
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

An Application of Constraint
Programming to the
Design and Operation of
Synthetic Aperture Radars

Michael Holzrichter

Sandia National Laboratories

Presentation Outline

 Fragmentation of logical model of SARs

 Constraint programming paradigm and
propagation networks

 SAR Inference Engine

 Current areas of investigation

2

Synthetic Aperture Radars

 Synthetic aperture radars (SARs) image
the earth’s surface using microwaves.

 SARs are complex systems

 Hundreds of quantities: center frequency,
beamwidth, scene dimensions, etc.

 Quantities must obey hundreds of
relationships: physics, radar equation,
trigonometry, etc.

3

Logical Model of SARs

 In aggregate, the quantities and relationships

 Form a large web or network

 Constitute a logical model of the SAR

 Logical model is dispersed

 People’s minds, documents, software

 Many partially overlapping subsets

 Inconsistencies invariably creep in

 Cause degraded performance or faults

 Incur overhead

4

SAR Inference Engine

 SAR Inference Engine

 provides a central, common SAR model

 uses the constraint programming paradigm.

 Constraints come from

 physics, geometry, signal processing

 system engineer design choices.

 A propagation network provides the
computational foundation.

 All propagators derived from constraints.
5

Imperative Code to Propagation Network

 An imperative code may compute a
propagating wave’s one way travel time
using the following code:

6

velocity = frequency * wavelength; // Equation 1

traveltime = distance / velocity; // Equation 2

 Inputs: frequency, wavelength, and distance

 Output: velocity, traveltime

Imperative Code to Propagation Network

 Alternative arrangements of Equation 1:
 velocity = frequency * wavelength;

 wavelength = velocity / frequency;

 frequency = velocity / wavelength;

 Alternative arrangements of Equation 2:
 distance = velocity * traveltime;

 traveltime = distance / velocity;

 velocity = distance / traveltime;

7

Imperative Code to Propagation Network

 Relation 1:
 velocity = frequency * wavelength

 Relation 2:
 distance = velocity * traveltime

 Observations:

 Given any two quantities in a relation the
third quantity can be calculated.

 Both relations have the form “A = B * C”
(more on this later).

8

V =

F * W
V

D =

V * T

D

T

W

F

Imperative Code to Propagation Network

 Relations 1 and 2 depicted as a graph:

9

Note: The graph depicts a simple propagation network.

Distance

Relation 1 Relation 2

Travel time

Wavelength

Frequency

Velocity

Value set by “fiat”
Value inferred

from constraints

Value

undetermined

Scenario 1: Determine Travel Time

10

Given a state where
wavelength and
distance are set…

setting the value of
frequency fixes the
value of velocity
and travel time also.

V =

F * W
V

D =

V * T

D

T

W

F

V =

F * W
V

D =

V * T

D

T

W

F

Scenario 2: Determine Frequency

11

Given a state where
distance and travel
time are set…

setting the value of
wavelength fixes
the value of
frequency also.

V =

F * W
V

D =

V * T

D

T

W

F

V =

F * W
V

D =

V * T

D

T

W

F

Propagation Network Observations

 Many different sets of inputs are possible.

 Relationships can also be inequalities.

 Operation is progressive.

 Useful to record dependencies of “inferred”
values on values determined by “fiat”

 Enables backtracking

 Enables determining why a quantity is in its
current state.

12

Example of Selective Backtracking

13

Before invalidating
distance

After invalidating
distance

V =

F * W
V

D =

V * T

D

T

W

F

V =

F * W
V

D =

V * T

D

T

W

F

Hello World Example

14

#include <stdio.h>

#include "InferenceEngine.h"

#include “PropWaveConstraint.h"

#include "CenterFrequencyQuantity.h"

#include "CenterWavelengthQuantity.h"

#include "SpeedOfLightQuantity.h"

int main (int argc, char * const argv[]) {

 // Create Inference Engine and initialize with constraints

 InferenceEngine *inferenceEngine = new InferenceEngine ();

 inferenceEngine->addConstraint (PropWaveConstraint::getInstance ());

 inferenceEngine->concludeInitialization ();

