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Presentation Outline 

 Fragmentation of logical model of SARs 

 Constraint programming paradigm and 
propagation networks 

 SAR Inference Engine 

 Current areas of investigation 
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Synthetic Aperture Radars 

 Synthetic aperture radars (SARs) image 
the earth’s surface using microwaves. 

 SARs are complex systems 

 Hundreds of quantities:  center frequency, 
beamwidth, scene dimensions, etc. 

 Quantities must obey hundreds of 
relationships:  physics, radar equation, 
trigonometry, etc. 
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Logical Model of SARs 

 In aggregate, the quantities and relationships 

 Form a large web or network 

 Constitute a logical model of the SAR 

 Logical model is dispersed 

 People’s minds, documents, software 

 Many partially overlapping subsets 

 Inconsistencies invariably creep in 

 Cause degraded performance or faults 

 Incur overhead 
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SAR Inference Engine 

 SAR Inference Engine 

 provides a central, common SAR model 

 uses the constraint programming paradigm. 

 Constraints come from 

 physics, geometry, signal processing 

 system engineer design choices. 

 A propagation network provides the 
computational foundation. 

 All propagators derived from constraints. 
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Imperative Code to Propagation Network  

 An imperative code may compute a 
propagating wave’s one way travel time 
using the following code: 
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velocity = frequency * wavelength; // Equation 1 

traveltime = distance / velocity;  // Equation 2 

 Inputs:  frequency, wavelength, and distance 

 Output:  velocity, traveltime 



Imperative Code to Propagation Network  

 Alternative arrangements of Equation 1: 
 velocity = frequency * wavelength; 

 wavelength = velocity / frequency; 

 frequency = velocity / wavelength; 

 Alternative arrangements of Equation 2: 
 distance = velocity * traveltime; 

 traveltime = distance / velocity;  

 velocity = distance / traveltime; 
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Imperative Code to Propagation Network  

 Relation 1: 
 velocity = frequency * wavelength 

 Relation 2: 
 distance = velocity * traveltime 

 Observations: 

 Given any two quantities in a relation the 
third quantity can be calculated. 

 Both relations have the form “A = B * C” 
(more on this later). 
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Imperative Code to Propagation Network  

 Relations 1 and 2 depicted as a graph: 
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Note:  The graph depicts a simple propagation network. 
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Scenario 1:  Determine Travel Time 
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Given a state where 
wavelength and 
distance are set… 

setting the value of 
frequency fixes the 
value of velocity 
and travel time also. 

V =

F * W
V

D =

V * T

D

T

W

F

V =

F * W
V

D =

V * T

D

T

W

F



Scenario 2:  Determine Frequency 
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Given a state where 
distance and travel 
time are set… 

setting the value of 
wavelength fixes 
the value of 
frequency also. 

V =

F * W
V

D =

V * T

D

T

W

F

V =

F * W
V

D =

V * T

D

T

W

F



Propagation Network Observations 

 Many different sets of inputs are possible. 

 Relationships can also be inequalities. 

 Operation is progressive. 

 Useful to record dependencies of “inferred” 
values on values determined by “fiat” 

 Enables backtracking 

 Enables determining why a quantity is in its 
current state. 
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Example of Selective Backtracking 
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Before invalidating 
distance 

After invalidating 
distance 
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Hello World Example 
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#include <stdio.h> 

 

#include "InferenceEngine.h" 

 

#include “PropWaveConstraint.h" 

 

#include "CenterFrequencyQuantity.h" 

#include "CenterWavelengthQuantity.h" 

#include "SpeedOfLightQuantity.h" 

 

int main (int argc, char * const argv[]) { 

 

   //  Create Inference Engine and initialize with constraints 

   InferenceEngine *inferenceEngine = new InferenceEngine (); 

   inferenceEngine->addConstraint (PropWaveConstraint::getInstance ()); 

   inferenceEngine->concludeInitialization (); 

 

