the large compute node or GPU 
accelerated capabilities available on Topaz. 

A. ENSIGN 
The tensor decomposition method used in MADHAT is an 

iterative convergence algorithm. An immediate benefit of 
running in the HPC environment was the ability to explore the 
tradeoff between iteration count and final fit (quality of 
approximation) for a selection of large cyber data tensors 

Figure 6. An example of the HAGGLE hybrid data view. 

Table 3. Tensors formed from DREN Zeek conn.log data. 
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ranging from ~70M to ~456M nonzeros (Table 3). The largest 
tensor was formed from more than 650M log entries. 

From these tensors, over seventy (70) decompositions were 
performed on Topaz for performance tuning, cyber analysis, and 
cyber security experiments. The experiment consistently 
demonstrated that reducing the iteration count by 10-20x (a 
close approximation for runtime reduction, modulo I/O and 
initialization) resulted in only a minor reduction in final fit 
(Table 4). 

A single tensor was used to demonstrate speedup on Topaz 
vs. a 20-core shared-memory segment of the HACSAW 
environment. The result was an end-to-end speedup of ~7.5x 
(Table 5). This included a speedup of ~20x of the core Matrix-
Times-Tensor Khatri Rao Product (MTTKRP) computation that 
dominates large tensor decompositions (other factors affecting 
runtime include I/O operations and per-iteration convergence 
tests). The MTTKRP speedup is in line with expectations for a 
computation over a sparse tensor data structure that does not 
afford the same data locality as its dense analog. In total, this 
result demonstrates how HPC resources can reduce a daily 
decomposition to an execution time that is tractable for a nightly 
run. 

B. HAGGLE 
The Port Scan and Network Mapping forensics were tested 

on a Zeek conn.log data file of 306M records. Data ingestion 
was parallelized by dividing file reads among nodes, having 

each node read and process its section, update a shared index 
pointer, and then move the processed data into a preallocated 
table. A property graph of servers (vertices) and Zeek records 
(edges) was created from the Zeek table data. The record’s 
id.orig_h and id.resp_h attributes served as the source and 
destination vertices of an edge. The constructed graph had 703K 
vertices and 306M edges. Read and construction execution time 
and memory footprint on 8, 12, 16, and 24 nodes was measured. 
HAGGLE stores all data in memory to avoid slow disk accesses, 
requiring us to add additional compute nodes as data size grows. 
Since the constructed graph did not fit comfortably on 4 nodes, 
we ran on configurations of 8 nodes or more. The almost linear 
speedup shows that HAGGLE performance scales as data sizes 
grow (Table 6). 

Log files from one day of activity at a DREN site (over 150K 
network connections) were converted to a tensor (approximately 
100K nonzero entries) and decomposed into 100 components. A 
run of the Network Mapping and Ports Scan low pass filters 
detected three (3) potential network mapping attempts and five  
(5) potential port scans. Unique destination IP addresses and 
destination ports were counted per component, where any IP 
address or port with a score over 0.00001 was added to the 
respective count. 

Counts that exceeded thresholds of 100 unique destination 
IP addresses or 10 unique destination ports on a single IP address 
were flagged as a network map or port scan detection, 
respectively. Associated IP addresses, ports, and timestamps 
were handed off to HAGGLE for further analysis. 

HAGGLE analysis of the network map detections confirmed 
the presence of two out of three detections in the original Zeek 
logs, while analysis of the port scan detections confirmed the 
presence of four out of five detections in the original Zeek logs. 
Further HAGGLE analysis determined the port scan detections 
to be TCP SYN scans, where a TCP connection was initiated by 
the scanning host but the TCP handshake is left incomplete. 

Both the Port Scan and Network Mapping forensics ran in 
under a hundredth of second, so they had too little work to 
exhibit speedup as we increased the number of processors. The 
approach is clearly scalable to much larger datasets. 

IV. CONCLUSION 
MADHAT explores the idea that tensor decompositions can 

be used to provide a roadmap that allows the generation of 
focused, well-informed queries on large data. This approach 
combines the unique strengths of tensor methods as an 
unsupervised pattern-rather-than-signature-focused analytic 
with recent advances in representing and navigating large-scale 
linked metadata in graph form. The resulting workflow permits 
detection of unique patterns followed by fast forensic 
investigation that both validates an initial hypothesis and 
collects supporting context. MADHAT provides a path toward 

Table 5. Example decompositions showing how reducing iteration 
count improves performance with minimal loss of precision. 

Table 6. Using HPC resources makes large decompositions tractable 
for nightly runs. 

Table 4. Performance of HAGGLE forensics. 

 
978-1-7281-5020-8/19/$31.00 ©2019 IEEE 



an operational workflow that shows promise in reducing both 
clutter and overall cognitive load on an analyst. 

Some existing work in the literature (for example, 
MultiAspectForensics [15] and MalSpot [16]) has applied tensor 
decompositions to network traffic data in order to extract 
anomalies and malicious patterns. Unlike this other work, 
MADHAT extends beyond theoretical research and toolbox 
development to demonstrate a practical, scalable workflow. 
Prior work has investigated the additional step of automating 
alert analysis on DREN data using artificial neural  
networks [17]. Several commercial approaches are exploring the 
possibilities for enhanced cyber situational awareness created 
from the convergence of large data stores (for example, 
Chronicle Backstory [18]). The uniqueness of MADHAT lies in 
the application of tensor methods to navigate and extract value 
from large data stores. 

The MADHAT workflow is extensible and is being 
developed with a goal of eventual operational use. Tensor 
methods can be applied to data sources beyond raw Zeek logs. 
The HACSAW environment provides access to enhanced 
versions of these logs along with a variety of other sensor data 
sources that have not yet been utilized. This paper describes 
three basic detectors, but others are possible including detectors 
for data exfiltration (possible over several protocols), lateral 
movement, and anomaly detection based on comparisons with 
historical decompositions. The HAGGLE platform and CFA 
framework are truly extensible supporting a variety of metadata 
sources and a limitless set of possible supporting analyses. 
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