 // Assign values to center frequency and speed of light quantities

 inferenceEngine->assignQuantityValue (SPEED_OF_LIGHT_NAME, 2.99739141e+008, 0);

 inferenceEngine->assignQuantityValue (CENTER_FREQUENCY_NAME, 1.00000000e+008, 0);

 // Get value of wavelength

 double centerWavelengthValue = Quantity::getInstance (CENTER_WAVELENGTH_NAME)->getValue ();

 // Print out result

 fprintf (stdout, "CenterWavelength = %.17e\n", centerWavelengthValue);

 return 0;

}

Step 2: Create Inference

Engine and populate it

with constraints

Step 1: Include

header files of

•Inference Engine

•Constraints

•Quantities

Step 3b: Extract values of outputs

Step 3a: Enter

values for inputs

Scaling Up: Comprehensive SAR Model

 Can a SAR be modeled?

 Full-scale SAR model:

 Port of existing Matlab model that was
used to develop two generations of SARs

 Over 300 Quantities of “physical interest”

 Over 250 Constraints of “physical interest”

 Example of diverse quantities included:
SNR, geometry, hardware delays, resolution

15

More on Constraints

 SAR Inference Engine’s modeling:

 Just 11 types of constraints

 Low-level, i.e. minimal semantic content

 High-level constraints expressed as multiple low-
level ones

 Most important types of constraints:

 A = B op C where “op” is either “+” or “*”

 “Triangle Constraint” among 3 angles and 3
lengths making up a triangle

16

Usage Throughout the SAR Lifecycle

 Design phase

 Batch mode: generate performance curves

 Interactive mode: explore design space

 Mission planning

 Handle unanticipated conops

 Radar operation

 Radar operator interface

 Embedded in radar
17

Example: Insertion Into Image Formation
 Code has two phases

 Setup / initialization

 Data processing

 Setup phase maps data
attributes to image
attributes.

 Mapping process intimately
tied to logical model of SAR.

 Generation of data involved
the inverse mapping.

 Machine generated code
solves speed issue.

18

Replace mapping logic with

calls to SAR Inference Engine.

Image Formation Code

Initialization Code:

Among other things, maps

attributes of input data onto

attributes of output image.

Processing Code:

This code transforms digitized

data into SAR images.

Current Areas of Investigation

 Multivalued solutions

 E.g. ambiguous case of Law of Sines

 Completeness: Are there cases where
inferences could be made but aren’t?

 E.g. set of triangles to fully define geometry

 Constraint Satisfaction Problem issues:

 Constraint propagation is weaker than CSP
but many issues are common to both.

 global and local consistency, relaxation
19

Example Propagation Network Problem
 Line segment mid-point:

 Xm = X1 + D

 X2 = Xm + D

 X1 and Xm given then d
and X2 easily calculated

 Local propagation fails
when X1 and X2 given.

 Solutions:

 “relaxation”

 modify network
20

Xm =

X1 + D

X1

X2 =

Xm + D

X1

Xm D

D D

XmX1 X2

Solution 1: Augment Network
 Address problem by

augmenting network.

 Add a new constraint
 2*Xm = X1 + X2

 New constraint prevents
local propagation from
getting stuck

 New constraint
mechanically derivable
from existing constraints

21

Xm =

X1 + D

X1

X2 =

Xm + D

X1

Xm D2*Xm =

X1 + X2

Solution 2: Simplify Network
 Or address problem by

simplifying network.

 Remove D and combine
constraints involving D.

 Decision to remove D
not suitable for
mechanization.

 Simple solution in this
case but other cases…

22

X1

X1

Xm
2*Xm =

X1 + X2

Conclusion

23

 SAR Inference Engine

 A implements a single logical model

 Avoids inconsistencies arising from multiple fragmented
models

 Focuses refinement and maturation efforts.

 Is usable throughout lifecycle of radar

 Design through deployed operation

 Diverse uses and comprehensive scope enabled by

 Constraint programming paradigm

 Constraint propagation network