   //  Assign values to center frequency and speed of light quantities 

   inferenceEngine->assignQuantityValue (SPEED_OF_LIGHT_NAME,   2.99739141e+008, 0); 

   inferenceEngine->assignQuantityValue (CENTER_FREQUENCY_NAME, 1.00000000e+008, 0); 

 

   //  Get value of wavelength 

   double centerWavelengthValue = Quantity::getInstance (CENTER_WAVELENGTH_NAME)->getValue (); 

 

   //  Print out result 

   fprintf (stdout, "CenterWavelength = %.17e\n", centerWavelengthValue); 

 

   return 0; 

} 

Step 2:  Create Inference 

Engine and populate it 

with constraints 

Step 1:  Include 

header files of 

•Inference Engine 

•Constraints 

•Quantities 

Step 3b:  Extract values of outputs 

Step 3a:  Enter 

values for inputs 



Scaling Up: Comprehensive SAR Model 

 Can a SAR be modeled? 

 Full-scale SAR model: 

 Port of existing Matlab model  that was 
used to develop two generations of SARs 

 Over 300 Quantities of “physical interest” 

 Over 250 Constraints of “physical interest” 

 Example of diverse quantities included:  
SNR, geometry, hardware delays, resolution 
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More on Constraints 

 SAR Inference Engine’s modeling: 

 Just 11 types of constraints 

 Low-level, i.e. minimal semantic content 

 High-level constraints expressed as multiple low-
level ones 

 Most important types of constraints: 

 A = B op C where “op” is either “+” or “*” 

 “Triangle Constraint” among 3 angles and 3 
lengths making up a triangle 
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Usage Throughout the SAR Lifecycle 

 Design phase 

 Batch mode:  generate performance curves 

 Interactive mode:  explore design space 

 Mission planning 

 Handle unanticipated conops 

 Radar operation 

 Radar operator interface 

 Embedded in radar 
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Example: Insertion Into Image Formation 
 Code has two phases 

 Setup / initialization 

 Data processing 

 Setup phase maps data 
attributes to image 
attributes. 

 Mapping process intimately 
tied to logical model of SAR. 

 Generation of data involved 
the inverse mapping. 

 Machine generated code 
solves speed issue. 
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Replace mapping logic with 

calls to SAR Inference Engine. 

Image Formation Code

Initialization Code:

Among other things, maps

attributes of input data onto

attributes of output image.

Processing Code:

This code transforms digitized

data into SAR images.



Current Areas of Investigation 

 Multivalued solutions 

 E.g. ambiguous case of Law of Sines 

 Completeness:  Are there cases where 
inferences could be made but aren’t? 

 E.g. set of triangles to fully define geometry 

 Constraint Satisfaction Problem issues: 

 Constraint propagation is weaker than CSP 
but many issues are common to both. 

 global and local consistency, relaxation 
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Example Propagation Network Problem 
 Line segment mid-point: 

 Xm = X1 + D 

 X2 = Xm + D 

 X1 and Xm given then d 
and X2 easily calculated 

 Local propagation fails 
when X1 and X2 given. 

 Solutions: 

 “relaxation” 

 modify network 
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Solution 1:  Augment Network 
 Address problem by 

augmenting network. 

 Add a new constraint 
 2*Xm = X1 + X2 

 New constraint prevents 
local propagation from 
getting stuck 

 New constraint 
mechanically derivable 
from existing constraints 

21 

Xm =

X1 + D

X1

X2 =

Xm + D

X1

Xm D2*Xm =

X1 + X2



Solution 2:  Simplify Network 
 Or address problem by 

simplifying network. 

 Remove D and combine 
constraints involving D. 

 Decision to remove D 
not suitable for 
mechanization. 

 Simple solution in this 
case but other cases… 
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Conclusion 
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 SAR Inference Engine 

 A implements a single logical model 

 Avoids inconsistencies arising from multiple fragmented 
models 

 Focuses refinement and maturation efforts. 

 Is usable throughout lifecycle of radar 

 Design through deployed operation 

 Diverse uses and comprehensive scope enabled by 

 Constraint programming paradigm 

 Constraint propagation network 

 


